
 

  
Abstract—Accurate load forecasting is of critical importance 

for the smart grid. However, power load forecasting accuracy is 
limited in the traditional ARIMA model due to the 
non-stationary power grid data. In this research, a combined 
forecasting model based on wavelet transform and ARIMA is 
proposed to improve the forecasting accuracy and increase the 
predictability of power load data. The non-stationarity of the 
load data is reduced, and the predictability of the load data is 
increased by decomposing the original data. Finally, the 
prediction result is a linear superposition of each subsequence's 
predicted value. The feasibility of the proposed comprehensive 
forecasting model is verified by an experiment with the actual 
load data in a county in Jiangxi Province. The experimental 
results demonstrate that the proposed WT-ARIMA model has 
good performance in terms of MAPE and RMSE. Compared 
with the traditional ARIMA model, the prediction accuracy of 
the WT-ARIMA model is more stable. 
 

Index Terms—Short-term Load Forecasting, Wavelet 
Transform, ARIMA, Decomposing 
 

I. INTRODUCTION 
n today's society, electricity is an essential energy source. 
Personal lives and work are all influenced by electricity. 

Therefore, it is necessary to ensure the safe and stable 
operation of the power system. Load forecasting is an 
important part of power system design, and it is a group of 
forecasting activities considering the load [1-3]. For reliable 
operation of the power system, accurate load forecasting is an 
indispensable reference. Through load forecasting, we can 
have a good understanding of the electricity consumption of a 
specific area in a certain period in the future. It provides a 
benchmark for the dispatching of the power system. The 
higher the accuracy of load forecasting, the more reliable the 
reference value of forecasting results. Therefore, improving 
the accuracy of load forecasting is an important topic for 
experts and researchers. To improve the accuracy of 
prediction, researchers combine different methods to 
improve the accuracy of prediction. Lee and Ko predict the 
load data by using the lifting scheme and ARIMA [2]. An 
improved SVR model is proposed by Li et al., they use the 
chaotic quantum bat algorithm to optimize the SVR's 
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parameters [11]. Lu uses ARIMA to predict the load data and 
utilizes the ANN model to forecast the residual data [3]. Up 
to now, the popular load forecasting model is mainly divided 
into three categories: time series forecasting, machine 
learning forecasting, and deep learning forecasting. For 
example, ARIMA [1-7], SVM [8-13], ANN [14-20], etc. The 
load data is a standard and non-static time series. ARIMA is 
commonly used for load forecasting since it can minimize the 
nonstationary of load data by difference procedures. The 
ARIMA model has strong explanatory power for the linear 
part of the time series. This has also been proved in the 
studies of [1] and [2]. Therefore, scholars focus on how to 
improve the prediction accuracy of nonlinear parts of time 
series.  

In most studies, there is only one ARIMA model for the 
mixed model. Lu uses ARIMA to predict the load data and 
the residual data is forecasted by the ANN model [3]. Fard 
uses wavelet transform to decompose these residual data, and 
an artificial neural network is used to forecast the 
decomposed data. Finally, a more accurate load forecasting 
model is obtained by superimposing the nonlinear and linear 
forecasting results [4]. Al Amin uses the predictions of the 
SVM and ARIMA models through actual data and evaluates 
these two prediction models with MAPE and MSE [5]. 
Kavousi-Fard uses the combination of CSA-optimized 
support vector regression machine and ARIMA to get better 
prediction results [6]. Although the overall forecast result is 
reasonable, the diversity of time series components is not 
considered. The ARIMA model parameters of the correlation 
time series are inconsistent under different components. 
According to this theory, a variety of ARIMA models with 
different components of time series should be more accurate 
than a single ARIMA model in theory.  

Therefore, this paper puts forward a WT-ARIMA model 
for short-term load forecasting. Before establishing the 
ARIMA model, wavelet transform and reconstruction are 
firstly carried out on load data to reduce the non-stationarity 
of the load data. After reconstruction, an ARIMA prediction 
model is created for each sub-sequence, and the model 
parameters for each sub-sequence are determined. Finally, 
the predicted values of each ARIMA model are 
superimposed to generate the final predicted result. The 
feasibility of this strategy has been verified in the research 
using a real data set. The WT-ARIMA model is also more 
effective than a single ARIMA model. 

II. METHODS 

A. Autoregressive Integrated Moving Average (ARIMA) 
The ARIMA model is a combination of the ARMA model 

and the differential operation. Unlike the ARMA model, the 
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ARIMA model can handle non-stationary time series. In the 
ARIMA model, because of the difference operation 
processing, the non-stationarity of time series will 
successfully be minimized. After that, the smoothed time 
series obtained by the difference operation in the previous 
step can follow the modeling steps of the ARMA model for 
the subsequent forecasting work. The ARIMA model can fit 
and predict time series, whether it is a smooth series or not. In 
general, the ARIMA’s fitting effect is quite impressive for 
the linear section. In 1970, BOX and Jenkins proposed the 
ARIMA model as a tool for time series prediction. Since its 
appearance, it or its variation is used in many time-series 
forecasts. The ARIMA is made up of three elements in 
general: Autoregressive (AR), Difference (D), and Moving 
Average (MA). An appropriate ARIMA model may only 
have one or two of the three parts due to data fluctuation, 
which is entirely normal. 

AR stands for autoregression, which is one of ARIMA's 
three components. We can use Eq. (1) to express the function 
expression. The AR model describes the relationship 
between the variable's past data and the data at present. It's 
worth mentioning that the AR model is sensitive to data 
stationarity, necessitating the use of a stationary time series. 
The difference connection corresponds to difference 
operation processing. If the data under study is non-stationary, 
we can increase the stability of the data by performing 
multiple differencing operations on the data. Finally, the 
differencing process allows the data to meet the stationarity 
criteria of the model. The number of differences required to 
convert non-stationary data to stationary data is denoted by d, 
where d is an integer higher than or equal to 0.  

The functional formulation of difference operation is 
shown in Eq. (2). In practice, the real load data may have a 
certain periodicity. As a result, we can use the parameter c to 
adapt time series with periodicity. If the time series is not 
periodic, the default value is 1c = .  

The moving average (MA) model focuses on the error 
accumulation terms in the AR model. It is the final phase. Eq. 
(3) depicts the functional link. 
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The ARIMA model is a three-part integrated model with 
individual parameters for each part. Therefore, there are three 
parameters in the ARIMA model. AR, D, and MA are 
represented by the letters p, d, and q, respectively. The 
mathematical function expression of ARIMA is provided in 
Eq. (4). In the ARIMA model construction process, there is a 
negative feedback relationship. The flow chart of ARIMA is 
shown in Figure 1. ARIMA modeling steps are as below. 

Step (a) Sequence stabilization.  
If the time series is stationary, the data can be directly used 

for prediction without differential processing. However, if 
the time series is non-stationary, in that case, it is necessary to 
perform the differential operation on the data. By this means, 
the non-stationary data is transformed into a stationary time 
series.  

Step (b) Randomness test.  
White noise is a set of completely random data points from 

which no association can be drawn and has no analytical 
significance. As a result, it is critical to rule out the possibility 
that the stationary time series in question is a white noise 
series.  

Step (c) Calculation of the parameters p, d, and q.  
For this calculation process, Step (a) yields the value of 

parameter d. The p and q are found by inspecting the 
autocorrelation and partial correlation graphs of the 
stationary non-white noise data collected. Then, we can use 
the AIC information criteria to select the suitable 
ARIMA(p,d,q) model.  

Step (d) Test for residuals.  
For this test process, we should check that the residual 

sequence of the model is a white noise sequence, as estimated 
in Step (c). The model is considered satisfactory if the 
residuals are white noise sequences with no autocorrelation. 
Otherwise, autocorrelation exists, indicating that the model 
chosen in the previous stage is insufficient. In this case, the 
algorithm returns to Step (c) to select another model.  

Step (e) Output the determined model.  
After the final ARIMA(p,d,q) model is determined, the 

corresponding predicted value can be generated by inputting 
the corresponding value. 

Whether the sequence is stationarity can be determined by 
performing an ADF unit root test on the sequence or 
observing the autocorrelation function (ACF) graph. If the 
P-value in the ADF test result is less than the given 
significance level, and the ACF gradually decreases to zero, it  

 

 
 

 
Fig. 1 ARIMA flow chart 
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means that the time series is stable. On the contrary, the 
sequence is non-stationary and requires a difference 
operation. 

By calculating the ACF and the PACF of a stationary time 
series, we can obtain a set of data about the parameters p and 
q used in the ARMA model. Akaike’s information criterion 
(AIC) is introduced for selecting suitable parameters to  
better fit the time series. AIC can weigh the bias and variance 
of the model and avoid the model being too complicated. Eq. 
(5) gives the calculation method of AIC. 

 ( )2 2AIC( ) Ln a
mm
n

σ= +  (5) 

B. Wavelet Transform 
Load data is a typical type of time series data that changes 

over time and is frequently non-stationary. On the other hand, 
the wavelet transform may not only successfully reduce the 
non-stationary signal's instability, but it may also efficiently 
capture the signal's frequency shift as well as the associated 
time and location information. As a result, the wavelet 
transform can be applied in the non-stationary signal analysis. 
A wavelet is a signal with a fixed duration that increases or 
decays over time. Continuous wavelet transform and discrete 
wavelet transform are the two types of wavelet transform. 

Eq. (6) and Eq. (7) are the formulas for the continuous 
wavelet transform and the discrete wavelet transform, 
respectively. 
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Compared to discrete wavelet transform, continuous 
wavelet transform takes a lot longer and requires more 
memory. The discrete wavelet transform shortens processing 
time while ensuring precision in the decomposed signal. 
Using the N-level wavelet transform technique, we will 
obtain one low-frequency approximation component and N 
high-frequency detail components from initial data. In 
contrast to the Fourier transform, the wavelet transform can 
preserve temporal scale. The frequency change of the data 
may be seen through the time change because the 
decomposed data is still a time series. Figure 2 displays a 
schematic diagram of a wavelet transform, which represents 
the decomposed time series, represents the approximate 
composition of the layer, and represents the detail component 
of the layer. The decomposed time series is the sum of the 
approximate components of the last layer and the detail 
components of all layers. Eq. (8) expresses the mathematical 
relationship between the original sequence and the 
decomposed subsequence. 
 1 2 1n n n nS A D D D− −= + + +…+  (8) 

Figure 2 shows the three-level wavelet transform structure 
diagram of a signal. According to Eq. (8), Eq. (9) can be 
obtained. 
 3 3 2 1A DD Dta Da + + +=  (9) 

Because continuous wavelet transform consumes more 
data and produces more information, it is not suitable for 

subsequent time-series data analysis. Thus, the discrete 
wavelet transform method is utilized in this experiment. 

 
C. WT-ARIMA Model  

A single ARIMA model is not perfect when fitting load 
data, where load data is a non-stationary time series in the 
classical sense. In this study, a combination forecasting 
model is proposed. It includes wavelet transform and 
ARIMA, called the WT-ARIMA model, which overcomes 
the drawback that the single ARIMA model does not fit the 
load data well. In this model, the non-stationary load data is 
decomposed by discrete wavelet transform, and the 
decomposed data is reconstructed by inverse wavelet 
transform to produce the relevant approximate and detail 
components. The processed component series of discrete 
wavelet have better steady-state levels than the original data 
without decomposition. We use the ARIMA model to fit each 
reconstructed sequence and output the predicted value from 
each ARIMA model. The predictions of the WT-ARIMA 
model are calculated by computing the predicted values of all 
the ARIMA models. The flow chart of WT-ARIMA is shown 
in Figure 3. There are three stages in this WT-ARIMA model: 
reconstruction and wavelet transform; building prediction 
models; obtaining the predicted outcomes. 

Stage 1: Reconstruction and wavelet transform. 
The appropriate number of decomposition layers is 

determined based on the number of selected experimental 
samples. The time series are separated into appropriate 
approximate and detailed components using wavelet 
transform, and n is the number of decomposition layers. 

nD and nA denotes the detail and approximation 
components of each layer, respectively. The detail 
components of each layer ( 1,...,nD D ) and the approximate 
composition ( )nA of the final layer will be reconstructed to 
keep the temporal scale constant with the original data. 

Stage 2: Building the prediction models.  
An independent ARIMA prediction model will be built for 

each time series obtained after the reconstruction, n+1 in total, 
respectively. 

Stage 3: Obtaining the predicted outcomes.  
After each subseries is successfully modeled with ARIMA 

predictions, it can be used to output the corresponding 
prediction results. Ultimately, by calculating the arithmetic 
sum of all the subseries predictions, a set of values can be 
obtained, which are the predicted values of the WT-ARIMA 
model for the load data at the corresponding time points. 

 

 
Fig. 2 schematic diagram of wavelet transform. 
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III. EXPERIMENT 

A. Data Set Introduction 
In this study, real load data are used for the experiment. 

The source of the experimental data is the actual peak load 
data of a county in Jiangxi province in 2013. The data are 
sampled from the equipment at 24-hour intervals, and the 
sample values are the historical maximum load data within 
the day, i.e., the peak load data. The line graph of the load 
data is shown in Figure 4. In Figure 5, we draw the ACF 
plot and PACF plot corresponding to the initial peak load 
data. By observing the ACF plots in Figure 5, it is easy to 
see that this data set is a set of non-smooth time series data. 

B. Load Data Processing by Wavelet Transform  
We choose to use discrete wavelet transform with the 

inverse transform for the data processing of load data. 
Among the many wavelet functions, db4 is selected as the 
wavelet function in the experiment, and the number of the 
decomposition layers depends on the length of the load 
data. Figure 6 shows the result of the initial load data after 
the discrete wavelet transform and the reconstruction data 
by the inverse transform. After decomposing and 
reconstructing the data, we obtained six subseries data 
containing one approximate component and five detail 

components. In other words, the load data are decomposed 
into five layers. If we use capital D for the detail 
component and capital A for the approximate component, 
then the six subsequences are A5, D5, D4, D3, D2, and D1. 
Assuming that capital Y represents the original load data, 
then we have the equation:  
 5 5 4 3 2 1Y A D D D D D= + + + + +  (10) 

The maximum decomposable level of a data set is 
directly related to the data length of the data set itself and 
the length of the selected wavelet function. Eq. (11) 
describes the mathematical relationship among them. 

 2
_max_ log

_ 1
data lenlevel

filter len
 

=  − 
 (11) 

, where the result of the calculation is usually taken as an 
integer. 

C. Model Building and Prediction Results 
  We apply the ARIMA model to the original load data and 
the reconstructed data for each sub-series separately. After 
building the ARIMA model corresponding to each 
time-series data, we can get the prediction results of each 
series in the ARIMA model. Now, according to Eq. (8), we 
can obtain Eq. (12).  
 

 

Fig. 3 WT-ARIMA flow chart. 
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 In Eq. (12), the superscript with a star indicates the 
predicted data. 

Figures 7 shows the fit of the test dataset decomposed and 
reconstructed for all the subseries under the ARIMA model. 
From these figures, we can see that the fit of the individual 
component data is quite good. With the above three stages, 
we can obtain the corresponding ARIMA model for each 
individual component data, and the combined WT-ARIMA 
model for the actual load data, respectively. The predictions 
of the two models are shown in Figure 8. In this experiment, 
the load data from December 17 to December 31 are used as 
test data. In order to compare these test data more clearly, the 
subgraph of Figure 8 shows the comparison performance of 
these data points. 

D. Model Evaluation  
Although it is intuitive to observe the model fit from the 

subgraph of Figure 8, one or more evaluation metrics can 
better assess the prediction accuracy from a scientific point of 
view. In this experiment, we use two metrics, MAPE and 
RMSE, to evaluate the experimental performance. Eq. (13) 
and Eq. (14) show the mathematical formulas for these two 
metrics. 
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Among these, îY is the predicted value of the model output, 

iY is the true value of load data. 

 

 
Fig. 5 Load data ACF (left) graph and PACF (right) graph. 

 
Fig. 4 Load value of a county in Jiangxi Province in 2013. 

TABLE I 
THE ACTUAL LOAD VALUE AND FORECASTING VALUE BY ARIMA AND WT-ARIMA, AND THE EVALUATION OF TWO MODELS. 

DATE LOAD ARIMA WT-ARIMA MAPE 
WT-ARIMA 

MAPE 
ARIMA 

RMSE 
WT-ARIMA 

RMSE 
ARIMA 

2013/12/17 102.7540 91.0974 103.1750 0.4097 11.3442 0.4210 11.6566 
2013/12/18 99.0830 100.7056 98.3250 0.7651 1.6376 0.7580 1.6226 
2013/12/19 98.1660 99.7030 98.1483 0.0181 1.5658 0.0177 1.5370 
2013/12/20 91.0110 98.3207 93.7802 3.0427 8.0316 2.7692 7.3097 
2013/12/21 99.6390 92.2158 98.5030 1.1402 7.4501 1.1360 7.4232 
2013/12/22 99.9750 98.1668 98.9112 1.0641 1.8086 1.0638 1.8082 
2013/12/23 98.2520 99.9179 99.2963 1.0629 1.6955 1.0443 1.6659 
2013/12/24 99.0020 98.5449 99.5786 0.5825 0.4617 0.5766 0.4571 
2013/12/25 97.2120 98.8745 98.4130 1.2354 1.7102 1.2010 1.6625 
2013/12/26 100.4740 97.5164 100.6627 0.1878 2.9436 0.1887 2.9576 
2013/12/27 99.2170 99.9185 98.0537 1.1725 0.7070 1.1633 0.7015 
2013/12/28 97.1870 99.4312 96.7122 0.4885 2.3092 0.4748 2.2442 
2013/12/29 97.6110 97.5327 98.8045 1.2227 0.0802 1.1935 0.0783 
2013/12/30 95.5680 97.5388 95.5634 0.0048 2.0622 0.0046 1.9708 
2013/12/31 88.9470 95.9160 87.8290 1.2570 7.8350 1.1180 6.9690 
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Table I provides the prediction results of each forecast 
point and the matching actual load data to compare the 
prediction accuracy of the two models more intuitively. At 
the same time, Table I also shows the MAPE and RMSE of 
each predicted sample point. By comparing the evaluation 
indexes of the two models, it is not difficult to see that the 
WT-ARIMA model adopted in this paper is superior to the 
ARIMA model in most cases. Although the WT-ARIMA 

model is not superior to the ARIMA model in all the 
predicted sample points, there is significant difference in the 
prediction error between the two models. Moreover, 
compared with the ARIMA model, the prediction error of the 
WT-ARIMA model is more stable.  
 
 
 

 
 

 
Fig. 6 The result after wavelet transform and reconstruction of load data. 
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Fig. 7 Comparison of the actual and forecasting values of 5 5 4 3 2 1 A , D , D , D , D , and D component of the test dataset by WT-ARIMA. 

 
Fig. 8 Comparison of the actual and forecast values of load values by ARIMA and WT-ARIMA. 
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To get a more intuitive sense of the predictive power of the 

two prediction models, we evaluate its error indices of the test 
dataset. The predicted errors are shown in Figure 9 and 
Figure 10. The comparison of the above two plots indicates 
that the WT-ARIMA model described in this study is more 
stable than the classical ARIMA model in actual prediction. 

IV. CONCLUSION 
Due to the strong non-stationarity of load data, the 

prediction error of a single ARIMA model in short-term load 
forecasting is unstable. The combined prediction method of 
wavelet transform and ARIMA is proposed for short-term 
power load prediction to solve this problem. The load data is 
decomposed by wavelet to reduce the non-stationary of the 
original load data, which makes the data more suitable for the 
ARIMA model. Specific experiments on actual load data 
show that this method can effectively improve the prediction 
accuracy of ARIMA, and the prediction error of each sample 
point is more stable than that of a single ARIMA model. In 
terms of prediction accuracy and error stability, the 
WT-ARIMA model suggested in this study outperforms the 
single ARIMA model. On the other hand, load data is not 
only a time series, but also a nonlinear variable that is 
susceptible to a range of external factors. In future research, 
we will take into account the nonlinear nature of load data to 
further investigate and explore a more accurate prediction 
model. 
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Fig. 10 RMSE evaluation of the prediction results of the two models 

 
Fig. 9 MAPE evaluation of the prediction results of the two models 
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