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Abstract—A neural network is composed of a group of
neurons that make a connectome, which is a map of neural
connections that allows establishing the paths between the
neurons. The neural network can generate the actions of living
beings with the neuronal interaction through chemical-electrical
signals. The behavior of machines is not dynamic compared to
the behavior of animals; then, the machine’s behavior must be
modeled and made by an exterior design, while in living beings,
the behavior is caused by experience. Caenorhabditis Elegans is
a worm model to study the connections of its neurons. In order
to study the dynamic behavior in software systems based on
biologic models, we created an approach to train and classify
binary patterns using the structure of the Caenorhabditis
Elegans’ connectome. We used the connectivity of neurons of
Caenorhabditis Elegans to make a custom approach to train a
Spiking Neural Network using a branching factor to classify
patterns instead of layers of neurons. We made a software
system to show the graph of neuronal connections of the
Caenorhabditis Elegans. We also used Spike-Timing-Dependent
Plasticity in order to establish the strength of the weights
between the connections. In addition, we used a Hodgkin-
Huxley model to calculate the neuron’s potential membrane
and handle the spikes of the network.

Index Terms—Caenorhabditis Elegans, ElegansNET, Spiking
Neural Networks, Connectome, Classification patterns, Dy-
namic systems, Hodgkin-Huxley model.

I. INTRODUCTION

IN software systems, the specification of the set of instruc-
tions that the system can perform must be known and the

result of the execution of a source code is a specific behavior
in the system. For instance, if the software system allows
making the movements of a robot, the set of instructions
might be the movements left and right. In this same example,
the robot cannot jump because it is not designed for this
functionality. In animals, the behavior depends on internal
and external stimuli that trigger their behavior. Thus, the
behavior in animals is not made by an outer designer because
it is generated based on their experience. Then, behavior
in animals is produced by the interaction of their neuronal
network. Therefore, neuronal networks can help to find a so-
lution to several computing problems by creating algorithms
and approaches in the context of Artificial Intelligence (AI).

Normally, AI solves a single type of problem, in contrast to
the phenomena in the real world [1]. AI has different fields
such as Artificial Neural Network (ANN), Spiking Neural
Network (SNN), and Machine learning (ML). Basically, an
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ANN has an input layer of neurons, hidden layers of neurons,
and a final layer of output neurons [2]. ANNs are used in
different problems to classify or predict data, so they are one
of the main topics of AI [3]. In addition, they are inspired
by the operations in living beings’ brains, while SNNs are
inspired by the information processing of living beings,
where sparse and asynchronous signals are communicated
and processed in a massively parallel fashion [4].

Comparing ANNs to SNNs, SNNs try to process the
behavior in the most similar way to living beings using new
concepts such as time, synaptic, and potential action. Thus,
SNNs can help AI to solve many problems based on neuron
interaction, simulating the memory and the experience of the
brains of living beings.

Caenorhabditis Elegans (C. Elegans) is a worm that has
different studies to understand the connections of its neurons
[5], [6], [7]. The worm has 302 neurons [8] and its connec-
tome allows showing the map of neuron connections gener-
ating a neuronal network. However, in this work, according
to Hernandez et al., [9] we used 280 neurons. In addition, C.
Elegans has been an animal model that has the connectome
almost complete [5]. The principal movements in C. Elegans
are right and left, which is very important to observe how
the neural network of C. Elegans works in order to design
dynamic computer systems based on the network interaction.
In order to generate a solution for many computing problems
based on experience and neuron interaction, it is necessary
to create an approach to train an SNN.

The neural connections of C. Elegans can be represented
as a directed graph. In this article, we present an approach of
a software system to show the propagation of signals using an
SNN to use the connections of C. Elegans. Additionally, we
present an approach to train the C. Elegans neuronal network
in order to solve classification problems using a Hodgkin-
Huxley model, a computing-directed graph, and a Spike-
Timing-Dependent Plasticity (STDP) algorithm for learning.
In order to train the network of C. Elegans, we do not
use layers like in an ANN; instead, we use a propagation
concept selecting a starting neuron and generating the paths
where the signal can be transmitted. Furthermore, we present
experiments to show the SNN when the network is trained.

The article is structured as follows. Section II presents
the concepts of Spiking Neuronal Networks (SNN). Section
IV presents the main concepts of the C. Elegans neuronal
network. Section V presents the related work focused on
approaches that use C. Elegans. In sectionVI, we illustrate
the proposed approach of this work. Section VII presents
the software system to handle the neural network interac-
tion. Section VIII presents the classification experiments. In
section IX, we present a discussion about the main topics of
the article. Finally, section X concludes the article.

IAENG International Journal of Computer Science, 49:4, IJCS_49_4_13

Volume 49, Issue 4: December 2022

 
______________________________________________________________________________________ 



Fig. 1: Main elements of a Spiking Neural Network: Spiking Neural Networks must implement learning rules to handle
weights based on spatio-temporal inputs. Each neuron can belong to different links that connect other neurons forming
layers. The links are generated by synapses with constant communication between neurons.

II. SPIKING NEURAL NETWORKS (SNNS)

Spiking Neural Networks (SNNs) are characterized by
their way of transmitting information since they do it in the
same way as biological neurons do. To achieve this, SNNs
perform a perfect synchronization of the spikes or impulses
it makes during their process. Timing on this network is the
main concept compared to other artificial neural networks.
SNNs are the third generation of ANNs, they model the
behavior of a living nervous system as it considers the
spatial-temporal aspects of the input data [10].

The architecture used by SNNs is similar to ANNs’ archi-
tecture, but the difference is that SNNs work with spikes. The
use of applications based on biophysical models in SNN net-
works becomes a great challenge when implementing them
due to the high computing resources required for their use.
SNNs have significant potential for solving complicated time
pattern recognition problems due to the inherent dynamic
representation of spiking neurons [11].

Despite the limitations of these networks, they are one of
the most promising networks in the future. Their learning
methods are still under study because the biological model
is not finished; therefore, it is not fully understood. In the
future, SNNs are projected to be able to model the behavior
and learning of the brain with the aim of simulating large
networks in real-time with a low computing cost.

Fig. 1 presents the normal structure of an SNN. The inputs
in an SNN similar to an ANN are necessary, but with the
difference that in an SNN, the data represents space-time
plasticity. In addition, the weights of the connections can
be calculated with a learning rule. Spike Neural Networks
encode information by transmitting multiple spikes or events
in the form of pulse-voltage trains. From there, to pass the
data to the network, the data must be encoded. Additionally,
Fig 1 also presents three main layers of a neural network,
which consist of the following:

• Input layer, which is responsible for receiving the data.
• Hidden layer, which is responsible for processing the

information collected.

• Output layer, which is responsible to provide the pro-
cessing results.

Each layer is connected through neurons and the neural
network might be fully connected i.e., every neuron is
connected to each neuron that belongs to the next layer as
presented in Fig. 1, where the input of the network is a spike
signal.

III. NEURON MODEL

A. Hodgkin-Huxley (HH) Model

The Hodgkin-Huxley (HH) model [12] is a biological
model for establishing the potential action in neuron inter-
action. The HH model treats the nerve axon as an electrical
circuit in which the proteins are resistors and the membrane
is a capacitor [13], [14]. This model can be considered to
be one of the most biologically accurate spiking neuron
models [15]. This model is focused on the ordinal equations
presented in Equations 1 to 4.

dVm
dt

=
I

Cm
− gk

n4

Cm
(Vm − Vk)

− gNam
3h

Cm
(Vm − VNa)

− gl

Cm
(Vm − Vl)

(1)

dn

dt
= an (Vm) (1− n)− βn (Vm)n (2)

dm

dt
= am (Vm) (1−m)− βm (Vm)m (3)

dh

dt
= ah (Vm) (1− h)− βh (Vm)h (4)

Equation 1 represents the voltage membrane that takes into
consideration the external stimulus (I) and the participation of
K, Na, and leakage current densities. Cm is a capacitance by
unit area representing the membrane (µF/cm2). In addition,
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gNa, gK , and gl represent voltage-controlled conductance
by unit area of the sodium (Na) ion channel, Potassium
(K) ion-channel, and leak channel respectively (µS/cm2).
Furthermore, VNa, Vk, and Vl represent the voltage gradient
to the electrochemical source for sodium, potassium, and
leakage current density respectively (mV ).

Equations 2, 3, and 4 describe the ion-channel kinetic
model by computing the derivatives of n, m, and h functions
of the same variables and two voltage-dependent functions.
In this case, the first term in equations is the number of closed
channels that are open. The second term is the number of
open channels that are close.

Table I presents the values to use a HH model.

TABLE I: Constants in the HH Model

Name Description Value
Cm Membrane capacitance in µF/cm2 1.0
gNa Sodium (Na) maximum conductances in

µS/cm2
120.0

gK Potassium (K) maximum conductances, in
µS/cm2

36.0

gl Leak maximum conductances in µS/cm2 0.3
VNa Sodium (Na) Nernst reversal potentials in

mV
50.0

Vk Potassium (K) Nernst reversal potentials in
mV

-12.0

Vl Leak Nernst reversal potentials in mV 10.613

To calculate α and β for n, m and h channels, we used the
following equations recommended by the Hodgkin-Huxley
model [12]. The α and β are fixed values for each ion channel
and depend on the corresponding voltage. The equations to
calculate α and β are Equations 5 to 10:

αn (Vm) =
0.001 · (10 − Vm)

e(1.0 − 0.1 Vm) − 1
(5)

βn (Vm) = 0.125 · e−
Vm
80 (6)

αm (Vm) =
0.1 · (25 − Vm)

e(2.5 − 0.1 Vm) − 1
(7)

βm (Vm) = 4 · e−
Vm
18 (8)

αh (Vm) = 0.07 · e−
Vm
20 (9)

βh (Vm) =
1

e(3 − 0.1Vm)+1
(10)

B. Model of Synaptic Plasticity

We used Spiking-Time-Dependent Plasticity (STDP) [16]
to fit the weights of the network. STDP is a model that
uses a Hebbian rule to establish learning by refining synapse
weights during the development of learning and memory.
STDP and Hebbian learning are based on biologically plau-
sible local learning rules [17].

When a neuron receives a discrete spike, STDP is used to
learn ”early spike patterns” [18]. However, when the neuron
receives a repetitive temporal pattern that alternates with
noise, the latency between the start of the pattern and the
peak of the neuron decreases during learning, so eventually
the neuron never breaks out of the pattern [19].

Equation 11 presents how to update the weights of a
connection. The weight change depends on the burst times
between the pre-synaptic spikes and the post-synaptic spikes.
The difference between the pre-times and post-times can be
called activation times. The weight of the connection must
be changed if the potential membrane does not trigger a
threshold upon receiving a given spatio-temporal pattern.

W (∆t) =

{
+A · exp(−∆t/τ+), if ∆t ≥ 0

−A · exp(∆t/τ−), if ∆t < 0
(11)

Where:
• ∆t is a time difference between pre-synaptic and post-

synaptic neuron spike times.
• +A is a coefficient for potentiation.
• −A is a coefficient for depression.
• τ+ and τ− are a time constants.

C. Data encoding

In the process of data encoding, population encoding
is used. This is one of the techniques most commonly
implemented when analyzing SNNs. This technique receives
a data set with real values, which are converted into a
sequence of spikes. This conversion process is performed
through multiple Gaussian receptive fields. Each xi of X
the entries is independently encoded by a group of P one-
dimensional receptive fields. The Gaussian receptive field
for a value is calculated depending on, σi as presented in
Equations 12 to 14.

gi (x) =
1

σi
√

2π
exp

(
(x− µi)

2

σ2
i

)
(12)

µi = Imin +
(2f − 3)

2

(Imax − Imin)

P − 2
, fε {1, ..., P} (13)

σi =
1

β

(Imax − Imin)

P − 2
, fε {1, ..., P} (14)

Where:
• Imin is the minimum value of the input. Imin = −1.5.
• Imax is the maximum value of the input. Imax = 1.5.
• β controls the width of each Gaussian receptive field,

in this case β = 2.
• P is the number of receptive fields used for encoding,

in this case P = 5.
• µi is the center of the receptive field.
• σi is the width of the receptive field.
• gi is a Gaussian peak.

IV. NEURONAL NETWORK STRUCTURE OF C. ELEGANS

The neural network of C. Elegans is composed of 6260
connections of neurons [9]. Large populations of neurons
have the ability to carry out multiple complex parallel
processes provided by the highly ordered architecture of
the network [20]. When neurons are stimulated by external
sources, two types of responses take place: passive and active
[21].

The types of neurons in C. Elegans are the following:
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• Sensory (SN): It is a type of neuron that responds to
the conditions of its surroundings or environment.

• Motor (MN): This neuron is in charge of transporting
the information received from the central nervous sys-
tem to the muscles.

• Inter (IN): This neuron can interconnect with other
neurons in its space, allowing communication between
sensory neurons and motor neurons.

The signal flow when an external input is received is:
• First, the neuron sensory receives the signal.
• Second, the signal is passed to the interneuron and the

inter passes the input to the motor neuron.
• Third, the motor neuron sends the signal to muscles to

C. Elegans movement (right or left).
Understanding the network of neuronal connections in the

brain is necessary to unravel the way it works and processes
information [22]. In this way, neuronal connections are an
essential part to understand how the brain works. With this in
mind, we seek to understand in a correct way the functioning
of the brain. Neurons are usually grouped by their location
or by the type of connections they establish between them.

The connections that neurons make to each other is called
a synapse, which is a basic system where a group of
neurons can communicate with each other. Through this
system, neurons receive and distribute information, and this
information is expanded in the form of electrical impulses
from one neuron to another. This is how brain activity is
developed. For the C. Elegans connectome, its synapse is
too small, so it must be evaluated with a specialized electron
microscope. In addition, when evaluating both sexes of C.
Elegans, the connections are different for each one because
some of these connections vary in their strength.

The structure of this network can be represented by means
of a graph, where each node of the graph represents a neuron
in the network. Its arcs, also called edges, resemble the
connections that exist between the group of neurons.

V. RELATED WORK

In this section, we present some works that tried to show
the interaction of the neural network of C. Elegans with
computing or biophysics approaches. Some works do not
directly use C. Elegans neurons, but we consider them very
important to be included in this section in order to show
works that try to represent the neuronal stimuli and signal
propagation between neurons.

Brader et al., [23] present a spike-driven model in order to
classify patterns in a semi-supervised way. Also, the authors
are focused on showing how to save the information in the
memory encoding labels. The authors aim to make hardware
to classify stimuli. The dataset used is a binary representation
of characters. The authors showed that a simple network of
integrate-and-fire neurons connected by bi-stable synapses
can learn to classify complex patterns.

Galluccio et al., [21] present a hybrid (molecular and
electromagnetic) model to allow communication between
neurons. This approach includes blocks to propagate the
signal. The blocks allow the transmitter (TX) to send an
electrical signal through a channel to the receiver (RX). The
transmitter and the receiver are defined as pre-synaptic and
post-synaptic elements. The concept of the potential action

is also used. The authors conclude that the proposed model
can help in the future to communicate the nervous pulses
in the human body with a nanomachine in order to replace
missing parts of the human body.

Kim et al., [8] designed a software system to represent
the interaction between neurons of C. Elegans to allow the
stimulation of the neurons. The authors discuss that the work
can help to study the dynamics and the structure of the
neuronal system of C. Elegans. The main components in
this approach are the visual interface and neuronal integrator.
This solution can allow updating the connection properties
of neurons. The visual interface shows the connections and
marks by the colors of the neuron types (sensory, inter, and
motor). Based on this, the authors might understand how to
translate the neuronal activity in C. Elegan’s behavior.

Wicks et al., [24] present a novel strategy to predict
the polar configuration, which in this case corresponds to
the excitatory and inhibitory connections. The authors use
neurons of C. Elegans to make four experiments to predict
the polarities of seven of the nine-cell classes of the tap
withdrawal circuit.

Bhuiyan et al., [15] present the analysis and implemen-
tation of the following two spike-based neural models i.e.,
Izhikevich and Hodgkin Huxley. The objective of using the
models is to enable the recognition of a number of 48 images
previously defined by the authors. Both models were trained
with the 48 images plus several images with distortion. The
two models are the most accurate from the biological point
of view. The authors studied the idea that these models
allow modeling the visual cortex of an animal or a person.
The authors suggest that the Izhikevich model is the best
candidate for implementing a large-scale visual cortex model.

Wang et al., [25] propose the development of a neural
network model based on peaks to enable decisions making
processes. The proposed model is applied to a game called
Flappy Bird. With this information and after several pieces
of training, the model manages to obtain a learning capacity
very similar to humans. The developed network is designed
to play strategy games, where the network does not know
anything about the game, but after several pieces of training,
it begins to develop a capacity for understanding. The
designed network is based on two modules: environment
perception and autonomous learning.

Wang et al., [17] discuss the creation of a network with
an adaptive structure in the learning process, where certain
nodes are pruned depending on the activation. In comparison
with our approach, our network does not use a pruning
method because the network trains the chosen nodes using a
propagation concept.

VI. PROPOSED APPROACH TO THE USE OF C. ELEGANS
CONNECTOME

This section presents our approach for using SNNs based
on the structure of C. Elegans in order to train the net-
work using the HH model and STDP. The net was named
ElegansNET. We generate a directed graph to represent
the neuronal connections. The neuronal network (M ) is
composed of a set of neurons (B) and a set of links (L).

Then, let {b1, b2, ...bn} ∈ B, where n = 280, if B =
∅, then it is necessary to populate the nodes in B. When
B 6= ∅ the training in the network can be applied to generate
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Fig. 2: Directed graph of the approach: The graph is stored in a Neo4j database. The yellow circles represent neurons
and the arrows represent synapse connections between neurons. Each connection is composed of a weight corresponding to
pre-synaptic and post-synaptic neurons. For each neuron, the voltage history, membrane potential, neuron type, and name
are stored. The graph is composed of 6260 connections and 280 neurons.

learning. In M , the neurons can be connected between them
through a link (Lj ∈ L). One link Lj has an initial node
(a) and terminal node (b). Thus, the directed graph is M =
(B,L), where |B| = 280 and |L| = 6260. The network
meets the following requirements:

• M 6= ∅
• L ⊆ {(a, b) ∈ BxB : a 6= b}
• Each link have a weight wi,j

Fig. 2 presents a directed graph that represents a net-
work graph [26], where the yellow circles are neurons (Bi)
with their neuron names, as well as the arrows represent
the connections (L) between neurons. The network graph
is stored and handled on the graph database management
system called Neo4j (https://neo4j.com/). Every connection
has a direction representing the starting neuron, which is pre-
synaptic, and the ending neuron, which is post-synaptic.

A. Network Architecture

The network has been designed like a directed graph, so
each neuron is connected to another neuron. Fig. 3 shows
the network structure when the learning rule is applied.
When the learning process is performed, an initial neuron is
selected and the propagation algorithm calculates the paths
where the signal of voltage must be transmitted. Additionally,
when the initial neuron is chosen, it is necessary a neuronal
interaction between the inhibit neurons (in this case, inhibit
neurons do not establish a reaction against the signal) and

excitatory neurons. This intereaction generates the paths
where the signal can pass. Finally, the paths get a resulting
neuron in order to choose the output class with the weight’s
ponderation of the paths.

The graph paths are composed of excitatory neurons, in
this case, sensory or motor neurons. The paths also are
composed of the inhibiting neurons with an interneuron type.
The receiving neuron eventually adds up the afferent stimuli,
and when more excitatory signals are received, the neuron
fires and sends signals to other neurons. If the sum of the
signals is inhibitory, the neuron does not fire and does not
influence the activity of other neurons.

B. Network Populating

In order to generate the computing neuronal network, it is
necessary to populate the neuron’s data and the connectivity
relations to establish the structure of the network. Table II
presents the principal attributes for each node of M . The
main attributes are the neuron name (e.g., AVR according
to Brenner [5] conventions for the neurons names), history
voltage, membrane potential value, and type of neuron.

TABLE II: Node data

Attributes value
Neuron Name Text according to Brenner

Membrane potential Numeric value
Type neuron Inter, Motor, and Sensory
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Fig. 3: Network Architecture:. The signal is propagated through different pathways. It is done by activation or deactivation
of the post-synaptic neuron. A synaptic neuron can send different impulses depending on the structure of the connection.
These connections of C. Elegans have been studied before; however, we are applying a learning rule to the neuronal
connections and adding a value for the weight of each connection.

Algorithm 1 Network Populating

Require: Links(L) . dataset
Require: pre− synapticnodes(PR) . from L
Require: post− synapticnodes(PO) . from L
B = PR ∪ PO . Extract the neurons
Save elements of B in DB
currentConnections← fromDB
if CurrentConnections are empty then

while nextConnection from connections do
neuronpre− synaptic← nextConnection
neuronpost− synaptic← nextConnection
if neuronpost− synaptic is not in graph or neuronpre− synaptic is not in a graph then

insert PostNeuron or PreNeuron
end if
if neuronpre− synaptic is not linked to neuronpost− synaptic then

create Link connection a pre and post neuron
end if

end while
end if

In this work, we use a dataset presented in [9] to analyze
the neuron connectivity network of C. Elegans and generate
weights for each neuron connection in order to create a
directed graph. In this case, the nodes of the graph are the
neurons. For each link in the network graph, we use the
Equation 15 to establish the first weights. [9]:

wij = 0.2 ∗ cluster score+
Tn

Tf +NBR
(15)

Where NBR is the number of synapses, Tn is the number
of occurrences of the neuron in the connections, and Tf is
the total number of neurons in the network.

Algorithm 1 presents the steps to populate the network
when neurons or links do not exist in the directed graph.
To run the algorithm, it is necessary to use the dataset
of connections L from [9]. In the dataset of connections,
each connection has a pre-synaptic and post-synaptic neuron.
Then, the goal is to extract all neurons and save unique
neurons in the directed graph. Thus, the connections for
the nodes can be created. If a neuron is not present in
the directed graph, it is added. If the connection is not yet
present, the relationship between the pre-synaptic and post-
synaptic neurons is added.
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Algorithm 2 Network Training

Require: numberOfConnections . Number
epochs← numberOfConnections
iteration← 0
while xi ← X do . Encode the entries from real data to firing times

while receptiveF ield do
xi ← calculatetheGaussianreceptiveoutput . According to equation 12

end while
end while
while iteration <= epochs do

pre− synapticNueron← currentConnection
select a sensory neuron
paths← FINDINGPATHS(sensoryNeuron) . from Algorithm 3
while nextPath← paths do

Calculate the membrane potential of the pre and post
check if spikes are not in a refractory times
update weight of synapse . According to equation 11

end while
iteration← (iteration+ 1)

end while

Algorithm 3 Finding Paths for signal propagation

Require: neuronStarted
function SEARCHBRANCH(neuronStarted)

Search the connections where neuronStarted is pre
return finding connections

end function
paths← SEARCHBRANCH(neuronStarted)
while nextPath← paths do . Calculate the subpaths

Obtain the pre-synaptic neuron
subpaths← SEARCHBRANCH(pre)

end while
Return the subpaths and principal paths

C. Network Learning

We use the STDP algorithm in order to train the network
to adjust the weights according to the potential membrane
calculated with the HH model. We did not use layers, but we
used a path-branch concept because we generated a directed
graph with the neurons of C. Elegans. In an experimental
way, we observe that from a neuron that sends a signal
(pre-synaptic) to connected neurons (post-synaptic neurons),
the post-synaptic neuron can propagate the signal to another
connected neuron. In this case, depending on the direction of
the connection, a neuron can be set like a pre-synaptic and
then a post-synaptic.

Algorithm 2 presents the steps to train the network El-
egansNET. For each epoch, an initial neuron is chosen to
calculate the paths or connections. From the connections
of the neurons, each connection is visited calculating the
membrane potential of the pre-synaptic and post-synaptic
neurons. Then, the weights are changed using the difference
in the firing time between the pre-synaptic and post-synaptic
neurons.

D. Propagation of signals

Since the network is a graph, we use a finding paths al-
gorithm to search the pre-synaptic and post-synaptic neurons

and then generate a signal propagation between the neuron
sender and neuron receiver. To propagate the values, it is
possible to go through the list of connections of the C.
Elegans neurons. In each propagation, the path would be
the same and the interaction of the network would have the
same effect between its nodes. The goal is to carry out a
propagation start according to the pre-synaptic neuron from
where the signal starts. Algorithm 3 is used to generate the
paths from a pre-synaptic neuron, searching all possible paths
where a signal must be transmitted.

E. Network Classification

ElegansNET uses the adjusted weights of the algorithm.
Assuming that the optimal weights of the network are
obtained using the STDP algorithm and the HH model,
the weights are used to classify the input patterns into
different classes. The ElegansNET classifier uses the winner
takes all strategy to suppress non-firing neurons and produce
distinguishable results.

The main steps in pattern classification are:
• Finding the propagation paths.
• For each neuron (pre-synaptic and post-synaptic) of

each propagation connection, the membrane potential
is calculated.
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Fig. 4: Main components in the software system: This system is integrated by three components, where each component
is in charge of performing a specific function. The first component is Network Display, which is in charge of processing the
web application that allows the visualization and manipulation of the neural network. The second component is Network
Status, which is in charge of executing the required web services, which enables returning the requested data to the neural
network to be stored in a database. Finally, the third component is Network Calculations, which is in charge of creating a
web socket to generate the propagation signals from the previously obtained data.

• An encoding of the incoming data is generated at a peak
frequency proportional to the membrane potential.

• For each xi of X , at each time step, the potential of the
neuron is updated according to the input peak and the
associated weights.

• The first output neuron performs an inhibition on the
rest of the output neurons.

• The classifier counts the number of peaks to verify the
output class.

VII. SOFTWARE SYSTEM

We developed a software system to handle the network
interaction and to show the network neuronal graph. The soft-
ware system allows generating a propagation of an electrical
signal between a pre-synaptic neuron and the post-synaptic
neuron. Fig. 4 presents the main components of the software
system that are explained as follows:

• Network Status. This component is a Python app
that runs on a server. The purpose of this component
is to create a web service to return the data about
the neuronal network. The data is stored in a Neo4j
database. The main entities in the graph database are
the nodes (neurons) and the links between the nodes.

• Network Calculations. This component is a Python
app. The main purpose of this component is to create
a web socket to receive a message about the signal
propagation from a Network Status and to make the
necessary calculations to generate a propagation signal

in order to save the data in the Neo4j database. Then, the
component notifies that the network has been changed
through broadcast mode.

• Network Display. This component is a React applica-
tion. The main purpose is to show a graphical interface
to the user to get the data from the Network Status
component, and to receive-send messages to the Net-
work Calculations component to generate new changes
in the network. The network is shown to the user in
a graphical way, which classifies the neuron types by
color.

The Network System component and Network Calculations
component are back-end components. The Network Display
component is a front-end component. The calculations for the
network are not performed in the Network Status component
because the propagation of the network can take a long time.
Since the calculations are asynchronous, we separated the
calculations in order to focus only on the propagation and
training calculations.

Fig. 5 presents a Business Process Modeling Notation
(BPMN) model to illustrate the flow to generate changes in
the neuronal network. In the software system, the interaction
is composed of the components (Network Status, Network
Calculations, and Network Display) already explained. After
loading the resources of the web application or Network
Display component, the first action is getting the network
data from the Network Status component. The network data
can be a first network state (without any signal generation)
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Fig. 5: BPMN (Business Process Modeling Notation): This BPMN model is in charge of presenting the flow and activities
that the system must follow to carry out the processes and calculations previously defined by the network. In addition, it
presents the transition made between each of the components of the software system, which are Network Display, Network
Status, and Network Calculation. In each component, the functions performed are deployed until the final result is presented
to the user.

or the current network state (with changes saved in the
network). When the Network Display component gets the
data on the network from the Network Status component,
the Network Display component extracts the data and prints
the network to the user interaction.

When the network is deployed to the user, the user may
try to change the value of the signal for two neurons. Then,
the Network Display component sends the inputs to the
Network Calculations component. Later on, the Network
Calculations component searches the paths and generates the
calculations. Then, it notifies the web application indicating
the calculations are finished. Finally, the Network Display
component can get the current state from the Network Status
component.

Fig. 6 presents a screenshot of the graphical interface
generated in the Network Display component to view the
interactive system that presents an animation of the neuronal
network of C. Elegans. Using this graphical interface, the
user can view all neurons and its connections by type of
neuron (inter, motor, sensory). The user can click on a neuron
to show its information. Also, the user can search for a pre-
synaptic neuron and generate a signal propagation to a post-
synaptic neuron in order to generate the paths and update the
weights for each connection.

VIII. CLASSIFICATION EXPERIMENT

We performed several experiments to calculate the accu-
racy of a classification problem and to determine whether
the approach is valid to classify patterns. The idea in the
classification problem is to separate the classes with a
previous training algorithm and then generate output-based
data.

A. Dataset

We used a typical data set for the classification technique.
The data set presents 4 attributes and the target class. The
objective of the dataset is to identify an iris flower [27]. The
attributes are petal length, petal width, sepal length, sepal
width, and flower species. The last attribute is the class or
output target in the dataset.

In addition, this dataset contains three species of iris,
which are Setosa, Virginia, and Versicolor. For each of these
species, there are 50 samples, which are analyzed with the
parameters already mentioned. This dataset is open access
and is in a special repository of machine learning.

B. Results

1) Propagation Algorithm: Algorithm 3 was proposed to
be able to obtain the paths starting from a point of origin
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Fig. 6: Screenshot of the Graphical interface (Network status component): The system allows showing the structure
of the network to the user. The user can show the relations of neurons by the type of neurons. The user can download
the network structure in JSON format. The user can modify the weight of one relation by selecting a pre-synaptic neuron.
Then, the network sends the signal to post-synaptic neurons using our propagation concept.

Fig. 7: Results for propagation algorithm: Time vs number paths in the experiment for each neuron using Algorithm 3.

that in this case, corresponds to an initial neuron. In this
way, this algorithm begins searching the connections where
this initial neuron is pre-synaptic, then recursively searches
those paths for the connections where in each sub-connection
the post-synaptic neuron becomes pre-synaptic to send the
signal. In this way, a sort of subnet is created. The algorithm
was tested through an experiment, where for each of the 280
neurons (regardless of the type of neuron i.e., sensory, inter,
or motor), the necessary paths were calculated to propagate

a signal starting from such point of origin. Additionally,
the time to compute the paths from each initial neuron was
registered.

Fig. 7 and Fig. 8 present the results of the experiment.
Fig. 7 presents the times registered when taking each neuron
as the point of origin. Thus, the algorithm presents a good
result in comparison with the number of paths taken in
the experiment, since the time that the algorithm takes is
proportional to the number of paths found for the origin
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Fig. 8: Results for propagation algorithm: Maximum and minimum total connections in the network calculated using
Algorithm 3.

neuron. The algorithm lasts less than a second, even on
the neurons where the algorithm must evaluate the largest
paths, which demonstrates the algorithm’s efficiency and
effectiveness.

Fig. 8 is a bar chart to represent the 5 neurons with the
lowest amount of connection and the 5 neurons with the
highest amount of connection. In this way, the maximum
amount of connections oscillates between 1498 and 1923
for the AVEL and AVAR neurons respectively. The minimum
amount of connections is 23 for the neuron VD08. The types
of neurons included in the bar chart are:

• VD08: Motor neuron
• PLNL: Sensory neuron
• PLNR: Sensory neuron
• PDB: Motor neuron
• VD09: Motor neuron
• DVA: Inter neuron
• AVEL: Inter neuron
• AVBR: Inter neuron
• AVBL: Inter neuron
• AVAL: Inter neuron
• AVAR: Inter neuron

In addition, this experiment resulted in the neuron VC06
having no paths when applying the algorithm. This has also
been confirmed in [28], [29], where it is stated that this
neuron has no associated connections or synapses.

2) Training: The neural network was trained with the iris
flower data set. We carried out training with 100 epochs for
the network. Fig. 9 presents the accuracy result for each
epoch for the testing and training phases. Analyzing each
epoch, the major difference between the testing and training
was in epoch number 13 with a difference of 54.9%. The
maximum accuracy was 78% for the training phase and 82%
for the testing phase. The minimum accuracy was 36% for
the training phase and 33% for the testing phase. With these

results, there is an increase in the network accuracy after the
execution of each epoch, despite the accuracy may decrease
at certain epochs. In the first 35 epochs, the drop in the
accuracy could occur because the peaks can be classified as
early peaks, so the network has not yet learned. After these
35 epochs, the network tries to balance the effectiveness with
a constant increase in steps of 20 epochs.

In the training phase, the weights have not changed if the
classification was correct. The iris dataset was divided as
follows: 70% for training and 30% for testing. We think that
the times when there are differences between training and
testing are because the size of the dataset for testing was
small for the 6260 network connections.

IX. DISCUSSION

We present a discussion focused on the implementation,
advantages of the proposed approach, and difficulties found
in this project.

A. Implementation

In this work, we present two main points. The former
is the network that can reproduce an output in order to
stimulate muscles for the C. Elegans movements. Then, the
presented approach can be used to simulate the movement of
muscles (right and left) using a binary output. The latter is
the memory that can be tested in a dynamic way in order to
run the network with several scenarios to classify different
patterns and guarantee that the network saved all patterns.

B. Advantages

Using this network we consider the following advantages:
• Using a neuronal network like a directed graph enables

the algorithms and operations of the directed graph.
• The neuron connections are based on a real model.

Thus, the signal propagation can use a branching factor
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Fig. 9: Accuracy results of training and testing the network: These results represent the precision per epoch of training
the neural network using the iris dataset. We used 100 epochs and for each epoch, the dimensions (150 rows x 3 attributes)
in the dataset were the same, but we shuffled the data.

with spikes interaction in comparison to a network by
layers.

• The number of neurons is constant to C. Elegans.
Then, it is not necessary to create a random number
of neurons.

C. Difficulties

The main difficulty of this work was using the HH model
because this model does not have a good performance. The
model takes between 20 and 140 seconds to calculate a
membrane potential for a neuron. Thus, the training step was
a challenge because it takes a long time to set the HH model
for 6004 connections, the branching factor, and epochs.

The second difficulty of this work was generating the
voltage peaks using the branching factor since the proposed
algorithm uses recursion to generate the path propagation.

Another difficulty was finding the neural connections of
C. Elegans since in some cases these connections were not
complete. The analysis of the connections was proposed in
a previous work [9], but modeling it using a directed graph
was a big challenge.

Another difficulty was mixing the HH model and STDP
in order to make the classification of patterns, because it is
a novel method that calculates the membrane potential for
each neuron, and then calculates the firing time in order to
calculate the weight of connections in the training phase.
Also, the way to use the weights and the spikes to predict
the class for certain entries.

X. CONCLUSIONS AND FUTURE WORK

The connections of the C. Elegans neural network allowed
us to propose an experimental approach to train the network.
In this way, we use the network to classify patterns using the
STDP model. We tested with an iris dataset using the HH
model with a time series (15 seconds in order to calculate
the membrane potential and check the spikes). The network
graph allows observing the neurons and their links. As a
result, the network accuracy in 100 epochs was greater than

78% for training and testing for the iris dataset; then, we
think that the result is related to the configuration of the HH
model because the network chooses output neurons for each
target class, and then for each output neuron the network
calculates the spike activation to establish if the neuron
predicts in a certain class. The average voltage was varied
because of the potential membrane value for each neuron. For
each experiment, the time was constant perhaps because the
potential membrane depends on the spatio-temporal dataset
encoding.

As future work, it is intended to implement the C. Elegans
network and a classic artificial neural network for an accurate
comparison, so that the networks are capable of classifying
different encryption techniques. Initially, the networks will
be trained with the techniques: substitution, affine, and
vigenere. The inputs for the classification of the techniques
are previously defined in the network with the purpose of
performing a process that allows us to obtain an expected
output, which in this case would be that the neural networks
are able to identify the encryption technique that has been
used. Such information will be provided to both networks
with encrypted texts.

In addition, in future work, we will analyze both neural
networks using different metrics like speed, efficiency, and
accuracy to characterize the two networks. This will be done
in order to know which network is better for each metric. For
this purpose, we will propose several experiments to compare
both networks. In this way, we intend to use both networks
to classify cipher techniques such as Vigenere, DES, among
others, based on an encrypted text.
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