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Abstract—Rectangle partitioning is one of the most common
combinatorial problems which main purpose is to count possible
configurations based on some given variables. Typical approach
to solve this problem needs a polynomial time complexity, which
leads to a new issue when time and memory is a crucial factor
in this problem solving. One specific rectangular partitioning
problem that has this issue is to count how many possible
partitions can be done on a M×N rectangle to divide it into ex-
actly two subregions. In this paper, we propose a novel solution
for the aforementioned problem using dynamic programming
with profile method, also known as broken profile DP. This
broken profile DP method is famous for solving complex 2D
grid problems by breaking it into some simpler subproblems
and exploiting the special structure of the particular problem,
which is referred as a profile. A disjoint-set data structure
is used alongside with broken profile DP to validate each line
configuration’s connectivity, since the DP transition is processed
line-by-line. In the implementation later on, it is necessary
to implement big integer in order to store very big values.
Based on the case study testing result, the solution using broken
profile dynamic programming method requires an average time
of 0.0012 seconds and an average memory of 530 KiB. This
solution managed to rank first both timewise and spacewise
on E-Olymp Online Judge site, with a grade A in terms of
memory usage, which means it uses less resources than 90% of
all solutions submitted before.

Index Terms—dynamic programming, broken profile, rectan-
gle partitioning, disjoint-set data structure.

I. INTRODUCTION

RECTANGLE partitioning problem mostly involves
counting how many possible configurations that can be

constructed with a given condition [1]. This problem can
indeed be easily solved with a conventional way of using a
polynomial time algorithm [2]. However, this naı̈ve approach
is only applicable to a narrow range of variable size, which
is a major drawback for real life usage where time and
memory is crucial. Henceforth, rectangle partitioning prob-
lem is considered as one of the most challenging counting
problem [2] in the field of combinatorics domain [3], [4],
[5]. One particular problem that is negatively impacted by
this polynomial time complexity is to count how many valid
rectangular partition configurations exist if the rectangle,
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sized M × N , is partitioned into exactly two subregions,
where each subregion must be a connected set of unit cells.

By using a complete search method (Figure 1), such as
“Depth First Search” (DFS) algorithm [6], in case of a
rectangle sized 2 × 2, it will take O(23 × 8) to generate
all possible configurations and validate each configuration
by traversing the entire tree (runs in O(V + E), where V
is the number of vertices and E is the number of edges).
This will approximately take only 0.1 milliseconds. The
detrimental side of this method will take effect when the
problem is conditioned with 11×11 rectangle size, 2 seconds
of time limit, and 64 MiB of memory limit. By using DFS
algorithm, with the worst case scenario of a 11×11 rectangle,
we need to traverse all 2120 possible configurations, that
approximately requires O(2× 1036) and takes 1027 seconds
which is equivalent to 31.7 quintillion years, and thus not an
ideal solution for real life application.

Fig. 1. Naı̈ve approach to count valid partition configurations for a rectangle
sized 2× 2

In this paper, we proposed a novel solution that only needs
an average time of 1.2 milliseconds to count all valid partition
configurations for a rectangle sized 11×11, which is approx-
imately 1030 times faster compared to the conventional way.
This result can be achieved by using a broken profile dynamic
programming method to solve each subproblem only once
[7] while exploiting the special structure of the problem that
is referred as “profile” [8]. In addition to the broken profile
DP implementation, disjoint-set data structure is also needed
to help validate each subregion connectivity [9], so we only
need to maintain the valid configurations by storing it in a
table for future references and thus significantly decrease the
memory and time complexity.

The rest of the paper is organized as follows: Section
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II presents broken profile dynamic programming method,
which is proposed to solve the rectangle partitioning prob-
lem. Section III presents the experimental results and analy-
sis. Finally, the conclusion is stated in Section IV.

II. METHODOLOGY

A dynamic-programming algorithm solves each subsub-
problem just once and then saves its answer in a table,
thereby avoiding the work of recomputing the answer every
time it solves each subsubproblem [10]. Dynamic program-
ming is usually applied to optimization problems [2], [11],
[12], which makes it unusual that a combinatorial problem
[13] is approached by using dynamic programming method
rather than a combinatoric solution [14]. In solving this
rectangle partitioning problem, we are using dynamic pro-
gramming with profile method [15] which is a subset of
bitmask dynamic programming. Dynamic programming with
profile is also often referred as “broken profile dynamic
programming” [16]. Problems falling under this category
generally have the following properties [8]:

1) They are about filling a 2D grid.
2) One of the dimensions is much smaller than the other.
3) When filling the grid, each cell depends only on

adjacent cells.
4) The cells do not have many possible values (usually

only 2).

The properties mentioned above can all be found in our
problem [17], which is counting how many valid configu-
rations exists that can partition a rectangle sized M × N
into two subregions. The rectangle we are going to partition
is a 2D grid that fulfilled the first property. Next, with a
M × N rectangle, the algorithm time complexity is expo-
nentially proportional to the column size (N ) and is directly
proportional to the row size (M ). Therefore, compared to
the column size, the effect of the row size is negligible
which satisfied the second property. The third property is
the key factor of our proposed solution, as it means that
we can process the cells line-by-line. This eliminates the
need to care about each cell and put our main focus only
on cells in the last processed row, hence the name “broken
profile” [8]. As our problem is to partition the rectangle
into two subregions, we can fulfill the fourth property by
representing the subregions using “binary” value. In this
case, we are not using 0/1 (bitmask) as our “binary” value
but an even and odd value instead [18]. The reason being
is because there are some cases that are not able to be
represented by 0/1 as shown in Figure 2. These cases covered
all line configurations which have cells that should be in the
same subregion but have not been connected yet. As can
be seen from Figure 2, the first three cells are represented
by “0”, while the last two cells are represented by “2”, by
our definition, subregions are defined based on the cells are
represented by even or odd numbers. Since both “0” and “2”
are even numbers, meaning these five cells should be in the
same subregion, but they are not actually connected yet (no
adjacent tiles connect them) since they are still separated by
five “1” cells in the middle. Nonetheless, that does not mean
that “0001111122” is an invalid configuration, since there are
still more rows that can connect these even number cells.

Fig. 2. Illustration of cases that cannot be handled by 0/1 representations

When developing a dynamic-programming algorithm [10],
Cormen suggested a sequence of four steps. First, character-
ize the structure of an optimal solution. Next, recursively
define the value of the optimal solution identified in the
first step. Third, compute the value of the optimal solution
based on the recursive function formulated in the second
step. Lastly, construct an optimal solution from the computed
information in step three. In our problem, the fourth step
will be omitted since we only need the amount of valid
rectangular partition configurations, and not the configura-
tions themselves. Each of these three steps will be further
discussed in details in Sections II-A to II-C.

A. The structure of an optimal configuration

For our first step in the dynamic-programming paradigm,
we find the optimal substructure and use it to find the
optimal solutions for subproblems which will lead to an
optimal solution for the main problem. In the rectangle
partitioning problem, we can perform this step as follows.
For convenience, let S be the ith line configuration, and that
there exists X valid configurations that can be constructed
until the ith line. Suppose that T is the (i + 1)th line
configuration, and both S and T line configurations can
be defined as valid configurations; meaning the rectangle is
partitioned into at most two subregions until the (i + 1)th

line, then we can be assured that at least we have X valid
rectangle partitioning configurations up until (i + 1)th line.
Why? Because if up until ith line there are X valid rectangle
partitioning configurations, and that both S and T line con-
figurations are also valid, this means if we combined (i+1)th

line configuration, T , with the previous line configurations,
namely ith, (i − 1)th, (i − 2)th, . . . , 0th (zero-indexing), at
least X valid rectangle partitioning configurations will be
constructed too. If it turns out the number of valid rectangle
partitioning configurations until (i + 1)th line with the line
configurations T are less than X , then there must be also
less than X valid rectangle partitioning configurations until
ith line with the line configuration S: a contradiction.

Now we implement our optimal substructure in the sub-
problems to show that the optimal solutions in subproblems
can also be used as an optimal solution to the main problem.
We have seen that for each line, they only depend on exactly
one previous line configuration. Hence, we can build an
optimal solution to an instance of the rectangle partitioning
problem by splitting the problem into two subproblems
(optimally combining 0th until ith line configurations with
the (i+1)th line configuration), finding the optimal solutions
to subproblem instances, and then combining these optimal
subproblem solutions. We must ensure that when we search
for valid rectangle partitioning configurations, we have con-
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sidered all possible configurations, so that we are sure of
having counted all the valid ones optimally.

B. A recursive solution

Next, we define the optimal solutions for the subproblems
in a recursive formula. For the rectangle partitioning prob-
lem, we pick as our subproblems the problems of determining
the number of valid partition configurations discovered until
ith line, for 0 ≤ i ≤ M − 1. Let dp[i, S] be the total
number of valid partition configurations that have been found
until ith line, where S is the line configuration in the ith

line; for the full problem, the total number of valid partition
configurations for a rectangle sized M × N would thus be∑

a∈A dp[M−1, a], where A is the set of all valid (M−1)th
line configurations that are referred as the end-states.

We can define dp[i, S] recursively as follows. If i = 0,
meaning it defines the amount of valid configurations found
in the first row of the rectangle, which will be referred
as the base cases. Trivially, each base case will have only
one amount of valid configuration which is S itself. Thus,
dp[0, S] = 1, where S represents all base configurations
that is valid as a start. To compute dp[i, S], we take ad-
vantage of the structure of an optimal solution from step
1. Let us assume that to count all possible valid partition
configurations, we split the last line configuration (ith line
configuration) with all previous line configurations (0th to
(i − 1)th line configuration), where 0 ≤ i ≤ M − 1.
Then, dp[i, S] equals the sum of current amount of valid
partition configurations when S is the ith line configuration
with the amount of valid partition configurations when T
is the (i − 1)th line configuration, and it is assured that S
and T can be connected and do not partition the rectangle
into more than two subregions. Total amount of possible line
configurations that are represented by T are at most 2N con-
figurations, based on the column size of the rectangle. Thus,
our recursive definition for the total amount of valid partition
configurations for a M ×N rectangle is defined in equation
(1), where T represents any valid line configurations that can
be connected with S line configurations without making the
rectangle partitioned into more than two subregions.

dp[i, S] =

{
1, i = 0

dp[i, S] + dp[i− 1, T ], 1 ≤ i ≤M − 1
(1)

The dp[i, S] values give the total amount of valid config-
urations to subproblems which then will be used to compute
the total amount of valid rectangular partition configurations
overall.

C. Computing valid configurations

At this point, we could easily write a recursive algorithm
based on recurrence shown in equation (1) to compute the
total amount of valid partition configurations for a rectangle
sized M ×N . However, this recursive algorithm takes expo-
nential time, which is no better than the brute-force method
of checking all possible rectangular partition configurations
[10].

Observe that we have relatively few distinct subproblems:
one subproblem for each choice i and S satisfying 0 ≤ i ≤
M − 1, and at most 2N possible S line configurations. A

recursive algorithm may encounter each subproblem many
times in different branches of its recursion tree. This prop-
erty of overlapping subproblems is the second hallmark of
when dynamic programming applies (the first hallmark being
optimal substructure).

Instead of computing the solution to recurrence recursively
(using equation (1)), we compute amount of valid rectan-
gular partition configurations by using a tabular, bottom-up
approach. In order to implement the bottom-up approach,
we must determine the base cases first. Base cases represent
all dynamic programming states that are going to be the
starting point for the dynamic programming transition. Since
the problem requires the rectangle to be partitioned into
exactly two subregions, the only valid configurations that
can be defined as base cases are line configurations that have
one region, two subregions, or three subregions, as stated in
equation (2).

S =


“00 . . . 00”, 1 region
“00 . . . 0011 . . . 11”, 2 subregions
“00 . . . 0011 . . . 11 . . . 1122 . . . 22”, 3 subregions

(2)
We can assure that the three possible configuration types

stated in equation (2) have covered all the possibilities. For
the first possibility, we only need to make sure that in the
next lines there will be at least one “1” cell. While for the
second possibility, we just need to make sure that every
cell between the lines is connected to each other. For the
third possibility, it has three subregions, which is over the
maximum subregions allowed. However, this third type of
line configuration is still possible as a base case because
“0” and “2” cells can be connected through the next lines,
does not have to be the exactly next line. In other words,
all even number cells and all odd number cells must already
be connected throughout all M lines. Thus, the rectangle
is finally partitioned into two subregions, which are odd
number subregion and even number subregion. An illustrative
example of the three base cases can be seen in Figures (3-5).

Fig. 3. Illustrative example of the
first type base case line configura-
tion

Fig. 4. Illustrative example of the
second type base case line configu-
ration

Fig. 5. Illustrative example of the third type base case line configuration

When a first line configuration S is divided into four
subregions, it will be impossible to construct a valid fi-
nal rectangular partition configuration, since in the end
at least there will be three subregions formed. Suppose
S =“00 . . . 0011 . . . 1122 . . . 2233 . . . 33”, then if we want
to connect “0” cells and “2” cells into one subregion, “1”
cells and “3” cells will not be able to be connected into
one subregion. Thus, the rectangle will be partitioned to at
least three subregions. Similarly, if “1” cells and “3” cells
are can be merged into one subregion, hence “0” cells and
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“2” cells cannot be one subregion. If “1” cells and “2” cells
are one subregion, it will be the same as the third possibility,
namely cells in the first row is divided into three subregions
(“00 . . . 0011 . . . 1122 . . . 22”). An illustration for this case
can be seen in Figure 6.

Fig. 6. Illustrative example when first line configuration cells are divided
into four subregions

Based on the three possible first line configuration sce-
narios, it is found that the base case, which is the first line
configuration, S, can be represented by a string with length
N , and formally defined in equation (3) for any value of
L and R where 0 < L ≤ R < N , other than the trivial
base case: “00 . . . 00” (with length N ). These base cases are
valued one, which means to form the S line configuration
on the first line, there is one valid configuration.

S =


“0”, i < L

“1”, L ≤ i ≤ R

“2”, R < i.

(3)

Now that we have determined the formula for base cases,
next is doing the dynamic programming transition based
on equation (1). In the transition, we need to check all
next possible line configurations and then validate if that
next possible line configuration is a valid one. Valid means
that the next line configuration’s cells can be connected
to the cells in the previous line configuration. To do this
inter-cells’ connection validation, we can use the help of
disjoint-set data structure [9]. This validation needs to be
done throughout all possible (i + 1)th line configurations,
2N line configurations at most, which are constructed from
the previous line configuration, the ith line configuration.
Figure 7 shows how disjoint-set data structure can be used
to help the validation process. If at least one cell cannot
be connected, then the line configuration is assumed as an
invalid one. Only valid line configurations will be counted.
This validation process will be carried out iteratively from
the second row until the last row, and the valid configuration
computation will be accumulated in each row. Note that each
cell from a line configuration can connect with another line
configuration’s cell only when both cells are represented by
odd numbers or even numbers.

How about a line configuration that only consists of
one kind of cell, for example, all “0”s or all “1”s? This

Fig. 7. Validation illustration of the possible next line configuration using
the help of disjoint-set data structure

type of line configuration, that only has one region will
have a different validation process. Why? Because this one-
region line configuration has a unique characteristic, which is
closing the chance to partition the rectangle in the upcoming
rows. Thus, this kind of configuration can be stated as
an ending line configuration, that from now on will be
referred as “end” line configuration. Even so, not all one-
region line configurations can be included as “end” line
configurations, since the problem required the rectangle to
be partitioned into exactly two subregions. Meaning, these
one-region line configurations will be stated as “end” line
configurations, only if the rectangle is already partitioned
into exactly two subregions in the previous rows. Hence,
we only need to make sure the previous line configuration
consists of exactly two different cell’s values that represent
two subregions. These “end” line configurations will later
contribute to the overall amount of valid rectangular partition
configurations, since these line configurations already assure
that the rectangle is partitioned into two subregions from the
validation process. This validation process for one-region line
configurations can be seen in Figure 8

Fig. 8. Illustration of “end” configuration validation for one-region line
configuration

While counting the total amount of valid rectangular
partitions in each row, we need to make sure no double
counting occurs [19]. This is why, after a next possible line
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configuration is validated, it also needs to be compressed.
The compression process is not only used to avoid double
counting, but is also used to re-represent cells that are joining
into one subregion, so these cells can be represented using the
same number. The compression process consists of two steps.
The first step is changing the next line configuration cells’
values based on each cell’s parent number representation.
Each cell’s parent number representation is already recorded
previously while validating the connection between two line
configurations using disjoint-set data structure. After all
cells’ values have been updated, second step will be executed,
which is adjusting the line configuration cells’ values into
a zero-based numbering. This second step is the important
step not to be missed so double counting will not occur. The
illustrative example of compression process can be seen in
Figure 9.

Fig. 9. Compression illustration of the possible next line configuration

The dynamic programming transition will continue until
the last row, (M − 1)th line. After reaching the last row,
we still need to count the total valid rectangular partition
configurations. To count them, we need to define which
(M − 1)th line configurations that can be the end states.
As mentioned before, end line configurations can contribute
directly to the final answer, so these configurations are valid
end states. And, there are other line configurations that can
also be valid end states. Thus, the final answer that consists
the total valid rectangular partition configurations are formed
in equation (4), where X represents the set of (M−1)th line
configurations that are valid end states.

ans = dp[M − 1, “end”] +
∑
x∈X

dp[M − 1, x] (4)

Based on equation (4), we can say that the only valid
end states are those who referred as end configurations,
plus other line configurations that are included in set X .
Furthermore, set X consists of (M−1)th line configurations
that are all line configurations represented by a string, x
with length N , and formally defined in equation (5), for
1 ≤ L < N and 1 ≤ R ≤ N − L.

Algorithm 1 Counting valid rectangular partitions
Input: M,N
Output: ans

1: GENERATEBASECASE(N)
2: for i← 1 to M − 1 do
3: for each conf, x ∈ dp[i− 1] do
4: S ← conf
5: if S = “end” then
6: dp[i][S]← dp[i][S] + x
7: else
8: for mask ← 0 to 2N − 1 do
9: if mask is odd then T ← ‘1’

10: else T ← ‘0’
11: end if
12: for j ← 1 to N − 1 do
13: T ← T • T [j − 1]
14: m←

⌊
mask
2j

⌋
15: t← ASCII(T [j])
16: if ISDIFFPARTITION(m, t) then
17: T [j]← T [j] + 1
18: end if
19: end for
20: if ISONEREGION(mask) then
21: if ISVALIDENDCONF(S, T ) then
22: T ← “end”
23: else T ← λ
24: end if
25: else if ISVALIDCONF(T ) then
26: T ← COMPRESSMASK(T )
27: else T ← λ
28: end if
29: if T ̸= λ then
30: dp[i][T ]← dp[i][T ] + x
31: end if
32: end for
33: end if
34: end for
35: end for
36: ans← COUNTANS(M,N)
37: return ans

xi =

{
0, i < L or L+R ≤ i

1, L ≤ i < L+R.
(5)

To be clear, for the example case of a rectangle sized 3×3,
the computation for the final answer on how many valid rect-
angular partition configurations exist, with the configurations
shown can be seen in Figure 10. No other end states will
be a valid one for this example case, other than 010, 001,
011, and end line configurations. Thus, the end state formula
represented in equation (5) is proven to be true. To conclude,
the overall broken profile dynamic programming algorithm
that is used to count valid rectangular partition configurations
is summarized as follows in Algorithm 1.

In addition, since the answer might be very big, ap-
proximately over 264, to implement this algorithm, will
need big integer [20] implementation or primitive data types
modification.
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Fig. 10. Illustration of valid 3× 3 rectangular partition configurations

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we examine the validity and the per-
formance of the proposed approach. All algorithms were
implemented using C++11 programming language. To test
the validity of the dynamic programming approach, we use
the submission of source code on E-Olymp Online Judge as
a third-party online platform for source code checker, that
uses Alpine Linux 3.6 and GCC 6.3.0 compiler [21]. This
source code is, then, executed and the resulted output will
be compared with the expected answers that are provided
by the problem maker. On the other hand, two environment
testing platforms were used to evaluate the performance of
the source code. The first one is on a live environment using
E-Olymp Online Judge’s feedback to assess both memory
and time consumption compared with all previous solutions.
While the other is on a local environment using a PC with
Intel® Core™ i7-1165G7 4 Core Processor and 8192 MB of
memory, running Windows 10 with GCC 7.50 compiler, to
compare the program runtime of two big integer implemen-
tation methods in C++11: by modifying the primitive data
type and by using the extension data type.

In Section III-A, we will elaborate on the validity check
of the broken profile dynamic programming method that is
used to count the number of valid rectangular partitions.
Moreover, in Section III-B we will further go into detail
about the performance examination of the proposed method,
both timewise and spacewise.

A. Validity Examination

Figure 11 shows how the dynamic programming approach
used according to Section II are scored on E-Olymp Online
Judge. E-Olymp Online Judge’s testing system will give
various responses based on the program execution time,
memory usage, exit code, and the resulted output. First of
all, the system compares the program execution time with
the limit. If it is exceeded, the response will be “Time limit
exceeded”. Otherwise, system will continue check the mem-
ory usage. If the amount of memory used during execution
exceeds the allowed limit, the testing system will respond
“Memory Overflow”. According to exit code standard, the
program exit code should be 0 in case of success, and other
than 0 in case of an error. Thus, if the program returns
a nonzero exit code, a “Runtime error” status will be
received. At last, depending on the resulted output, the check
may end with a result “Accepted” or “Wrong Answer”
[22]. The code submissions have been executed at least 10
times to ensure the solution’s both validity and consistency
during the validity test.

All ten submissions received “Accepted” responses which
prove that our approach to count valid rectangular partitions
using the fusion of broken profile DP method and disjoint-set
data structure can provide correct answers within the time
and memory limitation. For each submission, our program
will be executed with one test suite containing 122 test cases
as shown in Figure 12. “Accepted” status is given only when
the code passes all test suites and test cases that proves our
solution is a valid one.

B. Performance Examination

There are two factors that must be taken into considera-
tions in performance examination, they are program runtime
and memory usage. The first factor, program runtime, will
be tested in both local, using own PC, and live environment,
with the help of E-Olymp Online Judge site. As for the
second factor, memory usage, will only be evaluated in E-
Olymp Online Judge site.

1) Runtime: In local environment, while implementing
the proposed approach, we used two types of big integer
implementation. First, is by manipulating the primitive data
types, which is expressing the big number using pair of
unsigned long long. Second, is by using an extension data
type, namely unsigned int128. Both implementations will
be used and compared in this experiment to determine which
implementation has a better performance. To obtain the
statistics of the program runtime, we executed the imple-
mented approach on a local PC thirty times for each method.

Figure 13 shows the bar chart of every thirty trials’ runtime
value by modifying C++ primitive data type, with a mean
value of 8.933 minutes, the fastest performance at 8.665
minutes in the 25th trial, and the slowest performance at
9.895 minutes in the 13th trial. Based on the chart’s variation
from the average line, it can be concluded that the overall
runtime performance is consistent throughout the thirty trials.
Highest spike that occurred in the 25th trial with only 1.01
minutes longer than the average time happened because the
program runtime is highly dependent on the processor load
and Random Access Memory (RAM) space that is very
unstable [23].
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Fig. 11. Validity Test Examined by E-Olymp Online Judge

Fig. 12. Test Cases Execution by E-Olymp Online Judge
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Fig. 13. Proposed Approach Runtime by Modifying C++ Primitive Data Type

Fig. 14. Proposed Approach Runtime by Using C++ Extension Data Type

Fig. 15. Solution ranking based on time and memory usage on E-Olymp Online Judge
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Fig. 16. Big Integer Implementation Comparison

Fig. 17. Memory Usage Grading Feedback from E-Olymp Online Judge

Figure 14 shows the bar chart of every thirty trials’ runtime
value by using C++ extension data type: unsigned int128.
This chart has a mean value of 8.882 minutes, the fastest
performance at 8.638 minutes in the 16th trial, and the
slowest performance at 9.756 minutes in the 2nd trial. This
bar chart’s variation from the average line also concludes
that the overall runtime performance is consistent throughout
the thirty trials. Similar to the previous figure, there are
several spikes happened in some trials because of the PC
load and storage space that is inconsistent throughout the
whole experiment [23].

To sum up (Figure 16), a double bar graph presents the
comparison of two aforementioned big integer implementa-
tions in terms of average, minimal, and maximal runtime
value. This graph clearly shows that the extension data type
usage is relatively better than the usage of pair of unsigned
long long since it has lower program runtime in all three
aspects, with 8.882 minutes of average time, 8.638 minutes
of fastest runtime, and 9.756 minutes of slowest runtime.
Furthermore, based on each method’s range value, it can
be concluded that unsigned int128 is more consistent
compared with pair of unsigned long long. This statement
is also supported by the fact that unsigned int128 has a
standard deviation of 13.3, which is 3.1 lower than pair of
unsigned long long’s. Therefore, in big integer implementa-
tion, the usage of extension data type is a better approach
in all statistics aspects. However, in terms of generality,
the big integer implementation by modifying primitive data
type is more practical since it can be implemented in other
programming languages that do not have big integer built-
in data types. Moreover, the average runtime value from the
primitive data type modification is only 3 seconds slower
than the extension data type usage which is still comparable.

Fig. 18. Timewise Performance Measurement by E-Olymp Online Judge

Fig. 19. Spacewise Performance Measurement by E-Olymp Online Judge

In live environment, the proposed method is submitted ten
times and Figure 18 shows a bar chart of all ten submissions’
execution time measured by E-Olymp Online Judge, with
an average execution time of 0.0012 seconds. However, if
we further observe this bar chart pattern, only one trial
run (8th) is 3 milliseconds while the remaining 9 trials
consistently takes 1 millisecond to run. Therefore, this 8th

trial can be considered as an outlier caused by the server
load inconsistency during certain busy time [24], [25].

2) Memory Usage: As mentioned in the beginning of
this section, the proposed approach memory usage exami-
nation is done by E-Olymp Online Judge that provides a
grading system for users to determine whether the submitted
approach is efficient spacewise. Figure 17 shows that our
proposed approach is graded A, meaning the solution used
less resources than 90% of the submissions on the website.
In average, our proposed approach only needs 530 KiB
of resources out of 64000 KiB, the maximum memory
limit given, shown in Figure 19. In conclusion, our broken
profile dynamic-programming approach is indeed efficient
spacewise.

Furthermore, Figure 15 shows how the solution is ranked
among other users’ solution on E-Olymp Online Judge.
Our broken profile DP approach managed to be the best
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solution that takes the first rank on the submission scoreboard
both timewise and spacewise. In other words, our proposed
approach is by far the most efficient method to count the
amount of valid rectangular partitions exist that split the
rectangle into exactly two subregions.

IV. CONCLUSION

In this paper, we apply a novel approach to solve a
combinatorial problem in counting valid rectangular parti-
tions by using broken profile dynamic programming method.
This approach is based on three main concepts. First, we
represent the two subregions of the rectangular partitions
using odd and even number. From there, we get the line
configurations as the profile that is being used in the dynamic
programming approach. Second, by using the structure of
an optimal configuration, we can get the recursive solution
of this problem using dynamic-programming: bottom-up
approach. Last, the usage of disjoint-set data structure that
is used to validate each partition connectivity complements
the dynamic programming transition in each line iteration.

The experimental results for this rectangle partitioning
problem have shown that the proposed approach using broken
profile dynamic programming method is by far the best
approach, both timewise and spacewise. In future work, it
might be possible to have a faster approach by finding the
analytical solution in closed-form expression.
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