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Abstract—Gait is the walking posture of a human, which
involves movements of joints at upper limbs and lower limbs of
the body. In gait recognition, the human appearance changes
are taken into account, which makes it easier to differentiate
every individual. However, covariates such as viewing angle,
clothing and carrying condition act as the crucial factors that
affect the gait recognition process. In this work, a hybrid
model that integrates pre-trained DenseNet-201 and multilayer
perceptron is presented. The method first extracts the gait
energy image by windowing the gait binary images. Sub-
sequently, transfer learning of the pre-trained DenseNet-201
model is leveraged to learn the representative features of the
gait energy image. A multilayer perceptron is then used to
further capture the relationships between these features. Finally,
a classification layer assigns the features to the associated class
label. The performance of the proposed method is evaluated
on CASIA-B dataset, OU-ISIR D dataset and OU-ISIR Large
Population dataset. The experimental results show significant
improvements on all the datasets compared to the state-of-the-
art methods.

Index Terms—Convolutional neural network, DenseNet-201,
Gait recognition, GEI, Multilayer perceptron

I. INTRODUCTION

GAIT recognition is a biometric technology that can
be used to monitor people without their cooperation.

Unlike other biometric modalities such as fingerprints, iris
and face, gait is obtainable at a distance, making it well-
suited for security applications. Other than that, gait is hard
to conceal and imitate, which results in wide utilization at
airports and banks. Despite these perks, variations such as
clothing, carrying condition as well as the camera viewpoints
induce great changes in the human appearances. Hence, the
gait recognition becomes highly challenging.

Over the years, various handcrafted techniques were pro-
posed for gait recognition. The techniques can be classified
as model-based and model-free approaches. Model-based
approach [1, 2, 3, 4, 5] models the human body by using
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stick figures and sets of joints. The movement of the model
is tracked based on the length of limbs and trajectories and
angles between the joints. On the other hand, the model-
free approach [6, 7, 8, 9, 10, 11, 12, 13, 14] extracts the
gait features directly from the gait silhouettes. The model-
free approach requires low computational cost as it was easy
to implement. Although the handcrafted methods produce
high accuracy, these methods only focused on extracting
the manually defined features where the significant features
could be neglected.

In recent times, the deep learning approach [15, 16, 17,
18, 19, 20, 21] has gained a lot of attention due to its ability
to automatically learn high-level features. The deep learning
approach extracts a large set of features, which contains
intricate patterns. The extracted features aid in achieving
higher accuracy compared to the handcrafted techniques.
Currently, the researchers are focused on using a pre-trained
model, which was learned from a large dataset to extract
deep features. There are numerous well-known pre-trained
models, namely VGG16 [22], AlexNet [23], Inception [24],
and DenseNet [25]. The models are constructed based on
CNN network. The usage of pre-trained models with transfer
learning techniques has been achieving significant perfor-
mance in the biometric domain. Nonetheless, the utilization
of the pre-trained model in gait recognition is very limited.

Therefore, this paper proposes a hybrid deep learning
model that integrates the pre-trained convolutional neural
network and multilayer perceptron, referred to as the Gait-
DenseNet model. Specifically, Gait-DenseNet model features
a DenseNet-201 based transfer learning network, which
is able to perform promisingly under different covariates.
First, gait energy image (GEI) is acquired by averaging the
silhouettes over a gait cycle. The pre-trained DenseNet-201
model is fine-tuned on the gait datasets to learn the features
of the GEIs. Multilayer perceptron is then added to the
network to obtain the class-specific representative features.
Lastly, a classification layer is used to classify the features
accordingly. The main contributions of this paper are:

• A hybrid convolutional neural network, known as the
Gait-DenseNet model, that consolidates the strengths of
pre-trained DenseNet-201 and multilayer perceptron for
gait recognition.

• Fine tuning is performed on the pre-trained DenseNet-
201 to better extract the salient gait related features.

• Integration of multilayer perceptron to encode the rela-
tionship between the extracted features and the corre-
sponding walking subject.

• Optimization techniques, including batch normalization,
dropout, leaky ReLU, Adam optimizer, and early stop-
ping, are incorporated to optimize the performance of

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_13

Volume 49, Issue 2: June 2022

 
______________________________________________________________________________________ 



the proposed Gait-DenseNet model.
• Experiments were conducted on CASIA-B, OU-ISIR

D and OU-LP datasets, to evaluate the scalability and
generalization of the proposed Gait-DenseNet model.

II. RELATED WORKS

The handcrafted approach extracts manually specified fea-
tures, while the deep learning approach learns the features
automatically from the gait silhouettes. There are various
techniques proposed under both approaches for gait recogni-
tion.

A. Handcrafted Approach

There are two broad categories of handcrafted approach,
namely model-based methods and model free methods.
Model-based methods mostly use a skeleton model to extract
features such as length of limbs and angles between joints.
In Zeng et al. [26], a 2D five-link biped model was utilized
to extract lower limb joint angles. Radial Basis Function
(RBF) was employed to identify the gait dynamics and the
smallest error principle was used to classify the gait patterns.
Similarly, Deng et al. [27] used a five-link biped model
to capture the kinematic parameters. Deterministic learning
was employed to generate the spatial-temporal features and
kinematic features. Wang et al. [28] built a walking model
where the length between joints were chosen as static fea-
tures while the angles between skeletons as dynamic features.
Recently, Sah and Panday [29] rotated the subjects in each
frame by transforming the Kinect coordinates into Centre of
Body (CoB) coordinates. By doing so, the dimension and
positions of the subjects’ body parts were captured in every
frame. The CoB coordinates and the distance of the same
joint of succeeding frames were considered as the features.

On the contrary, the model-free methods do not rely on
any specific model to learn the gait features. Arora and
Srivastava [30] proposed a technique termed as Gait Gaussian
Image (GGI) to extract spatial and temporal features. The
GGI was computed for each pixel of a frame over a gait
cycle. In order to conduct the fuzzification, Gaussian function
was applied on the acquired vector. Lee et al. [31] divided a
gait cycle into several windows to generate an equal number
of time-sliced averaged motion history image (TAMHI)
composite images. Histograms of oriented gradients (HOG)
of the obtained composite images were computed. Mogan et
al. [9] incorporated motion history image (MHI), binarized
statistical image features (BSIF) and histograms of oriented
gradients (HOG) to capture the motion patterns and direction
of a gait sequence. Rida [32] generated motion-based vectors
by determining the horizontal motion of GEI images using
Shannon entropy. Group fused lasso was employed to seg-
ment the body parts based on the shared change-point across
the acquired motion vectors. Mogan et al. [33] presented a
method to encode both spatial and temporal information. The
gait images were convolved with Independent Component
Analysis pre-learned filters where a set of feature maps
were produced. The obtained feature maps were divided into
several regions and the gradient of each pixel was computed.
The gradient of each pixel was then concatenated into a
histogram of temporal gradient.

B. Deep Learning
Deep learning approach performs both feature extraction

and classification in a network. The deep learning approach
learns the features automatically from the gait silhouettes
without having to be manually specified. Most of the existing
deep learning approach is based on convolutional neural
networks (CNN) due to the ability to analyze the visual
patterns in an image.

Shiraga et al. [34] presented a network for cross-view
gait recognition, which comprises two sequential triplets of
convolution layer, pooling layer and normalization layers.
The network used GEIs as input and Softmax function
to perform the classification. Alotaibi and Mahmood [35]
developed a deep CNN with four convolutional layers and
four pooling layers, to reduce the effects of variations and
occlusions. The network performed well by using a small
dataset without the need of data augmentation technique.
Wu et al. [36] proposed three different architectures namely
local@bottom (LB), mid-level@top (MT) and global@top
(GT), which accept a pair of inputs. The difference between
the three architectures is when the similarities between the
pair is computed. The local features were compared at the
bottom layer in the LB network, while the local features
were compared at the mid-level layer in the MT network.
As for the GT network, global features were compared at
the top layer. Wang and Zhang [37] developed two different
types of two-branch CNN networks. The difference among
the networks is the position of the concatenation layer
where the feature maps are fused in both the networks.
Wen [38] applied a Gabor filter at the input layer to pre-
process the gait silhouettes and extract the gait features.
The classification was performed using a metric learning-
based algorithm and Mahalanobis distance. Elharrouss et
al. [39] constructed two CNN models to estimate the camera
viewing angle and to classify the subject. The output of the
estimated angle was fed to the second model to recognize
the gait. Balamurugan [40] presented a deep CNN model,
which consists of four convolution layers, four max-pooling
layers, a fully connected layer and a Softmax layer.

Some of the deep learning-based work utilized a pre-
trained network to extract features using transfer learning
techniques. Li et al. [41] used pre-trained VGG-D model
with no fine-tuning along with Joint Bayesian Model for view
invariant gait recognition. Arshad et al. [42] proposed a gait
recognition method consisting of two phases. The first phase
is where the pre-trained VGG19 and AlexNet models without
any fine-tuning extract the features. The obtained features
were then fused together. During the second phase, entropy
and skewness vectors were computed using the fused feature
to identify the optimum sets of features. Liu and Liu [43]
presented a two-stream network called mainstream network
and auxiliary stream network. The mainstream network was
developed based on DenseNet to extract the similarity of
dynamic gait features. The auxiliary stream network was
developed based on a stacked convolutional autoencoder to
capture the similarity of static gait features.

III. GAIT-DENSENET

In this work, a pre-trained DenseNet-201 model along with
a multilayer perceptron is proposed for gait recognition. The
proposed network is depicted in Fig. 1.
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Fig. 1. The architecture of the proposed Gait-DenseNet model.

Fig. 2. Sample GEIs of CASIA-B (first row), OU-ISIR D
(second row), and OU-LP (third row) Datasets.

A. Gait Energy Image

Gait Energy Image (GEI) [44] is the most widely adopted
gait feature among the researchers. This is due to its ability
to extract both static and dynamic information from a gait
sequence. GEI is computed by simply averaging the frames
over a gait cycle as stated below:

GEI =
1

T

T∑
t=1

It(c, r) (1)

where It(c, r) is the gait silhouette at time t and T is the
total number of frames of a gait cycle. The obtained GEIs are
then resized to 128×128 for all the datasets. Fig. 2 displays
some examples of GEIs of three different datasets.

B. Network Architecture

The proposed Gait-DenseNet consists of a pre-trained
DenseNet-201 model and a multilayer perceptron. The pre-
trained DenseNet-201 model is employed to extract the
deep gait features, while the multilayer perceptron further
encodes the relationship between the learned features and
the associated class.

1) Fine-tuning DenseNet-201: A basic CNN contains
convolution layer, pooling layer, normalization layer, fully
connected layer, and a classifier layer. The input is convolved
with a number of kernels, which extract the gait patterns and
produce a number of feature maps. In the pooling layer, the
dimension of the obtained feature map is reduced without

affecting the features. The normalization layer ensures to
sustain the contribution of every feature in order to have
an impartial network. The connection among the features
and classes are extracted in the fully connected layer. An
activation function is applied on both the convolution layer
and the fully connected layer. The activation function decides
whether to activate a neuron based on the weight and bias
value. Lastly, classification is conducted in the classifier
layer.

Transfer learning technique is using a pre-trained model
trained on a large dataset and transferring the knowledge to
solve a downstream task. Hence, the network is trained by
fine-tuning the model. During fine-tuning, all the layers or
a part of the pre-trained model are unfrozen. Several dense
layers along with an output layer are added to the network
according to the problem to be solved. As the pre-trained
model is quite large, the whole model is trained using a low
learning rate to avoid overfitting issues. In this work, the
fine-tuning technique is applied on a pre-trained DenseNet-
201 model. The model was trained on ImageNet dataset. The
model consists of a convolution layer, a max-pooling layer,
four dense blocks and three transition layers. In the case of
connectivity of the layers, the prior layers in the model are
directly connected to all the subsequent layers. The model
concatenates all the feature maps of former layers with the
latter layers, which strengthens the information flow among
the layers. The feature concatenation of the layers is defined
as:

fl = Hl ([f0, f1, . . . , fl−1]) (2)

where l is the layer and [f0, f1, ..., fl−1] is the concatenation
of features. Hl(.) is a composite function, which consists
of batch normalization, ReLU and a convolution of 3 × 3
operation. To ease the implementation, several inputs of l(.)
were concatenated into a single tensor. The dense blocks
were created to enable the down-sampling of the layers. In
each dense block, a bottleneck layer with 1 × 1 convolution
was added before the 3 × 3 convolution to form BN-
ReLU-Conv(1 × 1)-BN-ReLU-Conv(3 × 3). In doing so,
the number of feature maps was reduced, thus the network
requires lower computational cost. The transition layers were
added in between the dense block, which performs 1 × 1
convolution followed by 2 × 2 average pooling. This is to
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reduce the dimension of the feature maps into half of the
original dimension. Growth rate of the network determines
the contribution of every new information to the collective
feature maps of every dense block. It is proven that the
network performed well by using a small growth rate. This
is due to the concatenation process of all the feature maps
from the former layers. In other words, every layer receives
concatenated feature maps from all the previous layers,
which are connected to the newly produced feature maps.

The DenseNet-201 model is selected due to its ability to
decrease the vanishing gradient problem. Other than that,
the model involves a smaller number of parameters with the
prospect of feature reuse.

2) Multilayer Perceptron: The output of the DenseNet-
201 model is flattened into a vector and fed into the
multilayer perceptron. The multilayer perceptron consists
of two fully connected layers with 512 neurons. The fully
connected layers determine the relationship between the
extracted features and the classes. Batch normalization layers
are added after each of the fully connected layers. The
purpose of batch normalization layers is to normalize the
outputs from fully connected layers in batches so that every
neuron has a standard distribution across the batch. The batch
normalization technique is done in batches to speed up the
training process, which results in an efficient learning.

Leaky rectified linear unit (Leaky ReLU) function is em-
ployed as the activation function in both the fully connected
layers. Leaky ReLU is a modified version of the ReLU
function where it has the ability to map the negative values,
which makes the layer more optimized. The Leaky ReLU
function is stated as:

f(x) =

{
x x > 0
αx x ⩽ 0

}
(3)

where α is the value to be multiplied with x, which gives an
output even when x is a negative value. By this adjustment,
the neurons in the negative regions are activated and become
functional.

Apart from that, the dropout technique is applied in both
the fully connected layers to prevent overfitting issues. The
dropout technique randomly drops certain neurons during
the training where its contribution is not counted during
forward propagation and the weights of the neurons are not
updated during the backpropagation. Since gait recognition is
a multiclass problem, a classifier layer with Softmax function
is added to classify the subjects. The Softmax function
provides probabilities of the input belonging to a specific
class. Softmax function is defined as:

S (yi) =
exp (yi)∑n
j=1 exp (yj)

(4)

where n is the number of classes and yi is the i-th input
vector y to the Softmax function.

In the training process, the Adam optimizer is adopted
to accelerate the network convergence. Adam optimizer is
a combination of RMSprop and AdaGrad, thus inheriting
the benefits of smoothening effect and noise reduction.
Early stopping mechanism is used to avoid over-training the
network. The early stopping mechanism stops training the
network once the performance has stopped improving based

on the validation set accuracy. As this work entails multiclass
classification, categorical cross entropy loss function is used
to compute the loss, which is defined as:

loss = −
n∑

i=1

ŷi · log yi (5)

where ŷi is the true class label, yi is the Softmax activation
for class i, and n is the number of scalar values in the output.
Table I illustrates the layer-wise structure of the proposed
Gait-DenseNet model.

TABLE I
LAYER-WISE ARCHITECTURE OF THE PROPOSED

GAIT-DENSENET MODEL

Model Layers Configurations

Pr
e-

tr
ai

ne
d

D
en

se
N

et
-2

01

Convolution 7× 7 conv, stride = 2

Max-Pooling 3× 3, stride = 2

Dense Block

[
1× 1 conv

3× 3 conv

]
× 6

Transition
1 conv

2× 2 average pool, stride = 2

Dense Block

[
1× 1 conv

3× 3 conv

]
× 12

Transition
1× 1 conv

2× 2 average pool, stride = 2

Dense Block

[
1× 1 conv

3× 3 conv

]
× 48

Transition
1 conv

2× 2 average pool, stride = 2

Dense Block

[
1× 1 conv

3× 3 conv

]
× 32

M
ul

til
ay

er
Pe

rc
ep

tr
on

Fully Connected 512

Batch Normalization -

Leaky ReLU -

Dropout 0.3

Fully Connected 512

Batch Normalization -

Leaky ReLU -

Dropout 0.3

SoftMax -

IV. EXPERIMENTS AND DISCUSSIONS

This section describes the datasets used in the performance
evaluation, namely CASIA-B dataset, OU-ISIR dataset D,
and OU-LP dataset. The hyperparameter tuning is discussed
and the optimal values are determined empirically. The
performance comparison and analysis with the existing gait
recognition methods is also presented.

A. Datasets

The CASIA-B dataset [45] consists of 124 subjects. It
is known as a large multi-view gait database. The gait
sequences were recorded based on three different variations,
such as view angle, clothing and carrying condition. The
CASIA-B dataset allows assessing the methods under differ-
ent covariates.
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The OU-ISIR dataset D [46] comprises 370 gait sequences
of 185 individuals captured from lateral view. The dataset
was sampled based on how the gait fluctuates over time in
a gait sequence. The dataset was divided into two subsets,
namely DBlow and DBhigh. Both the subsets consist of 100
individuals with steady walking style (DBhigh) and fluctuated
walking style (DBlow). The dataset permits to examine the
proposed method under fluctuated walking style.

The OU-LP dataset [47] contains 4016 subjects with ages
of 1 to 94 years old. The dataset was divided into two subsets:
Sequence A (two sequences per subject) and Sequence
B (one sequence per subject). The subsets were further
broken down into five subsets based on the observation
angles namely, 55°, 65°, 75°, 85° and all four angles. In
this work, Sequence A with 3916 subjects is used in the
experiments. By using the OU-LP dataset, the generalization
of the proposed method is evaluated.

B. Hyperparameter Tuning

Six hyperparameters are involved in the proposed method,
namely input size N , optimizer θ, dropout rate P , activation
function A, batch size B and learning rate L. A grid search is
performed on CASIA-B Dataset to tune the hyperparameters
of the proposed Gait-DenseNet model. In every analysis,
the value of a certain hyperparameter is changed, while the
values of other hyperparameters remain the same.

TABLE II
ACCURACY AT DIFFERENT INPUT SIZES N [θ = ADAM, P

= 0.3, A = LEAKY RELU, B = 32, L = 0.0001]

Input Size Accuracy (%)
32 × 32 99.34

64 × 64 99.56

128 × 128 100

TABLE III
ACCURACY AT DIFFERENT OPTIMIZERS θ [N = 128× 128,

P = 0.3, A = LEAKY RELU, B = 32, L = 0.0001]

Optimizer Accuracy (%)
SGD 92.49

Adam 100

TABLE IV
ACCURACY AT DIFFERENT DROPOUT RATES P

[N = 128× 128, θ = ADAM, A = LEAKY RELU, B = 32,
L = 0.0001]

Dropout Rate Accuracy (%)
0.2 99.71

0.3 100
0.4 99.85

Table II displays the accuracy of the Gait-DenseNet with
different input sizes N . It is observed that the accuracy
increases along with the input size. The highest accuracy
is achieved when the input size is 128 × 128. This is due
to the bigger input size containing more features than the
smaller input size.

TABLE V
ACCURACY AT DIFFERENT ACTIVATION FUNCTIONS A

[N = 128× 128, θ = ADAM, P = 0.3 , B = 32, L =
0.0001]

Activation Function Accuracy (%)
ReLU 99.93

Leaky ReLU 100

TABLE VI
ACCURACY AT DIFFERENT BATCH SIZES B

[N = 128× 128, θ = ADAM, P = 0.3 , A = LEAKY RELU,
L = 0.0001]

Batch Size Accuracy (%)
32 100
64 99.56

128 99.34

TABLE VII
ACCURACY AT DIFFERENT LEARNING RATES L

[N = 128× 128, θ = ADAM, P = 0.3 , A = LEAKY RELU,
B = 32]

Learning Rate Accuracy (%)
0.01 91.83

0.001 99.63

0.0001 100

TABLE VIII
SUMMARY OF HYPERPARAMETER TUNING

Hyperparameters Tested Values Optimal Values
Input Sizes 32 × 32, 64 × 64, 128 ×

128
128 × 128

Optimizers SGD, Adam Adam

Dropout Values 0.2, 0.3, 0.4 0.3

Activation
Functions

ReLU, Leaky ReLU Leaky ReLU

Batch Sizes 32, 64, 128 32

Learning Rates 0.01, 0.001, 0.0001 0.0001

The accuracy of the Gait-DenseNet model with various
optimizers θ is shown in Table III. Adam optimizer is more
effective on noisy silhouettes compared to SGD optimizer.
As CASIA-B Dataset consists of noisy silhouettes, Adam
yields higher accuracy than SGD. Other than that, Adam
optimizer also converges faster than SGD, which consumes
less computation time.

Table IV illustrates the accuracy of the Gait-DenseNet
model with different dropout rates P . The experimental
results show that the highest accuracy is attained at value
0.3. The dropout rate is to decide on how many neurons
to be deactivated where the weights are neglected during the
training. The larger value causes the network to overfit, while
the smaller value causes the network to underfit.

Table V presents the accuracy of the Gait-DenseNet model
using different activation functions A. Leaky ReLU function
achieved higher accuracy than ReLU function. This is due to
the slight improvement on the negative values in the Leaky
ReLU function, where the negative values are activated and
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provide an output, unlike the ReLU function where the
negative values are deactivated.

The accuracy of the Gait-DenseNet model with various
batch sizes B is displayed in Table VI. The highest accuracy
is obtained when the batch size is set to 32. The larger
batch size requires higher computational cost. Moreover, the
accuracy of larger batch sizes is lower than the smaller batch
sizes.

Table VII shows the accuracy with different learning
rates L. The learning rate at 0.0001 attained the highest
accuracy. As the proposed Gait-DenseNet involves a pre-
trained network which is quite large, a smaller learning rate
is more suitable in order to avoid overfitting problems.

The optimal value for every hyperparameter is selected
based on the highest accuracy in every analysis. Table VIII
shows the summary of the tested and optimal hyperparameter
values for the proposed Gait-DenseNet model.

C. Comparison with the Existing Methods
Six existing methods were included in the experiments for

comparison purposes, namely GEINet [34], Deep CNN [35],
CNN with Leaky ReLU [48], CNN [49] and deep CNN [40].
In the experiments, all the datasets are divided into 80%
training, 10% validation, and 10% testing. In order to have
a fair comparison, the input size is set to 128 × 128 for
all the existing methods. Table IX shows the comparison of
accuracy among the proposed and existing methods on three
datasets.

Due to the incomplete silhouettes in the CASIA-B dataset,
the accuracy of most of the methods slightly dropped, espe-
cially the deep CNN [35] method. Nonetheless, the proposed
Gait-DenseNet model outperforms the existing methods with
an accuracy of 100%. As the Gait-DenseNet model is made
up of fine-tuned DenseNet-201 and multilayer perceptron,
the deep neural structure well maps the complicated patterns
such as incomplete silhouettes and noisy silhouettes which
resulted in the high accuracy.

Using the OU-ISIR dataset D with the DBhigh and DBlow

subsets of only 100 subjects, all the existing methods ob-
tained promising results. The proposed Gait-DenseNet model
achieved 100% accuracy in both the DBhigh and DBlow

datasets. The pre-trained model and multilayer perceptron
are known to work well with both small and large datasets.
Hence, the hybrid of the pre-trained DenseNet-201 and
multilayer perceptron contributes to the high accuracy in all
the datasets.

As for the OU-LP dataset with 3916 subjects, the ac-
curacies of the CNN methods [40, 47, 35] are quite low
due to the network being constructed for a small number
of classes. Nevertheless, the proposed Gait-DenseNet model
performed promisingly with an accuracy of 99.17%, which
demonstrates the scalability and generalization ability of the
proposed Gait-DenseNet. The fine-tuning of the pre-trained
model, multilayer perceptron, batch normalization, Leaky
ReLU activation function, early stopping, dropout layer, etc,
collectively contributes to the outstanding performance in
gait recognition.

V. CONCLUSION

Gait recognition has become a challenging task due to the
covariates such as viewing angles, clothings and carrying

conditions. In this work, a hybrid model that integrates
the pre-trained DenseNet-201 and multilayer perceptron is
proposed. The pre-trained DenseNet-201 model is fine-tuned
to learn the salient gait features which produces the feature
maps. A multilayer perceptron that consists of the fully
connected layers, batch normalization layers and a classifier
layer are appended to discover the relationship between the
feature maps and the associated class for gait recognition.
The experimental results demonstrate that the proposed Gait-
DenseNet model is less sensitive to noise and incomplete sil-
houettes, fluctuations in walking patterns, and large number
of subjects attributable to the deep structure of the hybrid
model. Not only that, the enhancement techniques, namely
batch normalization, dropout layer, and early stopping also
help in reducing the overfitting and improving the general-
ization ability of the model.
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