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Abstract—The sum of the distances between all unordered
pairs of vertices of a connected graph G is called the Wiener
index of G and denoted by W (G). In this paper, we researched
the Wiener index of the strong product of a class of paths
with given orders. By using the structural characteristics of
the strong product graph, we derive the exact Wiener index
of the strong product of two paths while their lengths have
different parities. In addition, we also obtain an upper bound
of the edge-forwarding index of the strong product of two paths.

Index Terms—Wiener index, Strong product graph, Topolog-
ical structure, Path, Edge-forwarding index.

I. INTRODUCTION

IN 1959, Sabidussi defined the strong product graph,
Cartesian product graph and direct product graph for the

first time in Reference [1], and they were widely used in
network design. In this paper, we are interested in the strong
product of two graphs, which is defined as follows:
For two random graphs G1 and G2, their vertex sets and edge
sets are V (Gi) and E(Gi), respectively, where i = 1, 2. The
strong product of G1 and G2 is denoted by G1 � G2, with
vertex set

V (G1 �G2) = V (G1)× V (G2)

= {(xi, yj) : xi ∈ V (G1), yj ∈ V (G2)}.

The connection rules of the two vertices (xi, yj) and (xk, yh)
of G1 �G2 are: If and only if i = k and (yj , yh) ∈ E(G2),
or j = h and (xi, xk) ∈ E(G1), or (xi, xk) ∈ E(G1) and
(yj , yh) ∈ E(G2). We call graphs G1 and G2 the factor
graphs of G1 �G2, and for convenience, the vertex (xi, yj)
is usually written as xiyj .

The strong product is a method available for the construc-
tion “large” networks from existing “small” networks. For
any random network, we usually focus on its topology, and
the network topology is essentially a graph. Thus, in the
following content, we will interchange “graph” and “net-
work”. A graph constructed by the strong product method
can retain some good properties of the factor graphs, such
as symmetry, transitivity and connectivity. As early as 1973,
by using the extreme value method, Hales [2] determined the
domination number and the cliquecovering number of strong
product graphs. In 1992, Imrich and Klavzar [3] proved that
the contract of the strong product of two graphs is the strong
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product of the subgraphs of these two graphs. In 1998, Vesel
obtained the independent number and chromatic number of
the strong product of some odd cycles [4]. Bresar et al. [5]
calibrated the edge connectivity of strong product graphs
based on the edge connectivities, orders, sizes of factor
graphs and the minimum vertex degree of the strong product
graphs. More on the theory and application of the product
graphs are present in other works [6-8].

In graph theory, the Wiener index is a graph invariant
based on distances, denoted by W (G), defined as W (G) =∑
x,y∈V (G)

dG(x, y)/2, where dG(x, y) refers to the distance

between two different vertices x, y ∈ V (G). The Wiener
index can be widely studied in various fields and disciplines
[10-13], originating from the pioneering article of chemist H.
Wiener in 1947 [9]. In terms of graph theory, many scholars
have obtained the exact Wiener indices of some graphs with
special structures, such as polygonal systems [14], unicyclic
graphs [15], trees [16-17], and other special graphs [18-19].
In addition, mathematicians and scholars have obtained many
results by exploring the universal results. Gutman et al. used
the orders, sizes and the Wiener indices of factor graphs
to derive the universal results of Wiener indices of several
composite graphs [20]. Plesnik proved that in all 2-connected
graphs with order n, the cycle of Cn has the largest Wiener
index [21]. By using the nondecreasing sequence of the
distances between all different vertex pairs of factor graphs,
Casablanca et al. obtained some upper and lower bounds of
the Wiener indices of some strong product graphs [22]. In
reference [23], by limiting the eccentricities of the two factor
graphs, Peterin et al. obtained the Wiener index of the strong
product of two-factor graphs when they both have constant
eccentricities. For more results on the Wiener indices, please
refer to [24-26].

Paths have convenient constructions and excellent prop-
erties, in most virtual and real networks, there are paths as
their subgraphs. Donald gave an upper bound on the number
of paths of a random graph [27]. Barovich studied the paths
of 2-connected graphs [28]. In [29-30], Pattabiraman et al.
relied on the transitivity of the vertices of cycles to minimize
the computational complexity, and by using only the orders
of two-factor graphs, they obtained the Wiener indices of the
strong product of a path and a cycle and the Wiener index
of the strong product of two cycles. Therefore, it is great
significance to study the strong product graph of paths.

Since the path is not vertex-transitivity, so we classify
the vertices at different positions of G = P2m � P2n+1.
By making full use of the construction properties of G =
P2m�P2n+1, the shortest path selection between two vertices
of V (G) are defined. Based on the comprehensive above,
the Wiener indices of G = P2m � P2n+1 are given, where
m > n and n > m. In Section II, we introduce the symbols
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and concepts used in this paper. In Section III, we give the
main results and their proofs of this paper. In Section IV, by
using the shortest path selection of Section III, we determine
an upper bound of the edge-forwarding index of a class of
strong product networks. In addition, Section V presents the
summary of this paper.

II. SYMBOLS AND DEFINITIONS

The symbols and their definitions to be used in this paper
are as follows:
Let G be a graph, while two vertices u, v ∈ V (G) and the
edge {u, v} ∈ E(G), then the vertices u and v are said to
be adjacent to each other, denoted by u ∼ v. G is called
a connected graph, if there is at least one adjacent vertex
for each vertex of V (G). For two given graphs G and H , if
V (H) ⊆ V (G), E(H) ⊆ E(G), then H is called a subgraph
of G.

A finite nonempty sequence of A = (v0e1v1e2v2 . . . envn)
is composed of vertices and edges, whose items are v and
e, respectively, and the endpoints of ei are vi−1 and vi(1 ≤
i ≤ n). If all vertices and edges of A are different from each
other, then the graph composed of the vertices and edges of
A is called v0vn-path, denoted by Pn+1, where the length of
the is n. In addition, if v0 = vn of the sequence A, then the
graph composed of the vertices and edges of A is an n-order
cycle, denoted by Cn. The distance between two vertices u
and v of a connected graph G is defined as the length of a
shortest uv-path in the graph G, denoted by dG(u, v).

x1y7x1

x2

x3

x4

x1y1

x4y1 x4y7

X1

X2

X3

X4

y1 y2 y3 y4 y5 y6 y7

Y1 Y2 Y3 Y4 Y5 Y6 Y7

x2y1

x3y1

Fig. 1. Strong product graph P2×2 � P2×3+1

To facilitate the proofs of the main results, we intro-
duce some new symbols and their definitions. To clarify
the concepts of rows (also called layers) and columns of
P2m � P2n+1, in this paper, we use the following two new
forms to express V (P2m � P2n+1), i.e.,

1) V (P2m � P2n+1) =
2m⋃
i=1

Xi, where

Xi = {xi ∈ V (P2m)} × V (P2n+1).

2) V (P2m � P2n+1) =
2n+1⋃
i=1

Yj , where

Yj = {yj ∈ V (P2n+1)} × V (P2m).

We call Xi is the i-th layer of G = P2m � P2n+1, and
Yj is the j-th column of G. As illustrated in Fig. 1, we
enumerate the strong product of two paths P2m and P2n+1,
where m = 2, n = 3, and the number of layers and columns
of Fig. 1 are 2m and 2n+ 1, respectively.

For a vertex xiyj of Xi(1 ≤ i ≤ 2m) of P2m � P2n+1,
Xi(1 ≤ i ≤ 2m) is “this layer” of xiyj , X1, X2, ..., Xi−1 are
called “upper layers” of xiyj , and Xi+1, Xi+2, ..., X2m are
called “lower layers” of xiyj . For the sake of convenience,
in the following sections, we directly use the terms of “this
layer”,“upper layers” and “lower layers”. Please note that Xi

has no upper layer when i = 1, and when i = 2m, Xi has
no lower layer.

For a vertex xiyj(1 ≤ i ≤ 2m, 1 ≤ j ≤ 2n + 1), we use
LVu to represent the vertices of 1st to j − 1-th columns of
their upper layers, and the vertices of j-th to 2m-th columns
of their upper layers are represented by RVu. For the lower
layers of xiyj , all the vertices of the 1st to j− 1-th columns
are denoted by LVd, and the j-th to 2m-th are denoted by
RVd(see Fig. 2).

Let G = P2m�P2n+1, D(i,j) is defined as the sum of the
distances from xiyj(1 ≤ i ≤ 2m, 1 ≤ j ≤ 2n+1) to V (G),
i.e., D(i,j) =

∑
v∈V (G)

dG(xiyj , v). Undefined symbols can be

referenced in [6].

Y1 Y2 Yj+1Yj-1 Y2nY2n+1

X1

X2

Xi
Xi+1

X2m-1

X2m

Yj

Xi-1

xiyj

Yn

Xm

LVu

LVd RVd

RVu

Fig. 2. LVu, RVu, LVd and RVd of xiyj

III. MAIN RESULTS

Wiener index describes the situation of a graph distances, it
is one of the most important graph invariants with prominent
application background. Strong product of two paths is a very
comeliness mesh shape, and the vertices at corresponding
positions with the same characteristics. The following two
lemmas need to be used in the proofs of main results.

Lemma 1[6]: For two random graphs G and H , their strong
product G�H is commutative, i.e.,

G�H ∼= H �G.

Lemma 2[6]: Let G and H be two random simple con-
nected graphs, G�H is their strong product graph, for any
two vertices xiyj , xkyh ∈ V (G�H), where xi,xk ∈ V (G)
and yj , yh ∈ V (H), then,

dG�H(xiyj , xkyh) = max{dG(xi, xk), dH(yj , yh)}.

Theorem 1: Suppose that P2m and P2n+1 are two paths
with orders 2m and 2n + 1(n < m), respectively, and the
Wiener index of their strong product G = P2n+1 � P2m is:

W (G) =

{
w(Gm>2n) if 2n < m,
w(Gn<m<2n) if n < m ≤ 2n.
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Where

w(Gm>2n) = −[n5 + (5− 10m)n4 + (−70m2 + 30m+

5)n3 + (−80m3 − 90m2 + 60m− 5)n2+

(−5m4 − 150m3 − 15m2 + 30m− 6)n−
160m3 + 40m]/60,

w(Gn<m<2n) = −[8n5 + (20− 40m)n4 + (10− 80m)n3+

(−80m3 − 30m− 5)n2 + (−60m3+

5m− 3)n− 40m3 + 10m]/15.

Proof: As shown in Fig. 3, by using the structural proper-
ties of G, we find that the distances from the corresponding
vertices in the four box(real line) to other vertices of V (G)
are the same, and the distances from the corresponding
vertices in the two box(dotted line) to other vertices of V (G)
are the same. It is worth noting that the distance from a vertex
to itself is 0. Therefore, we have,

W (G) = (4
n∑

i=1

m∑
j=1

D(i,j)+2
m∑
j=1

D(n+1,j))/2

= 2

n∑
i=1

m∑
j=1

D(i,j)+

m∑
j=1

D(n+1,j). (1)

The entire process of proof is divided into two situations,
correspond to the two addition factors of Eqn (1) respectively.
In addition, the two situations are divided into three sub-
situations respectively.

Y1 Y2 Ym Ym+1 Y2m-1  Y2m
X1

X2

Xn

Xn+2

X2n

X2n+1

Xn+1

Fig. 3. The symmetry of P2m � P2n+1

Situation 1: Combined the structural properties of strong
product graphs with the symbols defined in Section II,
Situation 1 can be divided into the following three sub-
situations:
Sub-situation 1.1, calculate the sum of the distances from
xn+1yj(1 ≤ j ≤ m) to all vertices of this layer, i.e.,
m∑
j=1

2m∑
h=1

dG(xn+1yj , xn+1yh).

Sub-situation 1.2, calculate the sum of the distances from
xn+1yj(1 ≤ j ≤ m) to all the vertices of upper layers, i.e.,
m∑
j=1

n∑
k=1

2m∑
h=1

dG(xn+1yj , xkyh).

Sub-situation 1.3, calculate the sum of the distances from
xn+1yj(1 ≤ j ≤ m) to all the vertices of lower layers, i.e.,
m∑
j=1

2n+1∑
k=n+2

2m∑
h=1

dG(xn+1yj , xkyh). Notice that the sum of the

above three sub-situations is the final result of Situation 1.

Sub-situation 1.1: Since each layer of G is a path with
order 2m, thus the sum of the distances from xn+1yj to this
layer is expressed as follows:

D = dG(xn+1yj , xn+1yh)
m∑
j=1

2m∑
h=1

D =
m∑
j=1

{2[1 + 2 + · · ·+ (j − 1)] + j + (j + 1)+

· · ·+ (2m− j)}

=
m∑
j=1

[j(j − 1) + (2m− j)(2m− j + 1)]/2

= m(4m2 − 1)/3.
(2)

Eqn (2) gives the sum of the distances from the first m
vertices of Xn+1 to this layer. For Eqn (2), under the premise
of other conditions unchanged, no matter what the subscripts
of the two x of dG(xn+1yj , xn+1yh) are, as long as the
subscripts of the two x are the same, the distance is always
satisfy m(4m2−1)/3. Thus in some later situations, we will
call the result of Eqn (2) directly.

Sub-situation 1.2: For the convenience of calculations,
by using symbols LVu and RVu, we divide the sum of the
distances from xn+1yj to upper layers into two parts,

D = dG(xn+1yj , xkyh)
m∑
j=1

n∑
k=1

2m∑
h=1

D =
m∑
j=1

{
∑

u∈LVu

{dG(xn+1yj , u)+

m∑
j=1

∑
v∈RVu

dG(xn+1yj , v)}}.

(3)

Next, we calculate the two addition factors of Eqn (3),
respectively,

L = dG(xn+1yj , u)

m∑
j=1

∑
u∈LVu

L =

n∑
k=1

m∑
j=1

j−1∑
h=1

d(xn+1yj , xkyh)

=

n∑
k=1

n+2−k∑
j=1

[(j − 1)(n+ 1− k)]+

n∑
k=1

m∑
j=n+3−k

{[(n+ 1− k)2 + (n+ 2−

k) + · · ·+ (j − 1)]}
= [− n4 + (2− 4m)n3 − n2 + (−4m3+

8m− 2)n]/24,
(4)

The explanations of the terms appearing in Eqn (4) are as
follows:
For the distances from xn+1yj to all vertices of LVu, when
the value j of xn+1yj is between 1 and n + 2 − k, the
distances from xn+1yj to all vertices of k-th layer of LVu
are all n+1−k, and there are j−1 vertices like this. When
n+ 3− k ≤ j ≤ m, the sum of the distances from xn+1yj
to all vertices of k-th layer of LVu is (n+ 1− k)2 + (n +
2−k)+ · · ·+(j−1). The representative shortest paths from
xiyj to LVu and LVd are shown in Fig. 4. The shortest paths
to RVu and RVd are similar to Fig. 4, except the directions
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of LVu and LVd are to the left, but the directions of RVu
and RVd are to the right.

Y1 Y2 Yj+1Yj-1 Y2m-1 Y2m

X1

X2

Xi

Xi+1

X2n

X2n+1

Yj

Xi-1

xiyj

Ym

Xn

LVu

LVd RVd

RVu

xi-1yj-1

xi+1yj-1

x2yj-i+2

xmyj+i-m

Fig. 4. The representative shortest path from xiyj to LVu and RVu

Next, we calculate the second addition factor of Eqn (3),

R = dG(xn+1yj , v)
m∑
j=1

∑
v∈RVu

R =
n∑

k=1

m∑
j=1

2m∑
h=j

d(xn+1yj , xkyh)

=
n∑

k=1

m∑
j=1

[(n+ 1− k)2 + (n+ 1− k)+

· · ·+ (2m− j)]
= [mn3 + 3mn2 + (7m3 +m)n]/6.

(5)

The explanations of Eqn (5) are similar to the second addition
factor of Eqn (4). The differences between them are that
the distance from xn+1yj to xkyj is n + 1 − k, and the
distance from vertex xn+1yj to these n + 1 − k vertices
xkyj+1, xkyj+2, . . . , xkyj+n+2−k are all n + 1 − k, the
distance from xn+1yj to xky2m is 2m− j.

By using Eqn (3-5) and the construction characteristics of
the strong product graph, we have

L = dG(xn+1yj , xkyh)
m∑
j=1

n∑
k=1

2m∑
h=1

L =
m∑
j=1

∑
u∈LVu

dG(xn+1yj , u)+

m∑
j=1

∑
v∈RVu

dG(xn+1yj , v)

= −[n4 + (2− 8m)n3 + (−12m− 1)n2+

(−32m3 + 4m− 2)n]/24.
(6)

Eqn (6) calculates the sum of the distances from xn+1yj(1 ≤
j ≤ m) to their upper layers. Next, we calculate the sum of
the distances from xn+1yj(1 ≤ j ≤ m) to their lower layers.

Sub-situation 1.3: Similar to Sub-situation 1.2, we can
use the symbols LVd and RVd to divide the sum of the
distances from xn+1yj to their lower layers into two parts,
then calculate them respectively. It’s not difficult to find that
the upper layers and lower layers of xn+1yj are completely
symmetrical about Xn+1. Therefore, the sum of the distances
from xn+1yj to their upper layers and lower layers are equal.
Therefore, in this section, we can directly use the result of
Sub-situation 1.2.

Taking a comprehensive consideration of above three sub-
situations, we have obtained the sum of the distances from
xn+1yj(1 ≤ j ≤ m) to all the vertices of their this layer,
upper layers and lower layers. From Eqn(2) and Eqn(6), we
get the result of Situation 1 as follows:

m∑
j=1

D(n+1,j) =
m∑
j=1

2m∑
h=1

dG(xn+1yj , xn+1yh)+

m∑
j=1

n∑
k=1

2m∑
h=1

dG(xn+1yj , xkyh)+

m∑
j=1

2n+1∑
k=n+2

2m∑
h=1

dG(xn+1yj , xkyh)

=
m∑
j=1

2m∑
h=1

dG(xn+1yj , xn+1yh)+

2
m∑
j=1

n∑
k=1

2m∑
h=1

dG(xn+1yj , xkyh)

= −[n4 + (2− 8m)n3 + (−12m− 1)n2+

(−16m3 − 2)n− 32m3 + 8m]/12.
(7)

Situation 2: For 2
n∑

i=1

m∑
j=1

D(i,j), namely the sum of the

distances from xiyj(1 ≤ i ≤ n, 1 ≤ j ≤ m) to all vertices
of V (G), we also divide it into the following three sub-
situations:
Sub-situation 2.1, calculate the sum of the distances from
xiyj(1 ≤ i ≤ n, 1 ≤ j ≤ m) to this layer, i.e.,
n∑

i=1

m∑
j=1

2m∑
h=1

dG(xiyj , xiyh).

Sub-situation 2.2, calculate the sum of the distances from
xiyj(1 ≤ i ≤ n, 1 ≤ j ≤ m) to upper layers, i.e.,
n∑

i=1

m∑
j=1

i−1∑
k=1

2m∑
h=1

dG(xiyj , xiyh).

Sub-situation 2.3, calculate the sum of the distances from
xiyj(1 ≤ i ≤ n, 1 ≤ j ≤ m) to lower layers, i.e.,
n∑

i=1

m∑
j=1

2n+1∑
k=i+1

2m∑
h=1

dG(xiyj , xiyh).

Sub-situation 2.1: Since each layer of G is a path with
order 2m, we have

n∑
i=1

m∑
j=1

2m∑
h=1

dG(xiyj , xiyh) = mn(4m2 − 1)/3. (8)

Sub-situation 2.2: By using the symbols LVu and RVu,
we have

D = dG(xiyj , xiyh)
n∑

i=1

m∑
j=1

i−1∑
k=1

2m∑
h=1

D =
n∑

i=1

m∑
j=1

∑
u∈LVu

dG(xiyj , u)+

n∑
i=1

m∑
j=1

∑
v∈RVu

dG(xiyj , v).

(9)

Eqn (9) used the same technique as Eqn (3). Therefore, we
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calculate the two addition factors of Eqn (9), respectively,

L = dG(xiyj , u), R = dG(xiyj , v)

n∑
i=1

m∑
j=1

∑
u∈LVu

L =
n∑

i=1

m∑
j=1

i−1∑
k=1

j−1∑
h=1

dG(xiyj , xkyh)

=
n∑

i=1

i−1∑
k=1

i−k+1∑
j=1

(j − 1)(i− k)+

n∑
i=1

i−1∑
k=1

m∑
j=i−k+2

[(i− k)2 + (i− k+

1) + · · ·+ (j − 1)]

= −[n5 − 5mn4 + (10m− 5)n3 + (15m−
10m3)n2 + (10m3 − 20m+ 4)n]/120,

(10)

n∑
i=1

m∑
j=1

∑
v∈RVu

R =
n∑

i=1

m∑
j=1

i−1∑
k=1

2m∑
h=j

dG(xiyj , xkyh)

=
n∑

i=1

i−1∑
k=1

m∑
j=1

[(i− k) + (i− k)2 + (i−

k + 1) + · · ·+ (2m− j)]
= [mn4 + 2mn3 + (14m3 − 3m)n2−

14m3n]/24.
(11)

The explanations of Eqn (10-11) are similar to Eqn (4-5),
namely their distance formulas follow the same rule. From
Eqn (10-11), we get the final result of Sub-situation 2.2
n∑

i=1

m∑
j=1

i−1∑
k=1

2m∑
h=1

D =
n∑

i=1

m∑
j=1

∑
u∈LVu

dG(xiyj , u)+

n∑
i=1

m∑
j=1

∑
v∈RVu

dG(xiyj , v)

=

n∑
i=1

m∑
j=1

i−1∑
k=1

j−1∑
h=1

dG(xiyj , xkyh)+

n∑
i=1

m∑
j=1

i−1∑
k=1

2m∑
h=j

dG(xiyj , xkyh)

= −[n5 − 10mn4 − 5n3 + 30mn2−
80m3n2 + (80m3 − 20m+ 4)n]/120.

(12)

Sub-situation 2.3: Since the distances from xiyj(1 ≤
i ≤ n, 1 ≤ j ≤ m) to their upper and lower layers are
not completely symmetrical, in this situation, we cannot call
the value of Eqn (2). By using the symbols LVd and RVd,
Sub-situation 2.3 is divided into the following two addition
factors,

D = dG(xiyj , xiyh)
n∑

i=1

m∑
j=1

2n+1∑
k=i+1

2m∑
h=1

D =
n∑

i=1

m∑
j=1

∑
u∈LVd

dG(xiyj , u)+

n∑
i=1

m∑
j=1

∑
v∈RVd

dG(xiyj , v).

(13)

Next we calculate the two addition factors of Eqn (13),
respectively.

L = dG(xiyj , v)

n∑
i=1

m∑
j=1

∑
v∈LVd

L =
n∑

i=1

m∑
j=1

2n+1∑
k=i+1

j−1∑
h=1

dG(xiyj , xkyh)

=
n∑

i=1

m∑
j=1

i+j−2∑
k=i+1

[(k − i)2 + (k − i+ 1)+

· · ·+ (j − 2) + (j − 1)]+
n∑

i=1

m∑
j=1

2n+1∑
k=i+j−1

[(j − 1)(k − i)]

= [(14m2 − 14m)n3 + (18m2 − 18m)n2

+ (m4 − 2m3 + 3m2 − 2m)n]/24,
(14)

Eqn (14) calculates the sum of the distances from xiyj(1 ≤
i ≤ n, 1 ≤ j ≤ m) to their corresponding LVd, and the
distance formula follows the same rules as Eqn (4).

For the sum of the distances from xiyj(1 ≤ i ≤ n, 1 ≤
j ≤ m) to their corresponding RVd, according to the known
condition of Theorem 1, namely m > n, the distance formula
changes while the D-value of m and n is different. Therefore,
the distances from xiyj(1 ≤ i ≤ n, 1 ≤ j ≤ m) to their
corresponding RVd is divided into two cases of A and B.

Case A: When m > 2n, the distance rule from xiyj(1 ≤
i ≤ n, 1 ≤ j ≤ m) to their corresponding RVd is same as
Eqn(5), i.e.,

R = dG(xiyj , v)
n∑

i=1

m∑
j=1

∑
v∈RVd

R =
n∑

i=1

m∑
j=1

2n+1∑
k=i+1

2m∑
h=j

dG(xiyj , xkyh)

=
n∑

i=1

m∑
j=1

2n+1∑
k=i+1

[(k − i) + (k − i)2+

(k − i+ 1) + · · ·+ (2m− j)]
= [15mn4 + 42mn3 + (42m3+

27m)n2 + (14m3 + 4m)n]/24.
(15)
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Case B: When n < m ≤ 2n,

R = dG(xiyj , v)
n∑

i=1

m∑
j=1

∑
v∈RVd

R =
n∑

i=1

m∑
j=1

2n+1∑
k=i+1

2m∑
h=j

dG(xiyj , xkyh)

=
n∑

i=1

i+2(m−n−1)∑
j=1

2n+1∑
k=i+1

[(k − i)2+

(k − i) + · · ·+ (2m− j)]+
n∑

i=1

m∑
j=i+2(m−n)−1

2m+i−j−1∑
k=i+1

[(k−

i)2 + (k − i) + · · ·+ (2m− j)]+
n∑

i=1

m∑
j=i+2(m−n)−1

2n+1∑
k=2m+i−j

[(2m−

j + 1)(k − i)]
= −[31n5 + (75− 150m)n4 + (70m2−

350m+ 35)n3 + (−240m3 + 90m2−
180m− 15)n2 + (5m4 − 90m3+

15m2 − 10m− 6)n]/120.
(16)

For the explanations of Eqn (16), as illustrated in Fig. 5, we
enumerate the situations when m = 6, n = 3, 4, 5, and what
we need to find is the sum of the distances form the white
vertices and the gray vertices to their corresponding RVd.
For the white vertices of Fig. 5, the distance formula from
them to their corresponding RVd is the same as Eqn (15). For
the gray vertices, we found that while the value range of k is
i+1 ≤ k ≤ 2m+ i− j−1, the distance formula is the same
as the white vertices. While 2m+ i− j − 1 ≤ k ≤ 2n+ 1,
the distance from the gray vertices to Xk is all k − i, and
the number of the vertices with distance k− i is 2m− j+1,
so the distance formula is (2m − j + 1)(k − i). From Eqn
(13-16), we have

m > 2n,D = dG(xiyj , xiyh)
n∑

i=1

m∑
j=1

2n+1∑
k=i+1

2m∑
h=1

D =

n∑
i=1

m∑
j=1

∑
u∈LVd

dG(xiyj , u)+

n∑
i=1

m∑
j=1

∑
v∈RVd

dG(xiyj , v)

= [15mn4 + (14m2 + 28m)n3+

(42m3 + 18m2 + 9m)n2 + (m4+

12m3 + 3m2 + 2m)n]/24,
(17)

n < m ≤ 2n
n∑

i=1

m∑
j=1

2n+1∑
k=i+1

2m∑
h=1

D =
n∑

i=1

m∑
j=1

∑
u∈LVd

dG(xiyj , u)+

n∑
i=1

m∑
j=1

∑
v∈RVd

dG(xiyj , v)

= −[31n5 + (75− 150m)n4 + (35−
280m)n3 + (−240m3 − 90m−
15)n2 + (−80m3 − 6)n]/120.

(18)

In summary, by using Eqn (8), (12), (17), (18), the final
result of Situation 2 is also divided into two cases, i.e.,
when m > 2n,

2
n∑

i=1

m∑
j=1

D(i,j) = 2
n∑

i=1

m∑
j=1

2m∑
h=1

dG(xiyj , xiyh)+

2
n∑

i=1

m∑
j=1

i−1∑
k=1

2m∑
h=1

dG(xiyj , xkyh)+

2
n∑

i=1

m∑
j=1

2n+1∑
k=i+1

2m∑
h=1

dG(xiyj , xkyh)

= −[n5 − 10mn4 + (−70m2 + 70m

− 5)n3 + (−80m3 − 90m2+

120m)n2 + (−5m4 − 70m3

− 15m2 + 30m+ 4)n]/60.
(19)

When n < m ≤ 2n,

2

n∑
i=1

m∑
j=1

D(i,j) = 2

n∑
i=1

m∑
j=1

2m∑
h=1

dG(xiyj , xiyh)+

2
n∑

i=1

m∑
j=1

i−1∑
k=1

2m∑
h=1

dG(xiyj , xkyh)

+ 2
n∑

i=1

m∑
j=1

2n+1∑
k=i+1

2m∑
h=1

dG(xiyj , xkyh)

= −[32n5 + (75− 160m)n4 + (30−
280m)n3 + (−320m3 − 60m− 15)n2+

(−160m3 + 20m− 2)n]/60.
(20)

x1y1 x1y6

x1y1

x1y1

x1y6

x1y6

x3y1

x4y1

x5y1

Fig. 5. P2n+1 � P2m m = 6, n = 3, 4, 5

Finally, from Eqn (1) and the final result of Situation 1
and Situation 2, when m > n, we find the Wiener index of
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G = P2n+1 � P2m,

W (G) = 2
n∑

i=1

m∑
j=1

D(i,j) +
m∑
j=1

D(n+1,j)

=



−[n5 + (5− 10m)n4 + (−70m2 + 30m+
5)n3 + (−80m3 − 90m2 + 60m− 5)n2+
(−5m4 − 150m3 − 15m2 + 30m− 6)n
−160m3 + 40m]/60, if 2n < m,
−[8n5 + (20− 40m)n4 + (10− 80m)n3+
(−80m3 − 30m− 5)n2 + (−60m3 + 5m−
3)n− 40m3 + 10m]/15, if n < m ≤ 2n.

�

Next, we use the same method as Theorem 1 to derive the
Wiener index of the strong product of P2m�P2n+1,m ≤ n.

Theorem 2: Suppose that P2m and P2n+1(m ≤ n) are two
paths with orders 2m and 2n + 1, respectively, the Wiener
index of their strong product G = P2m � P2n+1 is:

W (G) =


[5mn4 + (290m2 + 20m)n3 + (70m3+
390m2 + 15m)n2 + (85m4 + 140m3+
75m2 − 10m)n−m5 + 5m4 + 75m3−
5m2 − 14m]/60, m > 1,
(16n3 + 24n2 + 14n+ 3)/3, m = 1.

Proof: When m = 1, there are only two layers in G,
which don’t satisfy most of the distance rules, but we solve
this case separately at the end of the proof. Next we calculate
the Wiener index of G when 1 < m ≤ n. Once again, we
use the symmetry of G to reduce our calculations, and get
the following equation,

W (G) = (
m∑
i=1

D(i,n+1) + 4
m∑
i=1

n∑
j=1

D(i,j))/2

=
m∑
i=1

D(i,n+1) + 2
m∑
i=1

n∑
j=1

D(i,j).

(21)

Compared Fig. 6 and Fig. 3, we find that the symmetry of
the two graphs is different, which leads to the different of
some distance rules between the two theorems, but the proof
idea is same.

Y1 Y2 Yn Yn+1 Yn+2 Y2n   Y2n+1
X1

X2

Xm

Xm+1

X2m-1

X2m

Fig. 6. Symmetry of P2m � P2n+1

Situation 1: Initially we find the sum of the distances from
xiyn+1(1 ≤ i ≤ m) to this layer, upper layers and lower
layers. The upper and lower layers can be divided into four
parts LVu, RVu and LVd, RVd, respectively. For this layer,

the distance rule is same as Theorem 1. As show in Fig. 6,
the sum of the distances from xiyn+1 to all vertices on their
left is equal to the sum of the distances from xiyn+1 to all
vertices on their right, so we have
m∑
i=1

D(i,n+1) =
m∑
i=1

2n+1∑
h=1

dG(xiyn+1, xiyh)+

m∑
i=1

2m∑
k=1

2n+1∑
h=1

dG(xiyn+1, xkyh)

= m
2n+1∑
h=1

dG(x1yn+1, x1yh)+

m∑
i=1

2m∑
k=1

dG(xiyn+1, xkyn+1)+

2(
m∑
i=1

i−1∑
k=1

n∑
h=1

dG(xiyn+1, xkyh)+

m∑
i=1

2m∑
k=i+1

n∑
h=1

dG(xiyn+1, xkyh))

= [4mn3 + (6m2 + 6m)n2 + (28m3 + 6m2−
2m)n+m4 + 14m3 −m2 − 2m]/12.

(22)

Situation 2: The proof process of this situation is same as
the Situation 2 in Theorem 2. Therefore, we will not repeat
the explanations here but give the final result directly.

2

m∑
i=1

n∑
j=1

D(i,j) = 2

m∑
i=1

n∑
j=1

2n+1∑
h=1

dG(xiyj , xiyh)

+ 2

m∑
i=1

n∑
j=1

i−1∑
k=1

2n+1∑
h=1

dG(xiyj , xiyh)

+ 2
m∑
i=1

n∑
j=1

2m∑
k=i+1

2n+1∑
h=1

dG(xiyj , xiyh)

= [5mn4 + 290m2n3 + (70m3+

360m2 − 15m)n2 + (85m4+

45m2)n−m5 + 5m3 − 4m]/60.
(23)

In summary, from Eqn (21-23), when 1 < m ≤ n, we
obtain the Wiener index of G which is expressed as follows:

W (G) =
m∑
i=1

D(i,n+1) + 2
m∑
i=1

n∑
j=1

D(i,j)

= [5mn4 + (290m2 + 20m)n3 + (70m3 + 390m2+

15m)n2 + (85m4 + 140m3 + 75m2 − 10m)n−
m5 + 5m4 + 75m3 − 5m2 − 14m]/60.

Finally, when m = 1, the structure of G is relatively
simple, and we give the Wiener index of G separately,

W (G) = D(1,n+1) + 2
n∑

j=1

D(1,j)

= (16n3 + 24n2 + 14n+ 3)/3.

�
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IV. APPLICATION

By using the shortest path selection of Section III, we
determine a closed upper bound of the edge forwarding index
of the strong product network G = P2n+1 � P2m(m > n).
The edge forwarding index is proposed for routing, defined
as follows: For a certain edge e of a routing β in network
G, the edge forwarding index β is defined as the maximum
number of times that the routing is determined by β passing
through e, i.e., ε(G) = max{εe(G, β) : e ∈ E(G)}. For
a network G, its edge forwarding index is defined as the
minimum value of the edge forwarding index of all routing
in G, i.e., ε(G) = min{ε(G, β) : e ∈ E(G)β}.

Considering comprehensively of the above definitions, in
order to prove that it is meaningful to determine the upper
bound of the edge forwarding index of the strong product
networks, we transform the problem of maximizing network
capacity into the problem of minimizing the edge forwarding
index. Suppose that G is a certain communication network
with T edges, and the constant n is the data transmission
efficiency of the routing determined by β. Because we are
aiming at undirected network, so the data can be transmitted
both forward and backward on each edge in the network.
Therefore, the transmission rate e is

2n+ 2(T − 1)n = 2Tn,

the total transmission rate of all edges in the entire network
is

2Tn+ T (T − 1)n = T (T + 1)n.

Since the capacity Ce of an edge limits the maximum amount
of data forwarding of the edge, the data or signal processed
by an edge should not exceed its capacity, i.e.,

2Tn+ εen ≤ Ce

where εe = εe(G, β). Assuming that the maximum capacity
of all edges in the network is C, it is obvious that there is

2Tn+ εen ≤ Ce ≤ C.

From the above formula, we can conclude that the transmis-
sion rate n of G must meet the requirement

n ≤ C/(2T + ε),

where ε = ε(G, β). Therefore, the total transmission rate of
the edge must meet the requirement

T (T + 1)n ≤ T (T + 1)C/(ε+ 2T ).

Since n, T , C in the above formula are constants, while
the number of edges, the transmission efficiency and the
capacity of the edge are determined, the capacity of the
network is inversely proportional to the edge forwarding
index of the network. So far, we have successfully trans-
form the problem of maximizing network capacity into the
problem of minimum edge forwarding index. Therefore, it is
highly significance to determine the upper bound of the edge
forwarding index of strong product networks. Next, the upper
bound of edge forwarding index of strong product network
G = P2m � P2m is given.

Theorem 3: Let P2n+1 and P2m be two paths with order
2n + 1 and 2m,m > n, respectively. A new upper bound

of the edge forwarding index of the strong product network
G = P2n+1 � P2m constructed by these two paths is:

ε(G) ≤ (4m2 − 2m)n+ 2m2 − 2mn2.

Proof : As illustrated in Fig. 7, for the convenience of
observation, we list the cases of m = 6, n = 3, 4. In
the shortest path selection of Theorem 1, the edge with
the largest forwarding index is the dotted line in Fig. 7,
and the forwarding index of edge (xn+1ym, xn+1ym+1)
is determined by the number of black vertices. In strong
product network G, the number of the black vertices is

2m(2n+ 1)− 2n(n+ 1) = −2n2 + (4m− 2)n+ 2m.
(24)

x1y1 x1y6

x1y1 x1y6

x3y1

x4y1

Fig. 7. Symmetry of P2n+1 � P2m,m = 6, n = 3, 4

In Fig. 7, we find that the position and number
of black vertices on the left and right sides of edge
(xn+1ym, xn+1ym+1) are symmetrical, and the number of
black vertices on the left and right sides is

(2m− 1)n+m− n2.

Take the (2m − 1)n + m − n2 vertices on the left side of
edge (xn+1ym, xn+1ym+1) as the sending-points, the last m
vertices of Xn+1, i.e., xn+1ym+1, xn+1ym+2 . . . , xn+1y2m,
as the receiving-points. According to the shortest path s-
election in Theorem 1, when the sending-points send da-
ta or signal to the receiving-points, it must pass through
(xn+1ym, xn+1ym+1). At this time, the forwarding index of
this edge is

(2m2 −m)n+m2 −mn2.

By using the symmetry of G, the forwarding index of edge
(xn+1ym, xn+1ym+1) is

(4m2 − 2m)n+ 2m2 − 2mn2,

which is an upper bound of edge forwarding index of strong
product network G = P2n+1 � P2m(m > n). �

V. CONCLUSION

In network planning and design, the strong product method
is one of the simple, reasonable and efficient methods. This
paper analyze the structural characteristics of strong product
graphs, by using symmetry and classification methods to
determine the exact Wiener index of two paths. The obtained
Wiener index is only determined by the orders of the factor
graphs. In the process of proving the conclusion, we also
determine a closed upper bound of the edge-forwarding
index, which also depends on the orders of the factor graphs.
In the next step, we will attempt to deal with the Wiener
indices of different graphs.
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