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Adaptive Successive Interference Cancellation
using Deep Learning for High Altitude Platform
Station 1n Various K-Rician Channel

Veronica Windha Mahyastuty, Iskandar, Hendrawan, and Mohammad Sigit Arifianto

Abstract— This research proposed the Adaptive-Successive
Interference Cancellation (ASIC) method, which enlisted the
performance and power efficiency from Successive Interference
Cancellation (SIC) conventional. We employed deep learning as
new technology for wireless communications. We have simulated
for High Altitude Platform System (HAPS) communication
using the Power Domain-Non-Orthogonal Multiple Access (PD-
NOMA) method for three Ground Stations (GS). We consider
three different areas with the various K-Rician channel model
on low, medium, and high elevation for analysis. To compare
ASIC and SIC performance, we used the Signal-To-Noise Ratio
(SNR) and Bit Error Rate (BER) as performance parameters.
From the results of extensive research, we prove that ASIC
performance is more efficient at the SNR value around 48.21%,
30.27%, and 42.85% in low, medium, and high elevation,
respectively.

Index Terms—Successive Interference Cancellation, Adaptive
Communication, Non-Orthogonal Multiple Access, High Alti-
tude Platform System, Signal-to-Noise Ratio

I. INTRODUCTION
A. Motivation

N the 6th generation era, artificial intelligence in commu-

nication could not be rejected. This intelligence is needed
to resolve communication problems such as limited users,
frequencies, time, and space. These limitations open new
methods and techniques on communication, one of which
is Non-Orthogonal Multiple Access (NOMA), which can
communicate plural access to the transmitter in the Power or
Code domain. This ability resolves the problem of frequency
limitations but causes new problems where the difficulty of
power control and the complexity of the code need to be
prepared [1].

As one of the multiple access methods that became cellular
communication techniques, NOMA has also been used in
Unmanned Aerial Vehicle (UAV) communication [2]. UAYV,
one of the backup strategies in backbone communication,
is the High Altitude Platform Station (HAPS), operating in
the Stratosphere area. The presence of HAPS and NOMA

Manuscript received November 26, 2021; revised April 04, 2022.

Veronica Windha Mahyastuty is a doctoral student at Doctoral Program
of Electical Engineering and Informatics, School of Electrical Engineering
and Informatics, Institut Teknologi Bandung, JI. Ganesha No.10, Bandung
40132, Indonesia. (e-mail: windha@students.itb,ac,id).

Iskandar is an Associate Professor, School of Electrical Engineering
and Informatics, Institut Teknologi Bandung, J1. Ganesha No.10, Bandung
40132, Indonesia. (e-mail: iskandar @stei.itb.ac.id).

Hendrawan is an Associate Professor, School of Electrical Engineering
and Informatics, Institut Teknologi Bandung, J1. Ganesha No.10, Bandung
40132, Indonesia. (e-mail: hend @stei.itb.ac.id).

Mohammad Sigit Arifianto is an Assistant Professor, School of Electrical
Engineering and Informatics, Institut Teknologi Bandung, JI. Ganesha
No.10, Bandung 40132, Indonesia. (e-mail: msarif2a@stei.itb.ac.id).

became the primary key to resolving the problem of coverage
blank spots and frequency limitations. However, HAPS is not
equipped with a continuous power source to stop before the
mission is complete [3]. In addition, low power use for HAPS
is a major issue that must be resolved.

B. Literature Review

This paper [3] proposes single HAPS and multiple HAPS
Long Term Evolution (LTE) cellular capacity analysis. The
result also showed that single HAPS capacity is higher for
the exact outage probability than multiple HAPS capacity.
In the proposed scheme, communication services for long
distances requiring very high bandwidth are transmitted
optically from the ground station to the HAP station in
the stratosphere, where it can cover distances of several
hundreds of kilometers on the free-space optical links with
multiple serial hops and be transmitted back optically to
the distant ground receiver [4]. The HAPs incorporate both
satellite communication systems’ advantages, and terrestrial
Free Space Optic (FSO) links such as high capacity, low
transmission delay, and acceptable power consumption. In
addition, researchers [5] have analyzed NOMA for access
communication using Visible Light Communication (VLC).

This research [6] proposes using a conditional Generative
Adversarial Net (GAN) to express channel effects and bridge
the transmitter and receiver DNNs so that the transmitter
DNN'’s gradient can be transferred backward from the re-
ceiver DNN. According to simulation results, the suggested
technique appears to be effective on Additive White Gaussian
Noise (AWGN) channels, Rayleigh fading channels, and
frequency-selective channels, opening a new avenue for
developing data-driven DNNs for end-to-end communication
systems. HAPS has a vast coverage area, can service users
in Line-of-Sight (LOS), and short propagation time. Cellular
communication, which uses LTE technology, is one of the
most promising HAPS applications.

As aresult, HAPS is actively being investigated as a viable
solution for the future of wireless communication networks
[7]. With continued disruption in wireless communication
designs (e.g., data-driven designs) and developing use cases
(e.g., on-demand distributed machine learning platforms and
data centers), HAPS systems have grown more tempting in
terms of possible benefits. Furthermore, satellites aid the
HAPS layer in enhancing hand-off performance.

Paper [8] provides a comprehensive overview of emerging
research on DL-based physical layer processing, such as
using DL to redesign a module of a conventional communi-
cation system (for modulation recognition, channel decoding,
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and detection) and replace the communication system with
a radically new architecture based on an auto-encoder.

Deep Learning (DL) adopts a Deep Neural Network
(DNN) to find data representation at each layer, which could
be built by using different types of Machine Learning (ML)
techniques, including supervised ML, unsupervised ML, and
reinforcement learning. Particularly, the following challenges
have been identified in the existing physical layer communi-
cations: Mathematical model versus practical imperfection:
The conventional communication systems rely on the math-
ematically expressed models for each block. This paper [9]
will identify the gains DL can bring to wireless physical
layer communications, including the systems with the block
structure and the end-to-end structure merging those blocks.
The proposed DL-PAS improves the performance in cellular
networks with severe pilot contamination by learning the
relationship between pilot assignment and the users’ location
pattern [10]

C. Proposed Method

In this study, we use an uplink analysis, where every
information from Ground Station varies when transmitting to
HAPS. In general, multiple access must use time, frequency,
or domain code to send information to HAPS. By distin-
guishing the communication channel from the ground station,
interference between signals can be avoided as optimally
as possible. Our research considers using Power Domain
NOMA (PD-NOMA) simultaneously and frequency domain
and takes advantage of interference that occurs using the
Super Position Coding (SPC) method to multiplex the signal
from the ground station. In addition, we also conduct a
decoding process on HAPS; the Successive Interference
Cancellation (SIC) method is used to separate the signal
between users as before [11].

SIC has become the latest technology in describing inter-
ference and restoring the initial signal that has been mixed
when transmitting. SIC also has a fatal deficiency, which
can harm when many users use this method. If the SIC is
assumed perfectly and has no residue, decoding information
from the first user to user n gets the same information signal.
However, the perfect SIC cannot be applied in the actual
communication system, so when one user gets information
that is not appropriate (occurs error bits), it will have
an impact on the user afterward. For the next user, it is
impossible to get complete information and will get more
errors than the previous user. We call this effect a domino
effect on the SIC disaster.

In this study, we have proposed a smarter SIC system by
utilizing Artificial Intelligence (AI). The discovery of Al is
not a new thing for technology today, but the application
of communication systems is a novelty that can improve
the performance of a communication system. This proposal
provides the name Adaptive-SIC (ASIC) because the worked
algorithm can change the convolution layer model based on
bit-bit information from the number of users. We also add
deep learning, which can reduce power levels by introducing
information signal characters from each user.

This research is divided into four main chapters. The
second chapter discusses the methods, block diagrams, and
algorithms on the ASIC used in this study. Mathematical

models on the Rician channel model, HAPS, and various
research parameters were also reported. We analyzed various
conditions on the K-Rician, thus getting intact results on
ASIC testing written in the third chapter. After all the results
were reported, we summarized them in the final chapter.

II. RESEARCH METHOD
A. HAPS opportunity for connectivity

Fig. 1 describes the subsystem of HAPS that has an
opportunity for 5G and 6G communication [7]. In the taxon-
omy of HAPS, the telecommunication payload section has
been divided into two parts, for Narrowband and Broadband
Application. In the subsystem, we analyze the broadband
area where Ground Station sends information to support the
5G or 6G platform. Also, the power subsystem is considered
for finding the best energy efficiency as thick text.

For three decades, wireless communications designers
have researched the inclusion of unmanned aircraft systems
into their network architectures “to provide cost-effective
wireless connectivity for devices without infrastructure cov-
erage.” In addition, compared to terrestrial communications
or satellites, HAPS is generally faster to deploy, more flexibly
reconfigured, and has better communication channels due to
the presence of short-range LOS links [12].

Fig. 2 shows that HAPS has a massive benefit for all
communication systems. Communication on HAPS can be
done between satellites and HAPS, as a remote in several
areas with a closer distance. HAPS can also reach the
access section that is directly related to customers. HAPS
communicated by Ground Station, capable of continuing
communication to other areas connected to optical cables.
In addition, HAPS platforms promise to improve existing
communications systems both in capacity and coverage.

This study considered the three Ground Stations that
communicated uplink to HAPS. Each Ground Station has
different information from distinguished through the power
allocation. Each Ground Station has a distance transmission
and a different estimation value of the channel, so the
strategy we consider is the feedback channel from the ground
station to determine the large power allocation. In addition,
for uplink communication, an immense estimation value of
channels will be given a more significant power allocation.
The value of a greater allocation for channel estimation is to
detect signals when decoding and the SIC process.

B. HAPS simulation model

Fig. 3 shows the communication model that has been
calculated and simulated. We use a simulation model on
the moving HAPS by analyzing posting movements. At first,
HAPS did not move and had a distance to the ground station
with the exact 90-degree elevation angle. In that situation, we
do calculations and simulations without using ASIC. After
that, HAPS moves and produces a different distance from its
original state. We also measure performance after moving
HAPS to analyze the performance of the performances that
occur. Every change in HAPS, resulting in the value of the
elevation angle between HAPS and Ground Station changes,
including the value of the K-Rician estimate.

In this study, three elevation models were carried out, (i)
low elevation using 27°-30°, (ii) medium elevation using
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Fig. 1. The segment of HAPS Stratosphere with thickened text.
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Fig. 2. HAPS connectivity among access and backbone network.

TABLE I
SIMULATION PARAMETERS.

Parameter Value
Frequency Operation 48 GHz
Transmitted Power 20 dBW
Gain Antenna 46 dBi

Type of deep learning  Convolution 1D

Number of bit 1000
Number of user 3
Elevation angle range ~ 27°-90°
Transmission distance ~ 20-40 km

35°-45° and (iii) high elevation 50°-90°. In addition, we also
write down the simulation parameters used in the simulation
carried out, as in Table 1

This study describes the simulation process of the math-
ematical model that has been used. First, the information
signal is generated randomly as a representation of data in

binary. The modulation of the signal used in this simulation
is the Binary Phase Shift Keying (BPSK), where if the bit
one, then the positive signal is modulated. On the contrary,
if the bit is zero, then the signal is negative, as at:

Channel modeling for each user was K-Rician that contains
LOS and fading component as shown in

Hy =/ H+ [t T, )

where -H is Line of Sight (LOS) component,

1+K 1+K
H,, is fading component, and K is the Rician K-factor.
For 0 < K < oo, the channel combines a deterministic
component (i.e., LOS) and a fading component. The K-factor
is the ratio between the energy in the deterministic Line-of-
Sight (LOS) component and the energy in the aggregation
of the randomly scattered paths (i.e., the fading component);
higher K means that the channel is more deterministic.

Using the statistical point of view, the amplitude probabil-
ity density function in receiver is:

2 2, ,.2
r TeT -4
(e (T )@
where 72 is amplitude direct ray, Iy is function of Bessel
with order zero. The so Rice factor (K), is defined as

K =10log (;2) . “4)
o

However, K can be formulate from a geometrical point of
view as [13]

fr) =

(1/ sin(0)) s
\/(Ar +7)2 + h? + |Ar ’

where 0 is the elevation angle. This angle is determined by
the horizontal distance (r) and h as the HAPS height to the

K () = 10log (
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Fig. 3.

ground. Then the elevation function on variation of K factor
is

0 > 90° = K — oo = Gaussian Channel

6 — [12° < § < 90°] = Rice Channel (6)

0 < 12° = K < 0 = Rayleigh Channel

Each information signal will be given the power allocation
based on the transmission distance from the Ground Station
to HAPS. We consider calculating distance to angular eleva-
tion and produces a K-factor value. The signal that has been
given the power allocation and passes the channel shown like

Tn :an'mn'H’ru (7)

where «,, is user’s power allocation. After all the user
transmits, the signal is multiplexed using the Super Position
Coding (SPC), which mixes all signals and is received by
HAPS simultaneously. We consider that this simulation uses
coherent time, so no delay is considered during the SPC
process. The signals received in HAPS made mathematical
models such as:

Yy = in + n. (8)
i=1

It is assumed that HAPS has information from the feed-
back channel, so the channel value obtained has been sorted
from the largest (H; > Hy > --- > Hpy). To optimize
decoding strategies with SIC, we use re-modulation for
signals that have been decoded. The first information on
demodulation is the first user, with the most significant power
allocation and channel value. The signal that comes with a
positive value is immediately founded into a bit one (1),
while for negative signals is represented with a zero bit (0),
as in the formula

Ty = )
y<0, m,=0

After the first user extracted the bits of information, the bits
were remodulated using the power allocation and modulation
of BPSK. Finally, the signal that has been programmed is
reduced by the results signal from the SPC. Mathematical
models that have been used to illustrate the SIC process like
in the formula

ZTn—1n =y — [(remod (y1 ) - /a1 - Hy) — -+

10
(remod (z_1 ) - \/Gn—1 - Hyp—1)]. 1o

Uplink communication between ground station and HAPS in various condition.

. input: | [(None, 2, 1)]
mput InputLayer
output: | [(None, 2, 1)]
\
input: | (None, 2, 1)
convld ConvlD
output: [ (None, 1, 24)
y
o o input: | (None, 1, 24)
activation Activation
output: [ (None, 1, 24)
\
input: one, 1, 24
convld ConvlD P ™ )
output: [ (None, 1, 16)
mput: one, 1, 16
flatten Flatten i o )
output: [ (None, 16)
y
input: None, 16
dense Dense P ( )
output: | (None, 8)

Fig. 4. Adaptive-SIC layers using deep learning process.

After the SIC process and extracting all bit-bits received in-
formation, this study uses the Bit Error Rate (BER) parameter
to compare the bits received with the bits sent.

C. ASIC Method

In this study, we added a detection method on the SIC, by
utilizing the Deep Learning Method, namely Convolutional
Neural Network (CNN). Simply put, we save the SPC signal
into the dataset and add the bits to send. CNN studies the
SPC signal pattern including power allocation and bits sent.
After learning, CNN is added to the SIC method as in the
Algorithm 1. For input argument we used df is DataFrame
that contains dataset for deep learning from SPC signal, s
is transmitted bits, « is the power allocation factor, & is the
channel value, SN R is signal to noise ratio value that has
been generated, IV is the number of bits, mod is modulated
signal using BPSK, and N, is number of users.
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Algorithm 1 ASIC Function
1: import numpy as np

2: import pandas as pd

3: import tensorflow

4: function ASIC(df,s,a,h,SNR,N,m,mod, N, ;)
5: features < [R, 0]

6: X <« df[features]

7: Y + df[’Bit’]

8: x < array(X)

9: y < encode.fit_transform(Y")

10 y < array(Y)

11: Yuni <— len(unique(y))

12: Sequential() > Using Sequential model
13: model.add(Conv ID(¥yn; X3))

14: model.add(MaxPooling 1 D(pool_size=1))

15: model.add(Conv ID(¥n; X2))

16: model.add(Flatten())

17: model.add(Dense(y,,;, activation="softmax’))
18: model.compile()

19: model.fit()

20: for i in range(len(SNR)) do

21: for k in range(NNyse) do

22: n + sfi]x (o(N))

23: Quser < Va X /m

24: y[k,:] < ayser[k]*mod[k,:]*h[k]
25: end for

26: Stotal <— nsum(y,0)+n

27: R + matrix(abs(S;pta1))-Al

28: 6 < matrix(angle(s;ozq1)).Al

29: x; < matrix([R,0])’

30: Ty — x4.Al

31: x4 < x¢.reshape(int(N),2,1)

32: y¢ <— model.predict(z;)

33: Yy <— argmax(y,1)

34: y¢ < encode.inverse_transform(y;)
35: Ydecod < matrix(split(’ guard_code’))
36: Ydecod < yélecod

37 YLl < Ydecod

38: end for

39: return y
40: end function

Description of the adaptive SIC method, found in the
Yuni NOtation at Algorithm 1, which is gradual. This gradual
properties increase the Deep Learning model compared to
providing manual values on the CNN layers. The number
of layers used in ASIC, seen in Fig. 4 where we use 1-
dimensional convolution. Convolution of 1 dimension does
not burden computing work, so that complexity and delay
are very low.

III. ANALYSIS AND DISCUSSION
A. HAPS using SIC

Fig. 5 explains about changes in the SNR value of per-
formance. We have simulated extensively on elevation of
27-30 °. The K-Rician value obtained by each user varies
based on transmission distance to HAPS. First performance
evaluation, carried out on low elevation with a wider range of
range but the lowest received power. We also observe that the

Power Allocation:
—o— 0.75
—+— 0.1875
—*— (.046875

BER

0 5 10 15 20 25 30 35 40 45
SNR (dB)

Fig. 5. BER performance in low elevation.
10°
Power Allocation:
—e— 075
—— 0.1875
—*— (.046875
10"
=2
m
m
107
10°
0 5 10 15 20 25 30 35 40 45

SNR (dB)

Fig. 6. BER performance in medium elevation.

SPC process affects the performance of the different channel
values.

In general, the greater the value of comparison of received
power and noise, the better performance. However, the value
of the SNR that is too large is difficult to apply because
the comparison is too large than the transmitted power that
must be prepared. In the curve, the greatest power allocation
value obtains the best performance. In addition to the more
significant power allocation, the channel value also gets the
greatest. We have a target value of < 1073, so that if the
SNR value is closest to 1073 there is around 25-30 dB. We
also found that the SIC never received the same SNR value at
the target because the decoding process was sequential and
dependent. Users with the smallest power allocation value
cannot carry out the decoding process before using a more
extensive power allocation to solve it.

Changes in the SNR value of performance are explained in
Fig. 6. We have done a lot of simulations at elevations of 35-
45 °. Depending on the transmission distance to HAPS, each
user’s K-Rician value fluctuates. The second performance
evaluation occurred at a medium elevation, with a narrow
range but more significant received power. We also analyzed
that the SPC procedure impacts the performance of various
channel values.
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Power Allocation:
—o— 0.75
—+— 0.1875
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Fig. 7. BER performance in high elevation.

In the simulation results in Medium Elevation, we obtain
that the value of the SNR needed is smaller than the low
elevation. The user with the greatest power allocation still
gets the lowest SNR value with the same power allocation.
The SNR obtained from 35-45 © elevation, or a distance of
about 30 km, is 21-26 dB. We found no lines piled in the
figure in the second scenario because the SIC process was
carried out sequentially.

After simulating and analyzing for low and medium ele-
vation, we conduct a SIC evaluation on high elevation as in
Fig. 7. We found that the highest elevation location greatly
affected performance on other ground stations. Assuming
that the right elevation is 90 degrees, the user with the biggest
power allocation requires an SNR value of around 13 dB.
However, the user with the smallest allocation power value
requires a large SNR (41 dB) to get the same performance
results. The transmission distance and K-Rician value are not
much different.

Results like this prove that the conventional SIC system
is unable to overcome the gap that is too large in the High
Elevation area. Conventional SIC requires a longer decoding
time for users who use the smallest power allocation. The
decoding process must be sequential, and there is a domino
effect, making this research contribute to reducing deficien-
cies in the SIC.

B. HAPS using ASIC

The PD-Noma that declares the SPC for multiplexing
signals and SICs for decoding signals is insufficient to
produce appropriate performance. As a result of the power
domain, the power needed becomes immense because it is
required to use a large SNR to get a targeted value. Therefore,
we present the CNN simulation results to form a smarter SIC
to recognize the training results’ signal character.

Fig. 8 describes the comparison between SNR and after
adaptive-SIC use. After a recurring simulation using Monte
Carlo, we obtained that the SNR needed to fall significantly
compared to conventional SIC. We found that the SNR value
was around 18-21 dB for all users in low elevation. This
indicates a tiny gap, so each user has almost the same chance
as the user with the highest allocation power. We also analyze
that the impact resulting from the dataset training makes the

0

Power Allocation:
—o— 0.75
—— 0.1875
—*— (.046875

BER

0 5 10 15 20 25 30 35
SNR (dB)

Fig. 8. ASIC performance in low elevation.
10°
Power Allocation:
—e— 075
—— 0.1875
—h— 0.046875
107" 4
=2
m
m
107 4
107 4
0 5 10 15 20 25 30 35
SNR (dB)
Fig. 9. ASIC performance in medium elevation.

decoding process faster with a massive number of datasets
before transmitting the real information signal. The SNR gap
between the user and the greatest power allocation is only
about 3 dB or double the user.

We also simulated in Medium Elevation to see the contri-
bution of ASIC against conventional SIC, as shown in Fig.9.
We have observed areas with a transmission distance of 40
km and obtained the results that not too much difference
with low elevation.We analyzed that the ASIC has proven
the introduction of the SPC signal from the dataset training,
the results of the signal detection remain stable. At Medium
Elevation, the SNR range to get targeted around 17-21.5 dB.
The SNR value is very close to Low Elevation, so the Ground
Station in Low Elevation has a performance value similar to
Medium Elevation. Also, this proves that power efficiency is
significant because the low elevation area does not require
great power to obtain a value similar to the medium elevation.

Testing on ASIC, we have also done it in the High Ele-
vation area where the transmission distance is closest to the
other elevation area. Fig. 10 holds a smaller gap between the
farthest ground station with the closest (90-degree elevation
angle). We found that this gap still happened, as produced
by conventional SIC. However, using this proposal, the gap
between the user and the largest and smallest allocation
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Fig. 10. ASIC performance in high elevation.
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Fig. 11. Comparison of SNR in low elevation.

power is narrower. The first and second users get very close
results, where the SNR difference is needed around 2 dB. In
comparison, the third user requires an SNR of around 27 dB
to get the same results on performance. The value of 27 dB
is much smaller when compared to conventional SIC, which
requires around 41 dB. We also prove that this proposal is
able to reduce power consumption to obtain the results of
the target.

C. Comparison between SIC and ASIC

Fig. 11 explains the comparison of the needs of SNR to
achieve value in low elevation. We prove that with the same
testing parameters, the ASIC method requires a lower SNR
when compared to conventional SIC. ASIC makes power
efficiency better, and the layer pattern applied to the Adaptive
CNN layer has stability in the signal character. If it is not
made adaptive, the value of the layer in the CNN raises
the possibility of instability due to the clear weight of the
signal. In addition, the difference obtained from ASIC and
SIC conventional up to 10 dB.

Fig. 12 illustrates the comparison of the SNR value of the
ASIC and conventional SIC method in Medium Elevation.
We observed further that ASIC in the first and second user

Power Allocation:

H 0.75

B 0.1875
0.046875

I

NOMA-ASIC

SNR (dB)

NOMA-SIC

Achieved BER <1073

Fig. 12. Comparison of SNR in medium elevation.
Power Allocation:
1 H 0.75
s 0.1875
0.046875
E- I—
=
o
=z
(2]
NOMA-SIC NOMA-ASIC

Achieved BER <1073

Fig. 13. Comparison of SNR in high elevation.

had the slightest difference in SNR values on the medium el-
evation. ASIC proves that the decoding process on both users
is almost perfect on two users. Unlike the conventional SIC
method, where the gap obtained between SNR is relatively
large up to 3 dB. As part of the trade-off, the user who
gets the smallest power allocation requires a larger SNR on
the ASIC to get targeted. However, on conventional SIC, the
value of the difference in the value of the SNR between users
is relatively the same as the predetermined allocation power.

The area on High Elevation provides more surprising
results compared to Low and Medium Elevation, as shown in
Fig. 13. On conventional SIC, the difference between SNR
each user is relatively the same, where the user with the
biggest power allocation requires the smallest SNR to obtain
a target BER. Unlike the ASIC, the first user and both get
very small differences, while the third user requires a very
large SNR. However, the average SNR value needed by ASIC
is smaller than conventional SIC. We also prove that with
training datasets, processing on decoding is more manageable
and does not require dependence on the previous user. One
of the things that make the user get a different SNR to get
the same because of the different power allocation in the
PD-NOMA scheme.
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IV. CONCLUSION

After calculating, simulating, and analyzing, we conclude
that the proposed adaptive-SIC significantly contributes to
increased performance and power efficiency. With the same
power allocation for each scenario, using 0.75, 0.1875, and
0.046875 for three users, respectively, we proved that the
ASIC method is better than conventional SIC. Deep learning
of CNN that we use in the SIC detection also reduces the
SNR gap of each user, even though it has a different power
allocation. To get BER less than 1073, in the low elevation,
on average, SIC needs 27 dB SNR, while ASIC is around
18.6 dB SNR. On average, in the medium elevation, SIC
needs 23 dB SNR, while ASIC is around 18 dB SNR. Finally,
in high elevation, the average SNR needed by SIC is 26 dB,
while ASIC is around 18.6 dB. Also, we found that ASIC
has proper average SNR around 18 dB for three elevations.
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