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A Curious New Result of Resolution Strategies in
Negation-Limited Inverters Problem

Ruo Ando, Yoshiyasu Takefuji

Abstract—Generally, the negation-limited inverters problem
is a puzzle of constructing an inverter with AND gates
and OR gates, and a few inverters. This paper introduces
a curious new result about the effectiveness of two power-
ful ATP (Automated Theorem Proving) strategies in tackling
negation-limited inverter problems. Two resolution strategies
are UR (Unit Resulting) resolution and Hyper-Resolution. In
the experiment, we cope with two kinds of automated circuit
construction: three input/output inverters and four input/output
BCD Counter Circuit. Both circuits are constructed with a
few limited inverters. Curiously, it has been turned out that
UR resolution is drastically faster than Hyper-Resolution in
the measurement of the size of SoS (Set of Support). Besides,
we discuss the syntactic and semantic criteria, which might
cause a considerable difference in computation cost between
UR resolution and Hyper-Resolution.

Index Terms—Negation-limited inverters problem, automated
theorem proving, unit resulting resolution, Hyper-Resolution,
set of support

I. INTRODUCTION

A circuit with outputs —x1, =2, ..., &, for any Boolean
inputs x1, xs, ...T, is called as an inverter. Here, we consider
the automated construction of some circuits with AND gates
and OR gates and a few NOT gates. This is also called a
knotty problem in [5]. Before [S5], Larry Wos [4] introduced
“two-inverter puzzle” in an article on Automated reasoning.
It is easy to construct an inverter by putting n* Notgates in
a row. In the two-inverter puzzle, we have constrained that
an inverter uses fewer than n NOT gates and constructs an
inverter with an arbitrary number of AND gates and OR
gates. Sheldon [7] proves that [log(n+1)] NOT gates are
necessary and sufficient to construct the inverter
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Fig. 1. Two inverters puzzle as negation-limited inverters problem.

Figure 1 depicts the 3-input/3-output version of this prob-
lem called a two-inverter puzzle. The black box in the middle
of the figure receives binary inputs [0,1] at the terminal of
X, y, and z. Each output terminal of x’, y’, and z’ yields
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the complement of the corresponding input. For example, if
x is 0, x” is 1, and so on. Each of the eight possible 3-
bit input words yields its complementary expression at the
outputs for three terminals. Usually, without any constraint
about negation-limited inverters, such a transfer function
would be implemented by using three inverters or NOT-gates
connected between input and output.

In formal, this puzzle is designed as figuring out a network
using any number of AND and OR gates but not more than
two (2) NOT’s to achieve exactly the same input-output
function. The AND’s and OR’s may have as many inputs
as required.

To discuss a curious new result of this paper mainly
concerning the two-inverter puzzle, we define the broader
problem as follows;

Definition 1. Negation limited inverters problem. As a gen-
eralization of the two-inverter puzzle, we define the negation
limited inverters problem as the construction of an arbitrary
N-bit input / N-bit output circuit with limited inverters of
N-1.

In [7], it was proved that the complete set of input variables
might be inverted D(n) inverters where D(n) is the small
integer y such that n < 2Y. According to this proof, the
negation limited inverters problem, including two inverter
puzzles, also includes the constructing BCD (decade counter
circuit) with two inverters [1] discussed in the following
section.

Programs for the experiment in this paper are available at

[2].

II. OTTER
A. OTTER and its clause sets

In this paper, we use OTTER (Organized Techniques for
Theorem-proving and Effective Research), which is the prod-
uct of Argonne National Laboratory, implemented mainly
by W.McCune. Before OTTER was released, E. Lusk, R.
Overbeek, et al. [18] proposed the main concepts of the
theorem prover. OTTER became popular as the most pow-
erful automated reasoning tool thanks to the works for [12]
[13] [14] tackling certain classes of the problem, including
negation-limited inverters problem. The fundamental reason-
ing framework of OTTER is a given-clause algorithm for
processing a set of support[10].

The given clause algorithm uses two sets for retaining
clauses. One is the set of support (SoS). The reasoning
process of OTTER starts with the retaining clause in a
support set which has all the chosen input clauses. In the
reasoning process, OTTER retains always the initial set of
support and the generated clauses. Another set is the usable
set. In the first phase, the usable set is separated from the
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set of support. OTTER puts the usable clauses into the set of
support for focusing the attention on yielding the additional
clauses.

All generated clauses are divided into four classes: SoS,
Usable, Passive, and Demodulators. OTTER starts with the
retention of a support set, including all of the chosen input
clauses. In detail, OTTER handles the four kinds of clauses
in the reasoning process as follows:

1) SoS. Clauses are regarded as facts to be kept for
participating in the search. They are not picked to make
inferences.

2) Usable. Usable is a list of inference rules for keeping
clauses available to the reasoning.

3) Passive. This list is for the Unit conflict and forward
subsumption. The reasoning program uses the passive
list to check if the clauses with opposite sign of the
passive list are generated. The passive list does not
change and participate in the reasoning.

4) Demodulators. Demodulators are adopted to rewrite
newly retained clauses with equational reasoning.

In the experiment, we particularly observe the size of the
set of support. For our research, a set of support is the most
important indicator for characterizing the reasoning process.

B. Given Clause algorithm

The given clause algorithm enables the program to attempt
all combinations from axioms derived from the given clause.
From another perspective, the clause combination is yielded
from the given clause, which has been focused on. Algorithm
1 shows the procedures of the given clause algorithm. It takes
a set of support and a usable list discussed in the previous
section.

Algorithm 1 Given clause algorithm
Input: SoS, Usable List
Output: Proof
1: while until SoS is empty do
2:  choose a given clause G from SoS;
3:  move the clause g to Usable List;
4 while c_1, ..., c_n in Usable List do
5: while R(c1,..c;, G, ¢it1,..cn)exists do
6: A<:R(Cl,..Ci,G,CH_l,..Cn);
7
8
9

if A is the goal then
report the proof;

: stop
10: else {A is new odd}
11: add A to SoS X
12: end if
13: end while

14:  end while
15: end while

In line 2, the prover picks up G (given clause ) from SoS
(Set of Support). Two while loops are started in lines 4 and 5
to attempt any and all combinations extracted from the given
clause and usable list. Readers are encouraged to check [11]
[19] for the basic design of given clause algorithm. In a
nutshell, five steps are taken in the given clause algorithm as
follows:

1) Choose a clause as the given clause from the clause
list of the set of support.

2) Append the given clause to the usable list.

3) Using the inference rule or rules for the inference of
all clauses.

4) Test the retention of newly inferred clause

5) Add each yielded new clause to the SoS.

OTTER selects a clause G from the clause set which has
been focused on in SoS. In this sense, clause G is called a
given clause or focal clause.

III. RESOLUTION STRATEGY
A. Hyper-Resolution

In a basic situation, researchers use the Hyper-Resolution
inference rule for formulating a problem. Hyper-Resolution
takes a positive clause which is called the nucleus. Simulta-
neously, satellites that have negative literal are combined with
the nucleus. Hyper-Resolution enables the prover to handle
large clauses as a sequence of binary resolution for yielding
a single positive clause. Robinson has founded the concept
of Hyper-Resolution in [15].

Definition 2. Hyper-Resolution. The inference based on
hyper-Resolution handles a clause that contains a set of
clauses A[i] which contains only positive literals and at least
one negative literal simultaneously. When it succeeds, Hyper-
Resolution outputs a clause B which has only one positive
literal. When successful, clause B is generated by discovering
an MGU (most general unifier) denoted as o.

In Hyper-Resolution, a positive literal is unified in each
of the A[i] by MGU (o) with a negative literal NL. The
clauses NL and A[i] should have no variables in common.
The general scheme is:

Kl,l, .,Kl,n

Km,l,.,Km,n

{_\Ll, . _\Lm+1, LI}HO'.O'

= mgu([|K1|7 ) ‘Km,luv HL1|7 * |LmH)
{K1,27 ) Kl,naKm,27 -Km,n; Lm+17 '7Ll}0

In the list above, K; denotes a clause, and L; denotes a
literal. Hyper-Resolution is applied to a set of m unit clauses
K1 ... Km and a single nucleus L1, ..., Lm+1 consisting of
m + 1 literals.

Roughly corresponding to OTTER’s syntax, the “if-then”
clause may have conclusion literals with OR operator as
follows:

1: If P & Q, then R | S

deduces

l1: =P | -Q |I-R | S
Then, the clash process occurs under the hypothesis literals
in the “if-then” with more than one literal. A typical pattern

might be as follows:

1: =P |
2: P | T

-Q I-R | S
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Importantly, Hyper-Resolution requires that all of the
negative literals in the “if-then” clause have clashed with
corresponding literals in other clauses. For example, from

1: -P(x,y) | -Q(x) |-R(x,y)
2: P(Zlb)
3: Q(a)

Hyper-Resolution deduces
1: R(a,b).

Hyper-Resolution is the most frequently adopted inference
rule in situations in the case that we should not apply
equality substitutions. Hyper-Resolution is intuitively natural
to human reasoning.

According to [18], “Don’t draw any conclusions until all
of the hypotheses are satisfied” is the restriction which all
negative literals should clash.

In general, for a broad class of reasoning problems,
Hyper-Resolution is sufficient. The rule most resembles the
inference mechanism used in deduction systems. Also, In
OTTER, Hyper-Resolution is the default inference rule.

B. UR-Resolution

In the UR-Resolution (unit-resulting resolution) [16], a
clause set is divided into two categories, a non-unit clause,
and a unit clause. The non-unit clause is called the nucleus,
and the unit clause is called the satellites. The satellites
(unit clause) is resolved all except one of its literals with
unit clauses. Positive UR-Resolution yields a positive unit
clause, while the negative UR-Resolution yields a negative
unit clause.

The general scheme is:

Ky

K,
{Lla ) Lm+1}30'0 = mgu([\K1|, 2 |Km|]7 HLl‘v B ‘LmH)
{Lerl}U

K; denotes a clause in the list above, and L; denotes a
literal.

UR-Resolution inference rules take a set of m unit clauses
K1...Km and a single nucleus L1, ..., Lm + 1 consisting of
m + 1 literals. Here, K;, L;, then L,, 10 is called as the
unit resulting resolvent. All pairs of literals K;, L; should be
complementary in the general scheme. K, L; are assumed
to have opposite signs. Because |K1| denotes the atom
contained in the literal K1, the reasoning process of the
simultaneous unifier avoids the signs of the literals.

Definition 3. UR-Resolution. UR-Resolution takes each lit-
eral to be removed from the nucleus. Then, taken literals are
unified with a unit satellite. In UR-Resolution, both negative
and positive resolvents are supported. UR-Resolution is not
refutation complete. However, UR-Resolution is refutation
complete in coping with horn clause sets.

Hyper-Resolution will reach out to the derivation with
only positive literalism. It is sufficient in coping with a
large clause of problem. Instead of avoiding all restrictions
on all clauses to be derived, UR-Resolution considers the
possibility of clauses containing a single literal. Clauses with
a single literal are called unit clauses or “units”. In UR-
Resolution, a unit clause can be described as a statement of
fact. On the other hand, multi-literal clauses represent con-
ditional statements in the case that the multi-literal clauses
contain both positive and negative literal. Consequently,
unit clauses are practical in many situations. UR-Resolution
discards the restriction that derived clauses should have only
positive literals. In other words, UR-Resolution imposes the
restriction that the derived clauses should be units.

1: =P | -Q | R
2: P
3: -R

UR-Resolution derives -Q. Note that Hyper-Resolution
would be unable to derive anything from the contrast. Be-
sides, UR-Resolution focuses on a unit in a way that all but
one of the clauses participate in the deduction. Those clauses
should be unit clauses, although they can be either positive
or negative. Broadly, UR-Resolution focuses on unit clauses,
whereas Hyper-Resolution emphasizes positive clauses.

C. Set of Support

In [10], the set of support strategy is illustrated. It guides
the reasoning program to select from the clauses character-
izing the question under research to be put in the list of the
set of support, which is denoted as list(So0S) in OTTER.
The corresponding restriction evades adopting a reasoning
rule to a set of clauses of which all clauses are derived from
the set of support. Consequently, each clause generated and
retained is appended to list(S0S). In [10], experimentally, it
is pointed out that the best choice in effect for the initial set
of support is based on the unique hypothesis and the denial
of the theorem under research. The second best choice is the
denial of the theorem itself.

Definition 4. Set of Support Strategy. Let S be any
nonempty set of clauses. Let U be any inference rule which
is the usable list. A nonempty subset of U of S is required
under the set of support strategy. Let Uy be the clause set
D. We get C is in D. Or D is a factor of a clause C in T. D
is obtained by using T to the clauses C1, Cs, ...C,, with one
of C; in Tj at least. C}, are not in Tp. And D is a factor of
a clause in 73.

In the negation limited inverters problem (two-inverter
puzzle), SoS list contains the clauses such that the input
signals are constructible.

Listing 1. Set of Support list

P(00001111, v). input 1
P(00110011, v). input 2
P(01010101, v). input 3

We then add a statement in the negative form for the target
output state. The clauses as follows represent that one output
pattern at least cannot be yielded.
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Listing 2. Usable list
—P(0000000110, v) |
—P(0001111000, v) |
—P(0110011000, v) |
—P(1010101010, v).

The reasoning program is terminated when the unit conflict
occurs. Unit conflict is an inference rule that derives a
contradiction from unit clauses. For example, unit conflict
occurs between P(a,b) and -P(x,b). Theoretically, unit conflict
is based on proof by contradiction.

IV. EXPERIMENT

In experiment, we use workstation with Intel(R) Xeon(R)
CPU E5-2620 v4 (2.10GHz) and 251G RAM.

A. Tracking the size of the set of support

The main loop of the inference and processing clauses
operates both on Usable and SoS lists based on the given
clause algorithm.

1) Choose an appropriate given clause from SoS.

2) Move selected given clause from list(So0S) to

list(usable).

3) Process a newly appended clause (given_clause) with

the inference rules set in the usable list.

4) Inspect whether newly retained clauses have the

given_clause or not.

5) Execute the retention test on newly retained clauses

and append those clauses to [ist(S0S).

The main loop is depicted in Algorithm 3 for searching
for a refutation.

Algorithm 2 Tracking the size of the set of support
1: while given clause is NOT NULL do
2:  index_lits_clash(giv_cl);

append_cl(U sable, giv_cl);

if splitting() then
possible_given_split(giv_cl);

end if

infer_and_process(giv_cl);

giv_cl = extract_given_clause();

track(SoS_size);

10:  track(generated_clauses);

11: end while

R AN

In line 9, we track the size of the set of support for each
iteration step. After line 8, where the clause is selected from
SoS (set of support), we track the size of the set of support
in each interaction step. In the next section, we show the plot
with the iteration step of X-axis and the size of the SoS on
Y-axis.

B. Two inverter puzzle

As an example of a logic circuit design problem, we
consider the two-inverter puzzle. Let us consider any number
of AND, OR gates but no more than two NOT gates. Under
this constraint of no more than two inverters, we are to
construct a combinational circuit with three inputs {il, i2,
i3} and three outputs {ol, 02, 03}. Thus, the logic circuit

to be constructed is represented as: 01=NOT (il), 02=NOT
(12), 03=NOT (i3). Table I shows the input/output diagram
of the two-inverter puzzle.

TABLE 1

TWwWO INVERTER PUZZLE
3-INPUTS 3-OUTPUTS
x1 |O[0]0|1 1|1
x2 |00 1]|1 110
x3 |0 1]0]|1 0] 1
x4 |01 |11 01]0
x5/1[0]0|0 1|1
x6 |1 [0]1]|0 110
x7 |1 [1]0|0 0] 1
x| 1|1 |10 0|0

The first is that the circuit has three inputs.

P(xl,22, 23,24, 5, 26, 27, 28). - (1)

This clause (1) says OTTER can construct a circuit yield-
ing the output P(x1...x8). The complexity of this puzzle is
how to keep track of the number of inverters used (only two
are allowed in this case). We can use a list for the notation.
A variable is used to enable a shortlist to subsume longer
lists in the list. For instance, the pattern (0,0,0,0,1,1,1,1) can
be generated with no inverters because it is one of the input
signals.

P(0,0,0,0,1,1,1,1,v). - (2)

If an output signal pattern can be yielded using a few
inverters, then it does not matter if the same outputs can
be generated using one or more inverters. If the output is
inverted, one more inverter is appended to the list, which
can be described as:

P(1,1,1,1,0,0,0,0, L(inv(1,1,1,1,0,0,0,0),v)). - (3)

The inverter is denoted by the inv() term. The term inv()
represents the pattern of the output of the inverter. In the case
that another inverter is used for the resulting output pattern
by OTTER, this is represented as:

r 1)

1,1),
,0,0),v)). — (4)

This clause (4) would be subsumed by the preceding two
clauses (2) (3) immediately. And then, two clauses (2)(3) are
subsumed by (1) because the first clause (1) has the same
pattern but has the empty inverter list.

Figure 2 shows the size of the set of support during
the reasoning process of Hyper-Resolution. X-axis is the
iteration step. Y-axis is the size of the set of support. The size
of SoS increases around the iteration step of 800. Then, it
increases slowly in the next about 4,000 steps. After plateau
from iteration step 1000 to 4700, the SoS size increase speeds
up until iteration step 8000.

Figure 3 depicts the size of the set of support during the
reasoning process of UR-Resolution. The set size begins to
increase rapidly about the iteration step of 600. The speed of
increase slows down around the iteration step around 1100.

C. BCD or Decade Counter Circuit

A binary coded decimal (BCD) is a serial digital circuit
designed for counting ten digits. BCD resets for every new
input from the clock. BCD is also called a “Decade counter”
because BCD can go through 10 unique combinations of
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Three Inverters: Hyper Resolution
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Fig. 2. Hyper-Resolution in constructing 3-input/3-output inverter. X-axis

of the number of iteration steps. Y-axis is the size of the set of support.

Three Inverters: UR-Resolution
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Fig. 3. UR-Resolution in constructing 3-input/3-output inverter. X-axis of
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output. With four digits, a BCD counter counts 0000, 0001,
0010, 1000, 1001, 1010, 1011, 1110, 1111, 0000, and 0001
and so on.

TABLE II
BCD (OR DECADE COUNTER CIRCUIT)

current state next state

ojojofloOo|lO|O]|O]T1
ojojo|1]O|O]|T1]O
ojoj1|o0|lO|O]|1]1
o|lo|1|1]O0O|T1]O0]O
o|1]o0]lO0]O]|T1T]O0]T1
o|1|jo|1]oOo|T1]|T1]O
o1 |1 (oo |1 ]|1]1
o1 |1 |1]1]0]O0]O
1TojJoOolO|T1T|O|O]1
Tfojo|1 |1 ]|]O0]|T1]O

Table I describes the counting operation of the Decade
counter. It represents the count of the circuit for the decimal
count of input pulses. The NAND gate output is zero when
the count reaches 10 (1010).

Figure 2 shows the size of the set of support during the
reasoning process of Hyper-Resolution. In detail, X-axis is
the iteration step. The size of SoS increases rapidly from

Three Inverters: UR-Resolution
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around the iteration step of 800. Then, it increases slowly in
the next about 4,000 steps. After plateaus from iteration step
1000 to 4700, the SoS size increase speeds up until iteration
step 8000.

D. Comparison

In this section, we discuss the complexity of our problems
from two points of view: the comparison by resolution
strategies and the comparison by puzzles (two-inverters and
BCD). Tables III, IV, V, and VI are the combination of rows
by the statistics of reasoning processes. In general, hyper
resolution takes more cost than UR-Resolution. In table V,
in the two-inverter puzzle, UR resolution 53.68x is faster
than Hyper-Resolution in the view of generated clauses. In
table IV, in BCD, UR resolution is 6.03x faster than Hyper-
Resolution in the view of generated clauses. Furthermore, in
particular, we have two items of statistics:

« generated clauses: the number deduced clauses for every

step of the main loop shown in Algorithm 1.
« set of support: clauses representing the fact and retained
clauses tracked in Algorithm 1.

Let us consider the more detailed properties of two reso-

Iutions and puzzles by two comparisons.
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1) Comparison by resolution strategies: In Table III, the
increasing ratio of generated clauses in hyper resolution is
about four times larger than the size of SoS (set of support).
On the other hand, in Table IV, in UR-Resolution, the
increasing ratio of generated clauses (x15.59) is smaller than
the size of SoS (x19.7) From this result, we can conclude
that hyper resolution is the strategy that tends to increase the
size of the set of support. This property of the high increase
rate of SoS size in hyper resolution is one of the reasons
why hyper resolution takes more cost than UR resolution.

TABLE VI
COMPARISON 4: TWO INVERTER WITH HYPER RESOLUTION AND UR
RESOLUTION
UR Hyper ratio
clauses generated 342935 | 2069334 | x6.03
ur res generated 342935 | 2069334 | x6.03
demod & eval rewrites 349903 | 2103338 | x6.01
clauses forward subsulmed | 332937 | 2049117 | x6.15
(subsumed by SoS) 77452 314773 x4.06
clauses kept 11881 28858 x2.42
usable size 1887 8646 x4.58
SoS size 8118 11577 x1.42
kbytes malloced 7812 12695 x1.62
TABLE VII
COMPARISON 4: TWO INVERTER WITH HYPER-RESOLUTION AND UR
RESOLUTION
User CPU time | System CPU time
BCD (Hyper) 25801.54 1.94
BCD (UR) 241.66 0.13
Two-inv (Hyper) | 25.89 0.01
Two-inv (UR) 3.89 0.01

TABLE III
COMPARISON 1: HYPER RESOLUTION IN TWO INVERTERS AND BCD
Two inverters | BCD ratio
clauses generated 2069334 287084274 | x138.73
hyper res generated 2069334 287084274 | x138.73
demod & eval rewrites 2103338 288422196 | x137.12
clauses forward subsumed | 2049117 286403743 | x139.76
(subsumed by SoS) 314773 44200930 x140.42
clauses kept 28858 1016164 x35.21
usable size 8646 335638 x38.82
SoS size 3.99 344900 x29.79
kbytes malloced 126925 311523 x24.53
TABLE IV
COMPARISON 2: UR-RESOLUTION IN TWO INVERTERS AND BCD
Two inverters | BCD ratio
clauses generated 3422935 5347949 | x15.59
ur res generated 342935 534949 x15.59
demod & eval rewrites 349903 5383579 | x15.38
clauses forward subsumed | 332937 5177890 | x15.55
(subsumed by SoS) 77455 1842716 | x23.79
clauses kept 11881 180120 x15.16
usable size 1887 10065 x5.33
SoS size 8118 160002 x19.7
kbytes malloced 7812 79101 x10.12

2) Comparison by circuits: Tables V and VI show that the
increasing ratio of generated clauses by switching resolution
strategies from hyper to UR in solving BCD is larger than
two inverter puzzles. The first column in the fourth row of
Table V (x53.68) is bigger than Table VI (x6.03). About the
size of the set of support, the increasing rate is relatively
small. See the eighth column in the fourth row in Table V
(x3.93) and VI (x1.42). This comparison shows that hyper
resolution does not scale simply by the length of bits of two
puzzles compared with UR resolution.

TABLE V
COMPARISON 3: BCD WITH HYPER RESOLUTION AND UR RESOLUTION

UR Hyper ratio
clauses generated 5347949 2870843274 | x53.68
ur res generated 5347949 287084274 x53.68
demod & eval rewrites 53383579 | 288422196 x53.57
clauses forward subsulmed | 5177890 286403743 x55.31
(subsumed by SoS) 1842716 44200930 x23.98
clauses kept 180120 1016164 x5.64
usable size 10065 3356638 x2.15
SoS size 16002 344900 x3.93
kbytes malloced 79101 311523 x148.49

E. Insights

Hyper Resolution takes more computation cost than UR
resolution. This is because Hyper Resolution emphasizes

syntactic criteria rather than semantics. As shown in Tables
V and IV, The number of clauses generated by Hyper
Resolution is x53.68 (BCD) and x6.03 (Two-Inverter) times
larger than UR Resolution. It is often said that UR Res-
olution is semantic-oriented and emphasizes the semantic
criteria. However, UR Resolution is useless for specific
problems where the larger deduction step is necessary. We
have observed the curious change point in Figure 4 from
x=15000 to x=20000. From this point, the size of the set of
support is decreasing. Further inspection is necessary for this
phenomenon.

V. RELATED WORK

Switching theory was first introduced by Shannon [3] with
notable success in the practical application of Boolean alge-
bra. The knotty problem known as the two inverter puzzle
was first introduced by L.Wos [4]. Sallows [5] discussed
the negation-limited inverters problem from the viewpoint of
Moore’s original problem in circuit design and a seemingly
analogous problem in computer programming. Morizumi
[6] proposed the linear size of the negation-limited inverter
applying only o(n) NOT gates. In [7], it was shown that
the complete set of input variables might be inverted D(n)
inverters where D(n) is the small integer y such that n < 2Y.
In [8], Tanaka et al. proposed the design of size O(n log n)
inverter with depth O(log n) using [log (n+1)].

Originally, Hyper-Resolution was first illustrated in detail
by [9]. The efficiency and completeness of the set of support
strategy is discussed by L.Wos et al. [10]. Slaney et al. [11]
proposed a model-guided theorem prover which is called
SCOTT (Semantically Constrained Otter), with a resolution-
based automatic theorem proving.

Another powerful ATP (Automated Theorem Proving)
strategy is based on equational reasoning [23]. Many re-
searchers regarded demodulation as the inference rule to
remove less obviously redundant information. It is designed
to enable reasoning programs to simplify and canonicalize
yielded clauses by applying demodulators which are regarded
as rewriting rules [24]. Ando and Takefuji [25] propose the
application of demodulation for formal methods to analyze
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viral software metamorphism. Wos proposes a look-ahead
strategy which is called the hot list strategy, to cope with
the frequently occurred delay in focusing on a retained
conclusion [26]. A paramodulation inference rule is the
basis of equational reasoning of OTTER. It consists of two
parents and a child. By fromterm, the parent contains
the equality for replacing literals. The replacedterm is
called into the term. Paramodulation is regarded as the
generalization of a substitution rule for equational reason-
ing. Paramodulation serves to build properties of equality
along with demodulation. Takefuji applies paramodulation
for translating Common Lisp Takefuji. Ando and Takefuji
use the paramodulation based strategy called hot list for
speeding up graph coloring [21]. Also, Ando applies the hot
list strategy for exposing parameter detection of polymorphic
viral code [27].

VI. DISCUSSION
A. Hyper-Resolution and UR-Resolution

The hyper-Resolution inference rule has the advantage of
coping with larger deduction steps than binary resolution
does. On the other hand, Hyper-Resolution has the disadvan-
tage of emphasizing syntactic criteria rather than semantics.
UR-Resolution inference rule has the advantage of emphasiz-
ing semantic criteria but disadvantages in taking certain types
of problems. UR-Resolution requires all inferred clauses
(conclusions) drawn into it to be unit clauses. The clauses
contain exactly one literal because unit clauses correspond to
assertions rather than to a choice of possibilities. Therefore,
UR-Resolution is semantically printed. Consequently, it is
not hard to see that the Hyper-Resolution inference rule leads
to the derivation of clauses with only positive literal in them.
Whereas this is sufficient for large clauses of problems, many
reasoning tasks require the derivation of clauses containing
negative literal.

Hyper-Resolution is good at coping with a large horn
clause. UR-Resolution focuses on a unit clause containing
a single literal. In the problems like the negation-limited
inverters problem of this paper, the clause in SoS list does
not contain a large clause as follows:

list (sos).

P (00001111, v). % input 1
P (00110011, v). % input 2
P (01010101, v). % input 3

end_of_list.

This point should be why UR-Resolution is more effective
than Hyper-Resolution in generating the negation-limited
inverters.

B. Set of support strategy

The reasoning process of OTTER operates based on the set
of support strategy. As we discussed in the previous section,
the set of support strategy restricts the reasoning program by
selecting a nonempty set of 7" of S. For a feasible computing
time, restriction strategies such as the set of support and
weighting are essential for achieving some given assignment.
Automated reasoning strategy is divided into four categories:
restriction, direction, look-ahead, and redundancy-control.
Among the four strategies, the restriction strategy is the

most important because the reasoning program generates too
many unacceptable conclusions without proper restriction.
Currently, the set of support strategy is considered by many
to be the most powerful restriction strategy available. In
general, its use enables automated reasoning programs to
prove theorems in far less computer time and memory than
would be required as usual. In [20], a severe test of a set of
support strategy is provided in proving theorems relying on
the use of Godel’s finite axiomatic of set theory.

VII. CONCLUSION

This paper discusses the novel result of two resolution
strategies in the negation-limited inverter problem: UR (Unit
Resulting) resolution and Hyper-Resolution. We have ob-
served a significant difference in computing time in applying
these two strategies.

Particularly, in the two-inverter puzzle, in the view of
generated clauses, UR resolution is 53.68x faster than Hyper-
Resolution. Besides, UR-Resolution takes 229.24 sec of user
CPU time, which is x113.35 faster than Hyper-Resolution.
We have found a significant difference between UR resolu-
tion and Hyper-Resolution in the size of SoS (Set of Support)
measurements.

We also compare the syntactic and semantic criteria for
considering this novel result, which might cause a significant
difference in computation cost between Hyper-Resolution
and UR resolution. Hyper-Resolution will reach out to the
derivation with only positive literalism. It is sufficient in
coping with large clauses of the problem. Instead of avoiding
all restrictions on all clauses to be derived, UR-Resolution
considers the possibility of clauses containing a single literal.
For further work, we will inspect the detailed implementation
of Hyper-Resolution and UR-Resolution in detail.
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