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AbstractÐNowadays, obtaining information from images is
one of the main ways in which people obtain information.
However, the images are affected by the acquisition of hardware
equipment and transmission technology, which may result in the
loss of certain data and the resolution to be reduced. How to
recover low-resolution images into high-resolution images has
grown to be a popular area of research for image processing.
Deep learning techniques can discover more expressive features
through adaptive learning from the dataset. However, there are
problems with too many deep network parameters, blurred
reconstructed images, and obvious human traces.

To address these issues, this essay suggests the Deep Re-
cursive Residual Subpixel Wasserstein Generative Adversarial
Network (DRRSWGAN) using Deep Recursive Residual Sub-
pixel Network (DRRSN) in the generative network to solve the
problems of a large number of network parameters, relatively
smooth reconstructed images and the presence of human traces.
The Wasserstein Generative Adversarial Network (WGAN) is
used in the discriminative network to improve the discrimina-
tive network of the GAN for the problem of training instability.
Removing the Sigmod layer from the network, optimizing the
loss function, and using the RMSProp algorithm for gradient
optimization, allows the network to be more stable during
training and better image reconstruction.

The outcomes of the trial indicate this method improves both
PSNR and SSIM metrics, and the image reconstruction results
are better in terms of subjective perception.

Index TermsÐImage reconstruction, Convolutional neural
network, Generator network, Super-resolution.

I. INTRODUCTION

IMAGES are the main way for people to obtain infor-

mation. Therefore, how to improve image information

richness, increase image resolution, and give people access

to clearer images is a hot research topic nowadays. Gen-

erally speaking, the way to improve image resolution is to

upgrade existing acquisition equipment. However, there are

many difficulties in upgrading image acquisition equipment

to the status of the art today, such as high development

costs and long cycles. Therefore, a specialized technique is

used to reconstruct the image resolution of low-resolution

images from an algorithm perspective to obtain pictures with

excellent resolution.
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Super-resolution image problem was first introduced by

Harris [1], whose main objective was to reconstruct a low-

resolution image to obtain a high-resolution image. Before

the twentieth century, researchers usually used interpolation

to address the issue of excessively high resolution images, for

instance bilinear interpolation [2]. However, this method de-

pends on the assumption of continuity between images, and

there is no additional information added to the reconstructed

image. This leads to blurrier image reconstructions and poor

perception of the reconstructed images. After the twenty-first

century, researchers have proposed methods for image super-

resolution reconstruction determined by machine learning.

Freeman et al. [3] pioneered the introduction of approaches

for machine learning to the field of image super-resolution,

such as neighborhood embedding [4] and local linear re-

gression [5]. All these techniques record the similar local

structures corresponding between pictures of high and low

resolution, and then input the data into the dataset. In the

dataset, images with a similar structure to it are queried and

reconstructed by analyzing the low-resolution image data.

Deep learning has quickly developed as a result, some

researchers have applied deep learning to image super-

resolution reconstruction tasks. In 2014, Dong et al. [6]

proposed SRCNN networks (Super-Resolution Convolutional

Neural Networks), Which used convolutional neural net

works to rebuild images with super resolution. In terms of the

network depth structure, Kim et al. [7] proposed the VDSR

(Very Deep Super-Resolution) method. Kim believed that

the greater the depth of the network layers, the better the

image feature representation ability could be extracted. Ex-

perimentally, it was found that although the deeper network

could achieve good image reconstruction, the convergence

speed of the network was slow. Subsequently, Kim uses

gradient truncation by introducing residual learning to im-

prove the efficiency of network training. It reduces resource

consumption and improves the results of the image super-

resolution reconstruction task. Zhang et al. [8] proposed

the RCAN (Residual Channel Attention Networks) method,

which combines residual learning and residual module. This

method has better image reconstruction results.

Some researchers have found that the use of deep net-

works, while allowing for richer parameters, also leads to

over-fitting. Therefore, researchers have proposed recursive

networks, which can reuse the parameters in the network

to improve the reconstruction efficiency of images. Kim et

al. [9] proposed the DRCN (Deep Recursive Convolutional

Networks) method, which uses recursive ideas to construct

recursive blocks and increase the perceptual field of the

network. The training difficulty of the network is reduced,

and a better image reconstruction effect is achieved using

relatively few network parameters. Inspired by the DRCN

method, Tai et al. [10] proposed the DRRN (Deep Recursive
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Residual Network) method. A residual module was added to

the recursive module, and the network was trained to learn

using local residuals and global residuals to improve the

efficiency of completing the image super-resolution recon-

struction task.

Traditional image super-resolution reconstruction methods

usually use a pixel-by-pixel loss function. It makes the

reconstructed image higher in terms of the Peak Signal to

Noise Ratio (PSNR) evaluation index, but often results in

blurred reconstructed images and poor subjective perception

by the human eye. To solve this problem, Ledig et al. [11]

proposed SRGAN (Super-Resolution Generative Adversarial

Network), which inputs low-resolution images directly into

the generative network, and the generative network outputs

the reconstructed images. The rebuilt picture and the real

image are input to the discriminative network at the same

time, and the discriminative network determines whether or

if the created image is the true image. Qingliang Zeng et

al. [12] proposed the RSRGAN network, using the ResNeXt

network as a generative network and the idea of WGAN to

improve the SRGAN. It reduces the network complexity and

eliminates the issues with unsteady GAN training and low

training rate.

The approaches for reconstructing super-resolution images

based on deep learning described above have obtained several

outcomes, but also suffer from a few problems:

1) Image extraction of characteristics using the depth

network works well, but has a large number of network

parameters that are very computationally intensive in image

super-resolution reconstruction and serious memory con-

sumption.

2) The reconstructed images lack detailed information and

have obvious human traces.

3) The method for super-resolution picture reconstruction

using generative adversarial networks suffers from training

difficulties and instability. Both the PSNR and SSIM metrics

of the reconstructive pictures are low.

This paper focuses on approaches for reconstructing im-

ages with high resolution that are based on deep learning, and

proposes the Deep Recursive Residual Sub-pixel Wasserstein

Generative Adversarial Network (DRRSWGAN) to solve

the issues with the image super-resolution reconstruction

techniques discussed above. Improvements were made to

the generator and discriminator networks to improve the

PSNR and SSIM metrics of the reconstructive pictures while

providing a better subjective perception of the reconstructed

images.

The following is a summary of our contributions:

(1) In the generator network, Deep Recursive Residual

Network (DRRN) is proposed based on a Deep Recursive

Residual Sub-pixel Network (DRRSN). It reduces the com-

plexity of the network by residual learning and extracts deep

image features. And it can resolve the gradient issue that is

the root of the loss of deep network layers by combining

recursive ideas and reusing parameters between network

layers. The image feature map is expanded and reorganized

using sub-pixel convolution to improve the PSNR and SSIM

indices of the reconstructed image. A texture loss function

is introduced to enable the generated images to have richer

detailed information.

(2) In the discriminator network, the idea of WGAN

is combined with the RMSProp optimization algorithm for

gradient optimization. The Sigmod layer is removed from the

discriminator network with the loss functions of the generator

and discriminator networks improved. The weight update

parameters in the discriminator network are intercepted to

a fixed range to resolve the issue of generator adversarial

networks’ unstable and demanding training.

II. RELATED WORK

The deep learning-based image super-resolution recon-

struction method uses convolutional neural networks to

convert low-resolution pictures into their equivalent high-

resolution pictures. This method predicts low-resolution im-

ages and generates some of the detailed information that

high-resolution images have, leading to picture reconstruc-

tion with extremely high resolution. Many widely used

approaches for super-resolution picture reconstruction are

based on deep learning, such as SRCNN [6], DRRN [10],

VDSR [7], SRGAN [11], SRRESNET [11], etc.

A. Deep convolutional networks for image super-resolution

reconstruction

SRCNN proposes a deep learning-based approach to im-

age super-resolution by performing an end-to-end mapping

of the same image in the low-resolution case and the high-

resolution case, using a convolutional neural network to train

this mapping relationship. Compared to traditional image

super-resolution methods, SRCNN improves both image

reconstruction quality and image reconstruction speed. The

SRCNN structure is shown in Fig.1.

Fig. 1. Structure of SRCNN

The SRCNN is split into three steps: The input image is

first subjected to extracting features, and the extracted fea-

tures are transferred to the next layer. A non-linear mapping

is then added by expanding the quantity of layers in the

network, and these features are combined and reconstructed

by a convolutional layer. A high-resolution image is typically

generated and the high-resolution features are averaged.

Finally, the resulting high-resolution image is output.

SRCNN still has a lot of flaws, however. For instance,

amount of network layers is insufficiently deep, and the

picture features are not extracted well. If network layers are

added, there will be fake traces in the reconstructed images

and a very substantial loss of resources during training.

Researchers have been interested in figuring out how to

extract deep image features while lowering network com-

plexity, safeguarding image data, minimizing human traces,

and regulating network parameters.
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B. Generative adversarial networks for image super-

resolution reconstruction

With the emergence of rebuilding techniques with high res-

olution for images based on deep learning, some researchers

have found that although these methods can reconstruct low-

resolution images, the reconstructed images suffer from loss

of texture details. While the SRCNN method is capable of re-

constructing low-resolution images, the reconstructed images

are too smooth and not ideal for subjective human eye vision.

Therefore, Ledig et al. [11] presented a reconstruction of

an image with extremely high resolution method (SRGAN)

for generative adversarial networks. The idea of generative

adversarial networks was used by alternating training of

generative and discriminative networks to increase the rebuilt

pictures’ realism. The SRGAN structure is shown in Fig.2

and Fig.3.

Fig. 2. Structure of generator network

Fig. 3. Structure of discriminator network

SRGAN contains two main networks, the generator net-

work and the discriminator network, as can be seen in Fig.2

and Fig.3. SRGAN employs a deep residual network with

hopping connections in the generator network. It guarantees

effective gradient information flow within the network and

increases the network’s resilience. The generator network

receives the low-resolution image as an input, and it first

performs a convolution operation to separate out its shallow

features. Following deep feature extraction in the residual

module, combining these methods yields a high-resolution

picture and enlarging the image features. The created image

is compared to the original high-resolution image in the

discriminator network. By extracting features from the two

images, the likelihood that the generated picture is owned by

the real image is determined.

1) Generator network: The generator network of SRGAN

uses the idea of residual networks and mapping from be-

ginning to conclusion. The input low-resolution image is

convolved in the first layer for image feature extraction. After

16 residual blocks for deep extraction of image features, the

image is scaled up to a set magnification in the upsampling

layer. Finally, the image is output.

2) Discriminator network: In the discriminator network,

the generated image and the original image are fed into the

first convolutional layer for feature extraction. The Leakyrelu

activation function is used to avoid the maximum pooling of

the whole network. After that, the image information enters

into 7 convolutional layers. The size of the convolution kernel

is set to 3×3 and the number of feature channels is doubled

for every two convolution layers. Each time the number of

features is doubled, string convolution is used to lower the

image’s resolution. The two fully connected layers and the

Sigmod layer are used to determine whether the generated

image is a real image.

SRGAN improves the problem of overly smooth recon-

structed images with little texture detail in image super-

resolution reconstruction. Although the subjective perception

of SRGAN reconstructed images is improved, the recon-

structed image PSNR and SSIM metrics are relatively small.

Moreover, the training of SRGAN is very unstable and

will lead to training failure in severe cases. The generator

network of SRGAN uses residual blocks to reduce the

training difficulty of the deep network, but the number of

parameters in the network needs to be reduced. Moreover,

after the deep network, some information is lost in the image.

III. METHOD

Deep learning-based image super-resolution reconstruction

methods have some problems, and this paper proposes the

Deep Recursive Residual Subpixel Wasserstein Generative

Adversarial Network (DRRSWGAN). The method consists

of a generator network and a discriminator network with

recursion and residuals. The number of parameters in the

network is controlled while extracting the deep features of the

image. The image features are combined and amplified using

sub-pixel convolution. The idea of WGAN is introduced

to make the image super-resolution method of generative

adversarial networks more stable in training and better in

reconstructing images.

A. Deep recursive residual subpixel Wasserstein generative

adversarial network process

Sub-pixel convolution is combined with Deep Recursive

Residual Network (DRRN) [13] in the generator network
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to form a Deep Recursive Residual Sub-Pixel Network

(DRRSN). The idea of recursive residuals and sub-pixel

convolution is used to further extract image features and

reduce the number of network parameters. The image in-

formation is enriched and human traces in the reconstructed

images are reduced. The generative adversarial network is

optimized using WGAN ideas in the discriminator network

to improve the stability of the network training and enrich

the diversity of the generated images, where DRRSN is used

as the generator network to form the Deep Recursive Resid-

ual Sub-Pixel Wasserstein Generative Adversarial Network

(DRRSWGAN). The DRRSWGAN method flow is shown

in Fig.4.

Fig. 4. Flow chart of DRRSWGAN

The specific process steps of the DRRSWGAN method

are as follows.

(1) The low-resolution image corresponding to the high-

resolution image is input to the generator network (DRRSN),

and the first convolutional layer in the generative network

extracts the image features.

(2) In the recursive block (which contains a series of resid-

ual blocks), image features are extracted deeply, and local

residual learning is performed to preserve image information

and reduce the difficulty of network training through global

learning. The weight parameters within the same residual

block are shared to reduce the network parameters.

(3) As soon as the picture exits the recursive residual layer,

the image features are scaled up by a sub-pixel convolution

layer. The reconstructed image is then output through a final

convolution layer.

(4) The generated high-resolution image and the original

high-resolution image are fed together into the discriminator

network for judgment. If the difference between the two is

significant, then the generator network will continue to be

trained until the difference between the two is minimal.

B. Deep recursive residual subpixel Wasserstein generative

adversarial network architecture

1) Generator network (deep recursive residual sub-pixel

networks): In this paper, we use DRRSN as the generator

network and remove the BN layer from the residual unit and

add a sub-pixel convolution layer to the network. Recursive

blocks, residual blocks, and sub-pixel convolution are used

in the generator network. Allowing the generator network

to fully extract image features while also controlling the

parameters in the generator network reduces the resources

consumed by the training network. The use of sub-pixel

convolution allows for better scaling of the image and

removal of artificial traces from the reconstructed image.

Generator network organization is shown in Fig.5.

Fig. 5. Structure of generator network

As can be seen, by the structure of the generative grid in

Fig.5, the input low-resolution image first undergoes the first

layer of convolution for image shallow feature extraction.

The input image has a height of M and a width of N

and consists of three channels R, G, and B. The image

is usually represented by a matrix of H ×W × 3 (H and

W are the positions of the image pixels). After the first

layer of convolution, the representation of the input image is

changed to H×W ×C (C is the number of channels). After

that, the image goes into n recursive blocks and the residual

blocks perform deep feature extraction on the image. The

image features are enlarged and reconstructed using a sub-

pixel convolutional layer, and finally a high-resolution image

is generated using a convolutional layer, which is activated

using the PRelu function in the generator network.

A residual block in Fig.6 consists of two residual units,

and there are multiple residual blocks in a recursive block.

By introducing recursive learning into the residual branch,

different residual units in a general residual network receive

different data. In a DRRSN with residual units, the input

of residual units in the same branch is the same, which

can further facilitate network training and learning. Global

residual learning reduces the difficulty of network training.

The generator network uses recursive modules, residual

modules and sub-pixel convolution to extract deeper features

of the image. Reducing the training burden of the generator

network and saving system resources allows the network to

be trained more easily and to further improve the results of

image reconstruction.

(1) Residual units

The residual unit’s structure is depicted in Fig.6. Each

residual cell consists of an activation layer and a weight layer,

as shown in equation (1).

x̂ = C(x) = σ(F (x,W ) + h(x)) (1)

where C(x) is the output, σ is the activation function,

F (x,W ) is the residual mapping, W is the weight value and

h(x) is the input. In generative networks, like DRRN, the

activation does not come after but before the convolutional

layer, called pre-activation. This can make training easier and

the residual unit formula for pre-activation is (2).

Hr = F
(

Hr−1,W r
)

+Hr−1 (2)
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where r is the number of residual units and F is the

residual function. Hr−1 and Hr are the input and output of

the rth residual cell, respectively. To make the input to the

residual unit in the recursive block the same for all branches,

the Hr−1 is changed to the result of the first convolutional

layer C and the weights W are also fixed and shared

among the residual units. As a result, the network may learn

incredibly complicated properties. The use of branching path

learning helps with a gradient backpropagation, facilitating

network learning and making it less prone to overfitting.

Fig. 6. Structure of a residual element

(2) Design of the BN layer

The residual unit is present in the BN layer, which

contributes significantly to convolutional warp networks. It

can speed up the network training and has a regularization

effect, prevents network overfitting and improves network

training accuracy. However, the BN layer also has several

problems.

1) In the image super-resolution reconstruction method,

the image information may be lost due to the batch normal-

ization operation of the BN layer.

2) In image super-resolution reconstruction methods, it is

rare for the network to be over-trained, so there is no need

to regularize the network.

3) In the image super-resolution reconstruction method, as

the training data distribution is not the same for each batch,

adding a BN layer causes the network to re-adapt to the new

data distribution in each training session. It has a significant

impact on the training speed of the network.

For these reasons, the BN layer is removed from the

residual units of the generator network, which speeds up

network training and preserves the information in the images,

facilitating the removal of artifacts and improving general-

ization.

(3) Recursive modules

In recursive blocks, the parameters of residual units within

the same residual block are shared. Recursive blocks are

good for controlling how many variables there are at the

network layer and saving network computation costs. The

structure of the recursive blocks is shown in Fig.7.

In Fig.8, the number of recursive blocks can be changed

and the number of residual blocks in each recursive block

is not unique. The nth residual cell can be represented by

equation (3) as follows.

Hr
n = Q

(

Hr−1
)

= F
(

Hr−1
n ,Wn

)

+H0
n (3)

Fig. 7. Structure of recursive blocks

Fig. 8. Network composed of several recursive blocks

where r is the number of residual units, and F is the

residual function. Hr−1
n and Hr

n are the input and output of

the rth residual unit, respectively. H0
n is the result of the first

layer of convolution, which in turn leads to the output of the

nth recursive block, as shown in equation (4).

xn = Hr
n = Qr (fn (xn−1)) = Q (Q (. . . (Q (fn (xn−1)))))

(4)

Equation (4) performs a collapse operation on Qr . The

folding operation allows the values of each element to be

added cumulatively, which is useful for image feature recon-

struction. Afterward, a convolutional layer allows residual

learning to be performed on the high-resolution and low-

resolution pictures, adding the learning results to the global

mapping.

2) Discriminator network: The existing SRGAN method

has achieved good results in image super-resolution recon-

struction though. However, SRGAN reconstructed images are

relatively low in PSNR and SSIM evaluation metrics. There

are still some problems with the training of SRGAN. The

reason is that the effective gradient descent of the GAN only

occurs in the case of convex functions, which do not update

well in parallel with each other if both the generator and

discriminator networks are neural networks. GAN training

is difficult because there is no criterion to judge how well

the network is trained during the training process. During

training, the GAN is vulnerable to crashes, and the generator

network could deteriorate as training goes on. As a result,

the generator network’s ability to effectively improve the

images it produces is compromised, and it stops learning. The

discriminator network will make a mistake during a network

crash during training, stopping the training process. To solve

these problems, the idea of WGAN was introduced to make

changes to the discriminator network and combined with the

generator network to construct a DRRSWGAN method for

image super-resolution reconstruction.

(1) WGAN

Wasserstein GAN [14], abbreviated as WGAN, was pro-

posed in response to a series of problems in GAN. Firstly,

the Wasserstein distance is introduced, which is defined as

shown in equation (5).
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W (Pr, Pg) = inf
γ∼Π(Pr,Pg)

E(x,y)∼γ [∥x− y∥] (5)

Where Π(Pr, Pg) is the joint distribution of the various

outcomes following the combination of phases Pr and Pg .

For each joint distribution γ, the generating sample y and the

true sample x can be obtained by sampling from (x, y) ∼ γ

, and the distance model between the two is calculated

as ∥x − y∥. This leads to the calculation of the sample

pair distance expectation under the joint distribution γ as

E(x,y)∼γ [∥x − y∥] . It is hoped that the lower bound taken

on the Wasserstein distance will be used to establish the

anticipated value in all potential joint distributions, which

is the minimum distance from Pr to Pg . One benefit is the

Wasserstein distance over the KL scatter and JS scatter

problems in GAN is that if the two distributions do not

cross and overlap, the distance between them can also be

expressed. Both the KL scatter and JS scatter are abrupt

and both are always exceptionally large or small. Both

KL scatter and JS scatter are abruptly variable, always

exceptionally large or small. In contrast, the Wasserstein

distance is smooth. When applying gradient descent meth-

ods to optimize parameters, Wasserstein distance provides

the gradient. KL scatter and JS scatter fail to provide

an effective gradient. If two distributions do not overlap

in a high-dimensional space, the Wasserstein distance will

provide meaningful gradients, while the KL scatter and JS

scatter will not.

WGAN is the introduction of the Wasserstein distance

concept into GAN, which may be defined as the loss of the

network, thus allowing the network to obtain meaningful gra-

dients. But W (Pr, Pg) is not directly provable via equation

(5). The WGAN authors perform a theoretical derivation to

derive the new expression, as shown in equation (6).

W (Pr, Pg) =
1

K
sup

∥f∥L≤K

Ex∼Pr
[f(x)]−Ex∼Pg

[f(x)] (6)

There exists a Lipschitz continuum in equation (6), which

is a continuous function f . The existence of a constant K ≥
0 is required, and it is required that any two elements x1 and

x2 in the domain of definition satisfy equation (7).

|f(x1)− f(x2)| ≤ K|x1− x2| (7)

At this point the Lipschitz constant for the function f is

K. If the domain of the function f is the set of real numbers,

then all the above conditions are equivalent to the fact that

the absolute value of the derivative function of f does not

exceed K. If the derivative function has no upper bound,

then it is not Lipschitz continuous because this condition

limits the most localized change in a continuous function.

Equation (7) means that the Lipschitz∥f∥L of the function

f in the case of not exceeding the constant K, satisfying

the above condition f can be taken to the upper bound of

Ex∼Pr
[f(x)]−Ex∼Pg

[f(x)] in dividing by the constant K,

which will be introduced into the neural network becomes

the equation (8).

K ·W (Pr, Pg) ≈ max
w|fw|l≤K

Ex∼Pr
[fw(x)]−Ex∼Pg

[fw(x)]

(8)

In this equation, w is the parameter of the neural network.

Where the magnitude of the constant K does not influence

the direction of the gradient and simply causes the gradient

to be K-fold expanded. Also, a range interception [−c, c]
is performed for the parameters in the neural network.

Therefore, the derivative of the input data will not exceed

a certain range, and the function f will not vary beyond this

range. In turn, a discriminator network is obtained by limiting

w to a range while the last layer is not linearly activated. The

equation is shown in (9).

L = Ex∼Pr
[fw(x)]− Ex∼Pg

[fw(x)] (9)

L is the Wasserstein distance between the generated

and true distributions. WGAN does not use the Sigmoid

layer in the last layer of the discriminator network. Due

to the approximately fitted Wasserstein distance, WGAN

turns the dichotomous classification task in GAN into a

regression task. The generator network needs to minimize

the Wasserstein distance and there is no need to worry about

vanishing gradients in the generator network. The generator

network loss and the discriminator network loss of WGAN

are represented by equations (10) and (11) respectively.

lossG = −Ex∼Pg
[fx(x)] (10)

lossD = Ex∼Pg
[fx(x)]− Ex∼Pr

[fx(x)] (11)

Therefore, the smaller the Wasserstein distance, the bet-

ter the network is trained. WGAN solves the problem of

unstable GAN training. It does not require extra effort to

be invested in balancing the generator and discriminator

networks during the training process. The collapse mode

problem rarely occurs in WGAN, ensuring the diversity of

the generated samples. WGAN provides a metric to indicate

the effectiveness of training, which can be used to determine

how well the network has been trained. A smaller metric

means that the network is better trained and the quality

of the reconstructed images from the generator network is

higher. Inspired by WGAN, the structure of the discriminator

network is shown in Fig.9.

Fig. 9. Structure of discriminator network

It is seen that, following the idea of WGAN, in the

discriminator network at the Sigmod is taken off of the final
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layer. This is achieved by turning the problem of binary

classification in the discriminator network into a regression

problem in WGAN. From the problem of determining the

probability that the generated image belongs to the real image

to the problem of the distance between the generated image

and the real image. The discriminator network consists of

eight convolutional layers, with the number of channels dou-

bling after every two convolutional layers. The discriminator

network examines the difference between the generated and

original images, analyses the differences between them, and

outputs a judgment. If the original image is better than the

generated image, the discriminator network sends the result

to the generator network, which continues to train, increasing

the similarity between the generated image and the source

image. The training methodology for DRRSWGAN is shown

in Algorithm 1.

Algorithm 1 DRRSWGAN training method

1: Start N iterations

2: Start of discriminator network c iterations

3: m high-resolution images IHR
i are randomly ac-

quired in the training set, i = 1, 2, 3, ...,m.

4: m corresponding reconstructed images ISR
i are

acquired in the generator network, i = 1, 2, 3, ...,m.

5: Calculate the loss lossD.

6: Update the discriminator network parameters θD

using RMSProp.θD ← θD+µ ·RMSProp(θD, lossD)
7: Intercepting discriminator network parameters.θD :

θD ← θD + clip(θD,−c, c)
8: End of c iterations

9: M corresponding low-resolution images ILR
i are ran-

domly acquired in the training set, i = 1, 2, 3, ...,m.

10: Calculate the loss lossG

11: Update the discriminator network parameters θG us-

ing RMSProp. θG← θG+ µ ·RMSProp(θG, lossG)
12: End of N iterations

3) loss function: SRGAN improves the realism of the

reconstructed image by improving the loss function, but there

are still some gaps between the reconstructed image and the

real image. It is mainly reflected in the image details that

still have blurring or artifacts. Inspired by ESRGAN [15],

texture loss was added to the loss function of the generator

network in DRRSWGAN [16]. Texture loss is a loss function

optimized by a perceptual function and has a high sensitivity

to the transfer of image styles. The usage of texture loss can

increase how well reconstructed images work. The generator

network loss function of DRRSWGAN consists of content

loss, adversarial loss, and texture loss, which is formulated

as shown in the composition equation (12).

LSR = LSR
MSE + 10−3LSR

Gen + 10−3LT (12)

Among them, content loss uses the MSE loss function.

MSE improves the PSNR value better and performs a pixel-

by-pixel calculation of the reconstructed image and the

original high-resolution image. Its equation is shown in (13).

LSR
MSE =

1

r2WH

rW
∑

x=1

rH
∑

y=1

(

IHR
x,y −GθG

(

ILR
)

x,y

)2

(13)

where GθG

(

ILR
)

denotes the high-resolution image gen-

erated by the generator network and IHR denotes the true

high-resolution image. And the adversarial loss allows the

discriminator network to make a more realistic judgment,

the generated image or the original high-resolution image,

and allows the generator network to learn better, as shown

in equation (14).

LSR
Gen =

N
∑

n=1

−DθD

(

GθG

(

ILR
))

(14)

Inspired by WGAN, the log is removed from the adversar-

ial loss. this is done to make the network easier to train and

converge. Finally, there is the texture loss function, whose

equation is shown in (15).

LT = ∥G (θ (ISR))−G (θ (IHR))∥
2
2 (15)

ISR and IHR represent the reconstructed image and the

original high-resolution image, respectively, and θ denotes

the network parameters. The detailed information of the

reconstructed images is enriched by introducing texture loss

functions. Next is the discriminator of network losses, which

is given by (16).

LD =
1

N

N
∑

n=1

(

DθD

(

GθG

(

ISR
))

−DθD

(

IHR
))

(16)

Where N denotes the number of images, ISR denotes the

reconstructed image, and IHR denotes the original high-

resolution image. The loss function in the discriminator

network is mainly to judge how the generated image differs

from the original. The smaller LD is, the closer the generated

image is to the real image.

IV. EXPERIMENTAL SETTINGS AND ANALYSIS

A. Dataset

1) Trainning Set: The experimental training set adopts

the mainstream dataset of current image super-resolution

reconstruction, and the training set consists of DIV2K [17]

and Flickr2K [18]. DIV2K dataset is very representative

in the field of image super-resolution reconstruction, and

is mainly used in the image super-resolution reconstruction

competitions of NTIRE and PIRM. The DIV2K dataset

contains many RGB images, with 900 high-resolution images

with 2K resolution. 2650 images in Flockr2K, containing

landscapes, people, animals, etc. Some of the images in the

training set are shown in Fig.10.

Fig. 10. Partial images in the training set
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2) Test Set: The three most popular benchmark datasets

were used in the test set, namely Set5 [19], Set14 [20], and

BSD100 [21]. With five images in the Set5 dataset, the Set5

dataset is the most widely used test set for image super-

resolution reconstruction, as shown in Fig.11. The Set14

dataset contains more images compared to the Set5 dataset,

and the resolution of the images in the dataset is higher.

There are 100 images in the BSD100 dataset.

Fig. 11. Images in Set5 dataset

B. Experiments

1) Parameter settings: To ensure that the experimental

data are convincing, the image super-resolution reconstruc-

tion method and other methods in this paper experiment

on the same software and hardware. DRRSWGAN uses the

RMSProp optimization algorithm recommended by WGAN.

One is added by the RMSProp optimization technique. The

issue of early end-of-network training is well-solved by the

RMSProp optimization algorithm as compared to other op-

timization techniques. Smooth objectives are likewise well-

suited for the RMSProp optimization technique. The RM-

SProp optimization algorithm is also well suited to handle

smooth objectives. The learning rate is set to 10−4 and the

momentum parameter is 0.9. At half an epoch, the network’s

learning rate decreases. At [-0.01, 0.01], the discriminative

network update parameters are also intercepted. The network

ran roughly 460,000 iterations with a 130-round epoch. The

network performed approximately 460,000 iterations with an

epoch round of 130. The generator network parameters are

set as shown in Table 1.

TABLE I
GENERATOR NETWORK PARAMETERS

Method DRRSN

Number of residual blocks 20

Number of recursive blocks 1

Training image block size 96

Number of feature channels 64

Whether to use the BN layer No

Batch size 256

Size of convolutional kernels in the first and last layers 9*9

Intermediate network layer convolutional kernel size 3*3

The discriminator network parameters are shown in Table

2.

2) Training process: (1) Data loading

Before the image super-resolution reconstruction, the

training data must be loaded and the data list needs to be

generated. First, all the images in the training set are cropped,

and the cropping position of the images is random. After

cropping an image sub-module of 96 × 96 size is obtained

and this sub-module is used as the original high-resolution

TABLE II
DISCRIMINATOR NETWORK PARAMETERS

Method DRRSWGAN

Training image block size 96

Number of feature channels 64

Whether to use the BN layer or not Yes

Batch size 64

Optimization algorithm RMSProp

image. After that, this high-resolution image is downsampled

and reduced to 24× 24, and this image is used as the input

of the generator network, which is the low-resolution image

corresponding to the high-resolution image. This operation

allows the network to retrieve the training data more easily

during training.

(2) Reconstructing images

1) Generator network

After the training images have been processed, the low-

resolution images are reconstructed. Firstly, the first convolu-

tional layer is passed through. The number of input channels

in the first convolutional layer is 3 and the number of output

channels is 64. To enable better extraction of image features,

the convolution kernel size of the first convolution layer is

set to 9× 9 and activated by the PRelu activation function.

After the convolution layer, the image of size 24 × 24
goes back into the residual recursion module. The recur-

sive module consists of several residual blocks, and within

the residual block, there are two residual units. However,

different residual blocks have the same residual unit. For

example, two residual modules q1 and q2. these two residual

modules each have two residual units, labeled c1, and c2. The

size of the convolution kernel in the residual layer is set to

3×3. the number of input channels and the number of output

channels is set to 64. The weights in the same residual branch

are shared by a recursive operation. The residual operation

extracts the image features.

After that, the image information is passed to the sub-pixel

convolution layer. The subpixel convolution layer extracts

and expands the features of the image, expanding the size of

the low-resolution image from 24× 24 to 96× 96. The size

of the convolution kernel of the subpixel convolution layer

is 3× 3. The number of input channels and output channels

is both 64.

After the image has passed through multiple layers, it

comes to the last layer of the network, which is mostly

employed to reconstruct the extracted image features. The

reconstructed image is converted into the same format as

the low-resolution image, except that the size of the image

becomes 96× 96.

2) Discriminator networks

The generated high-resolution image is fed in at the same

time as the original high-resolution image is fed into the

discriminator network. All the convolutional layers in the

discriminator network are set to have a convolutional kernel

size of 3 × 3, and the number of channels in the first and

second layers is set to 64. The number of input channels

in the first layer is 3. The discriminator network has 8

convolutional layers, and the number of channels is doubled

after every two convolutional layers. The disparity between
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the high-resolution image that was created and the original

is determined by the discriminator network. If the gap is too

large, the generator network continues to learn and makes

the created image’s quality increases until it reaches a point

where it resembles the original high-resolution image.

3) Evaluation metrics: Two main evaluation metrics are

used for image evaluation, namely PSNR, and SSIM,

which are very important evaluation criteria in image super-

resolution.

(1) PSNR

PSNR, known as Peak Signal to Noise Ratio [22] in

dB, is an objective criterion to assess image quality. After

performing image super-resolution task reweighting, there is

a difference between the reconstructed image and the original

image. And PSNR is to evaluate the difference between the

reconstructed image and the real image, which is defined as

shown in equation (17).

PSNR = 10 · log10

(

MAX2
I

MSE

)

(17)

where MAX is the maximum pixel value in the image and

MSE as shown in equation (18):

MSE =
1

mn

m−1
∑

i=0

n−1
∑

j=0

[I(i, j)−K(i, j)]2 (18)

m,n is the image size. K is the noise image. I is the

noise-free image. i and j are the image pixel positions. The

smaller the MSE value, the larger the PSNR value. And the

larger the PSNR, the better the image quality.

(2) SSIM

SSIM, fully known as Structural Similarity [23], is a mea-

sure of the degree of similarity between images. Estimates

of luminance are expressed as mean values and estimates

of contrast are expressed as standard deviation The degree

of structural similarity is expressed by the covariance. It is

defined as shown in equation (19).

SSIM(x, y) =
(2uxuy + c1) (2σxy + c2)

(

u2
x + u2

y + c1
)

(σ2
x + uσ2 + c2)

(19)

where ux is the mean of x, uy is the mean of y, σ2
x is

the variance of x, σ2
y is the variance of y, and σxy is the

covariance of x and y. C1 = (k1L)2, C2 = (k2L)2, C1and

C2 are constants. L is the dynamic range of pixel values.

k1 and k2 are constants 0.01, 0.03, respectively. Structural

similarity takes values in the range [0, 1]. The more similar

the reconstructed image is to the real image, the closer the

SSIM is to 1.

C. Experimental analysis

1) Number of residual blocks: The image’s feature ex-

traction using the deep network can be done effectively.

The residual blocks increase accuracy while lightening the

deep network’s computational load. The DRRN research

demonstrates that the reconstructed image effect is relatively

unaffected by the number of recursive blocks. As a result,

in this study, the number of recursive blocks is fixed to

1. For PSNR and SSIM metrics for various numbers of

residual blocks, the method presented in this study (DRRSN)

is contrasted with the DRRN method. On 9 and 20, the

number of residual blocks is compared. The test sets have

an amplification factor of 4, and they are Set5, Set14, and

BSD100. In Table 3, PSNR comparisons are displayed.

Table 3 shows that for the same number of residual blocks

in the Set5 dataset, when the image magnification factor is

4, the DRRSN algorithm performs better than the DRRN

algorithm, whether the residual blocks are 9 or 20. The

experimental findings for the number of residual blocks set

to 9 were all inferior to the results for the identical algorithm

when the number of residual blocks was set to 20. The

method in this paper (DRRSN) is more effective than other

comparison algorithms when the number of residual blocks

is 20. In the Set14 dataset, DRRSN has a PSNR difference

of 0.11 dB over DRRN. In the BSD100 dataset, DRRSN is

0.091dB higher than DRRN in PSNR. As can be observed,

the reconstructed image has a greater PSNR as the number

of network layers is increased.

The SSIM comparison is shown in Table 4.

As shown in Table 4, when the Set5 dataset’s number of

residual blocks is nine, DRRSN performs better than DRRN

in terms of SSIM when the image magnification factor is

four. DRRSN is 0.008 greater than DRRN in SSIM in the

Set5 dataset when the number of residual blocks is 20, even

though the SSIM measure of DRRSN is not as excellent

as DRRN in the Set14, BSD100 dataset. DRRSN is 0.004

greater than DRRN at SSIM in the Set14 dataset. DRRSN

is 0.03 greater than DRRN at SSIM in the BSD100 dataset.

According to the aforementioned experimental findings,

the DRRSN approach works superior to the DRRN method

for reconstructed pictures with a residual block count of 20

in terms of PSNR and SSIM metrics.

2) Network convergence: There are many problems with

deep networks for training, such as large LOSS fluctuations,

uncountable network parameters, gradient disappearance, and

gradient explosion. The training process of DRRSN, in

this essay, the effectiveness of the other four strategies is

contrasted, and the training process of the discriminatory

network of DRRSWGAN in this paper is compared with

that of the discriminatory network of SRGAN. Comparative

analysis’s findings are shown in the following multi-graphs.

Fig. 12. SRRESNET training process

In the above multiplot, the horizontal coordinate is

EPOCH, which is the number of training rounds. The vertical
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TABLE III
PEAK SIGNAL TO NOISE RATIO (PSNR) COMPARISON

Test set Magnification DRRN(9) DRRN(20) DRRSN(9) DRRSN(20)

Set5 ×4 28.900dB 28.931dB 29.153dB 29.282dB

Set14 ×4 26.503dB 26.532dB 26.613dB 26.758dB

BSD100 ×4 26.266dB 26.285dB 26.357dB 26.436dB

TABLE IV
STRUCTURAL SIMILARITY (SSIM) COMPARISON

Test set Magnification DRRN(9) DRRN(20) DRRSN(9) DRRSN(20)

Set5 ×4 0.833 0.833 0.835 0.841

Set14 ×4 0.744 0.745 0.743 0.749

BSD100 ×4 0.713 0.713 0.710 0.716

Fig. 13. DRRN training process

Fig. 14. DRRSN training process

coordinate is LOSS, which is the difference between the

generated and real images. Comparing the multiple plots

above shows that DRRSN is more stable when the net-

work is trained. The efficiency of the DRRSN approach is

demonstrated by the low LOSS variations compared to the

significant LOSS fluctuations of the other three methods.

The stability of generative adversarial networks is mainly

reflected in the discriminator network. The training fluctua-

Fig. 15. VDSR training process

tion magnitude of the discriminator network directly affects

the stability of the whole network. In this paper, the training

process of the discriminator network of DRRSWGAN and

SRGAN is compared. The training process of the discrimina-

tor network of DRRSWGAN is shown in Fig.16. The training

process of the discriminator network of SRGAN is shown in

Fig.17.

Fig. 16. DRRSWGAN training process
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Fig. 17. SRGAN training process

In Fig.16 and Fig.17, the horizontal coordinate is EPOCH,

which is the number of training rounds. The vertical coordi-

nate is the LOSS, which is the disparity between the gener-

ated image and actual images. From Fig.17, the discriminator

network training of SRGAN is very unstable and fluctuating.

This fluctuation continues throughout the training. However,

the discriminator network training of DRRSWGAN in Fig.16

is very stable and reaches convergence at close to 40 rounds

of training. It should be noted that the LOSS values in the

figure do not represent the final LOSS values of the generated

images, because the LOSS in the figure is only the LOSS in

the discriminator network.

3) Experimental results: DRRSN and DRRSWGAN are

compared experimentally with VDSR, SRRSNET, DRRN,

and SRGAN methods. The different methods were evaluated

and compared on PSNR and SSIM of the reconstructed

images in different test sets. The results of the PSNR

comparison for an image magnification factor of 4 are shown

in Table 5.

Fig. 18. Peak Signal to Noise Ratio (PSNR) comparison

Table 5 and Figure 18 display the peak signal-to-noise

ratio (PSNR) comparative data results. With data obtained

from the processing of the original algorithm, we compared

the outcomes of the updated data algorithm. In the Set5×4

dataset, the DRRSWGAN algorithm achieves a PSNR value

of 30.353dB, surpassing the maximum PSNR of existing

algorithms and improving by 0.907dB compared to the

SRRSNET algorithm. The DRRSWGAN algorithm produces

PSNR values of 27.532dB and 26.862dB in the Set14 and

BSD100 datasets, respectively, which significantly boost

stability and the signal-to-noise ratio. The DRRSWGAN

method’s PSNR has been observed to be much higher in all

three test sets when compared to other algorithms, proving

the viability and benefits of our enhanced approach.

Fig. 19. Structural Similarity (SSIM) comparison

Findings from the structural similarity (SSIM) comparison

data exhibited in Table 6 and Figure 19. We have compared

the results of the improved data algorithm with the data

obtained from the processing of the existing algorithm. In

the Set5×4 dataset, the DRRSWGAN algorithm achieves an

SSIM value of 0.870, which exceeds the maximum SSIM

of currently available algorithms. The improvement over the

previous algorithms DRRN and DRRSN are 0.037 and 0.029

respectively, which is a more significant improvement. In

contrast, the DRRSWGAN algorithm achieves SSIM values

of 0.771 and 0.731 in the Set14×4 dataset and the BSD100

dataset, which are significantly competitive in terms of

structural similarity (SSIM) values. It is obvious that the

SSIM of the DRRSWGAN algorithm is markedly enhanced

in all three test sets compared to other algorithms, proving the

feasibility and advantages of the DRRSWGAN algorithm.

The comparison of reconstructed image effects is also one

of the evaluations of image super-resolution reconstruction

methods. In this paper, images are selected in Set5, Set14,

and BSD100, and the training the outcomes of several tech-

niques at an image magnification factor of 4 are reconstructed

in images.

A comparison of the reconstructed image effects is shown

in Fig. 20 and Fig.21. In Fig.20, in the left image, the

butterfly wing part is intercepted and enlarged, and the

reconstructed image of this paper is clearer and richer in

details compared with other methods; In the middle image,

the ear part of the character is intercepted and enlarged,

and the method of this paper has fewer artifacts and better

subjective effect for human eyes; In the right image, the pink

text part is intercepted and enlarged, and the method of this

paper shows clearer letters compared with other algorithms.

The image on the left in Fig. 21 demonstrates how the

coral portion of the image is intercepted and expanded to

highlight that the reconstructed image of the DRRSWGAN

also contains some artifacts, but they are significantly re-

duced and the image is more detailed when compared to

other approaches.It can be observed that DRRSWGAN has

a better reconstruction of the window border in the image on
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TABLE V
PEAK SIGNAL TO NOISE RATIO (PSNR) COMPARISON

Test set Magnification VDSR SRRSNET DRRN SRGAN DRRSN DRRSWGAN

Set5 ×4 28.618dB 29.446dB 28.931dB 26.059dB 29.282dB 30.353dB

Set14 ×4 26.242dB 26.854dB 26.532dB 24.100dB 26.758dB 27.532dB

BSD100 ×4 26.113dB 26.495dB 26.285dB 23.077dB 26.436dB 26.862dB

TABLE VI
STRUCTURAL SIMILARITY (SSIM) COMPARISON

Test set Magnification VDSR SRRSNET DRRN SRGAN DRRSN DRRSWGAN

Set5 ×4 0.827 0.846 0.833 0.794 0.841 0.870

Set14 ×4 0.731 0.752 0.745 0.669 0.749 0.771

BSD100 ×4 0.700 0.718 0.713 0.590 0.716 0.731

Fig. 20. Reconstruction effect comparison(1)

the right, which intercepts and enlarges the window section

on the right side of the image.

Fig. 21. Reconstruction effect comparison(2)

In summary, the DRRSN and DRRSWGAN methods rec-

ommended in this article have a more obvious improvement

in comment metrics and image rendering effect compared

with other algorithms. So, it can be known that our improve-

ments are effective.

V. CONCLUSION

Images are affected by a variety of factors during the

acquisition process and are susceptible to noise contamina-

tion during transmission, resulting in blurred images that

fail to provide accurate information from the images. In

this paper, we introduce two methods of image super-

resolution reconstruction based on deep learning. Although

these methods have achieved a series of results, there are

still some problems: how to perform deep image feature

extraction; how to fewer parameters are used in the deep

network; and how to make the quality of the generated image

better. To deal with these issues, this paper proposes the

Deep Recursive Residual Subpixel Wasserstein Generative

Adversarial Network (DRRSWGAN) and the main work is

as follows.

(1) A deep recursive residual network (DRRN) is used

in the generator network and sub-pixel convolution is intro-

duced to form a deep recursive residual sub-pixel network

(DRRSN). The BN layer within the residual unit is removed

to protect the image information while extracting deep image

features.

(2) The idea of WGAN is introduced in the discriminator

network, and the loss function in the network is optimized.

The gradient optimization of the network loss is performed

using the RMSProp optimization algorithm to remove the

Sigmod layer in the discriminator network. The parameter

updates in the network are also truncated to improve the

network training stability.

The outcomes of the trial indicate the reconstructed images

of this paper method have been improved in PSNR and SSIM

indexes in different degrees compared with other methods.

The network training is more stable and the subjective effect

of the reconstructed images is better. The approach used in

this study provides benefits in different comparisons with

other methods.
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