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Abstract—The KNN algorithm takes exponentially growth
of time to process dataset containing a large number of
samples and has low classification performance. To address
this problem, this paper proposes a sample reduction method
based on classification contribution ranking (SRCCR). First,
SRCCR performs a denoising process to expand the smoothing
decision boundary by removing the noise sample in the initial
training dataset; next, the denoised samples are sorted in
ascending order according to the classification contribution
strategy; finally, representative boundary samples and center
samples are selected based on the local set to form the final
subset. SRCCR reduces storage requirement and execution
time, and significantly improves the classification performance
of the KNN algorithm. To verify the effectiveness of the
proposed method, we conduct comparative experiments on 31
real datasets from the UCI and KEEL databases. Compared
with several classical instance selection algorithms, the proposed
SRCCR algorithm has advantages in terms of accuracy and
reduction rate. The results of the study on the two-dimensional
dataset ”Banana” show that the SRCCR algorithm not only
selects more representative boundary and center samples, but
preserves the distribution of the original dataset.

Index Terms—Sample reduction, K nearest neighbor, Classi-
fication contribution, local set

I. INTRODUCTION

W Ith the explosion of data, a large number of imbal-
anced datasets are flooding into the field of machine

learning and data mining, which makes it difficult for mod-
els to handle them. To solve this problem, scholars have
proposed many learning algorithms, among which a well-
known example of sample-based classification algorithm is
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the K-nearest neighbor rule (KNN) [1] (cover and hart1967).
KNN is comparing the query sample with each sample in the
training set, so the training process requires a huge amount
of storage space to store the entire training instances. As
with KNN, case-based learning algorithms are widely used
in pattern recognition, image processing, and data mining,
but they still face problems such as high storage requirement,
low predictive performance, and noise sensitivity. Therefore,
sample reduction [2-3] is introduced to better deal with the
imbalanced problem. As a popular data processing method,
it removes noise samples from the dataset to improve the
classification efficiency, and maintains the classification ac-
curacy.

The sample reduction technique is used as pre-processing
step for the dataset. The sample reduction technique finds the
best subset S by filtering out redundant and noise samples
from the original dataset T . It aims to reduce the size of the
training set, allowing the runtime and prediction accuracy
of the classifier on a subset to be improved. Due to these
advantages and features, sample reduction techniques have
attracted a lot of attention [4-6]. Reduction technique is di-
vided into three types: edition method, condensation method
and hybrid method. The purpose of the edition method
is to eliminate the noise instances and the condensation
method to search the consistent subset of the training set.
By eliminating the instances in the training set that do not
affect the classification accuracy of the whole training set,
a consistent subset is formed. The hybrid method combines
the features of the edition and condensation methods while
eliminating noise and redundant samples.

The Edit nearest neighbor method (ENN) (Wilson, 1972)
[11] is a classical sample reduction method. As the simplest
example of the edition method, ENN removes those points
that are not correctly classified by its K nearest neighbors.
ENN effectively removes the noise samples from the dataset
and smoothes the decision boundary. Famous ENN variants
include Multiple edition [12] and Nearest Centroid Neighbor
(NCNEdit) [13]. The classification performance of these edi-
tion methods is mainly affected by two problems: parameter
dependence and noise sensitivity.

Another classic algorithm of sample reduction technol-
ogy is condensed nearest neighbor method (CNN) [7] that
initially attempts to reduce the number of samples in the
training set. By removing instances using the condensed
nearest neighbor rule, a consistent subset is obtained that
does not affect the performance of the training set. Since the
goal of the CNN algorithm is to retain boundary samples,
the algorithm is very sensitive to noise samples and is
susceptible to the order of samples in the dataset. Most of the
condensation methods try to improve the effect of CNN algo-
rithm by generating smaller consistent subset. For example,
Reduced nearest neighbor algorithm (RNN) [8], Minimum
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consistent set algorithm (MCS) [9] and Fast nearest neighbor
condensed algorithm (FCNN) [10]. In fact, the condensation
method greatly reduces the number of instances and rarely
changes the prediction accuracy, while the edition method
moderately reduces the number of instances and may change
the prediction accuracy to a great extent. In recent years,
the hybrid method [14-22], which combines the advantages
of edition method and condensation method, has attracted
extensive attention. In our work, we mainly focus on hybrid
method.

Hybrid methods typically use edition method to eliminate
noise, and then use condensation method to retain repre-
sentative sample. Classical hybrid methods include Class
Boundary Preserving algorithm (CBP) [14] and the Adaptive
Threshold-based Instance Selection algorithm (ATISA) [16].
Many modified hybrid methods [15,18-22,27-30] have also
been developed by using new models, innovative theories
and optimization algorithms. However, most existing hybrid
methods [14-18] rely heavily on parameters and are relatively
time-consuming, leading to unstable performance. Although
parameter-free hybrid methods have been proposed [19,20],
it is still difficult to achieve high accuracy and high simplicity
at the same time.

To solve the above issues, we propose a new hybrid
algorithm Sample Reduction based on Classification Contri-
bution Ranking (SRCCR), which introduces the concept of
classification contribution to assign scores for samples. We
differentiate between the center and boundary samples based
on the scores. The higher the score, the closer the sample is
to the center of the sample; the lower the score, the closer
the sample is to the border.

SRCCR consists of three steps: the first step is to filter
noise sample: ENN is used to remove the noise samples from
the training set. The second step is to assign score to sample:
each sample is assigned a score based on the classification
contribution of the current sample to the rest of the training
samples, and then the samples are ranked according to the
score. The third step is to eliminate redundant samples.
The redundant samples are removed based on the local set
strategy to obtain the final subset. The experiments show
that the proposed method effectively reduces the number
of samples and significantly improves the prediction accu-
racy. In our experiment, we compare SRCCR with KNN
and two classical sample reduction methods on 31 real
datasets. The experimental results show that SRCCR has
better performance in improving the prediction accuracy and
reduction rate of KNN, which is better than the classical
hybrid method. The main contributions of this paper are as
follows:

(a) We propose a new ranking-based sample reduction
method, SRCCR. Experimental results show that SRCCR is
very competitive in terms of classification performance and
reduction rate.

(b) SRCCR scores each sample based its classification
contribution, and the score is used to distinguish whether
the sample is near the center or the boundary.

(c) Based on the concept of local set, we remove the
redundant sample so that the reduced sample distribution is
as consistent as possible with the original dataset.

In the rest of our paper, the arrangement is as follows.
The related work is listed in Section II, Section III is

basic definition, Section IV is the proposed method SRCCR,
Section V is experiment results and discussion, Section VI
is conclusion.

II. RELATED WORK

In this section, we describe some hybrid methods in detail.
These hybrid methods first denoise the initial training sample
set, then partition the dataset with tricks to divide the training
samples into boundary samples and center samples, and
finally select the final subset based on certain preferences.
CBP [14] is a typical hybrid method based on segmentation.
Firstly, the training set is denoised using ENN; secondly,
the concept of reachable set is used to distinguish between
boundary and non-boundary samples; finally representative
boundary samples are selected to form the final subset.
Spectral Instance Reduction (SIR) [15] utilizes spectrogram
theory to distinguish between boundary and interior samples.
ATISA [16] is another hybrid method based on partitioning
that uses ENN to filter noise and defines a threshold for
each sample to divide the dataset based on this threshold.
Among them, ATISA2 focuses on retaining the center sam-
ples, ATISA3 focuses on retaining the boundary samples. In
addition, scholars have proposed the Local Set of Instance
Reduction (LSIR) [17] and Binary Nearest Neighbor Tree
(BNNT) based sample selection algorithms [18]. LSCO
selects the center sample by the idea of clustering, while
LSBO focuses on the selection of boundary samples. BNNT
establishes a binary nearest neighbor tree to evaluate the
status of node samples in the tree. When the binary tree is
located in a class, all internal samples in the tree are replaced
by newly generated samples; when the binary tree is located
at the boundary of different classes, the connected samples
of different classes are retained, and finally all the retained
samples are used as the classification of new test samples.
Recently, two sample reduction methods based on natural
neighbors have been proposed, constrained nearest neighbor
based sample reduction (CNNIR) [19] and non-parametric
hybrid sample selection algorithm based on local set of
natural neighbors (LSNANIS) [20]. CNNIR uses constrained
nearest neighbor chains to find boundary samples and natural
neighbors to find core samples. LSNANIS consists of three
sub-algorithms LSEditing, LSBorder and LSCore. LSEditing
is used to eliminate internal noise and smooth class bound-
ary. LSBorder divides the samples of the denoised dataset
into center samples and representative boundary samples.
LSCore is used to compress the center samples. Finally,
the compressed center samples and representative boundary
samples are combined into the final subset. In the process of
generating the final subset, the above two algorithms select
center and boundary samples at the same time.

In addition, there are some hybrid algorithms based on
ranking, such as the sample selection algorithm based on
boundary ranking (IRB) [21] and the sorting-based classifi-
cation sample selection algorithm (RIS) [22]. IRB uses the
similarity measure based on the nearest enemy and sorts the
samples by the size of the similarity measure. In contrast,
RIS calculates score based on the relationship between each
sample and other samples, and ranks the samples according
to the scores.

However, the existing hybrid methods [14-22] still have
some drawbacks, such as parameter dependence, high time
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complexity, and difficulty in achieving high accuracy and
high reduction rate simultaneously.

III. BASIC DEFINITION

Let T = {xi ∈ Rd}Ni=1 be a training set with N training
samples in d-dimensional feature space. There are m class
labels, each sample xi = (xi1, xi2, · · · , xid) corresponds to
its class label yi, where yi ∈ {c1, c2, · · · , cm}. Let l: x→C
be a function that maps sample xi to its class label l(xi).

For the simplicity, the following concepts and terms are
used in this paper:

• T : Training set,
• NNK(xi, T ): The K nearest neighbors of xi in T ;
• d(xi, xj): Euclidean distance of samples xi and xj ;
• NE(xi, T ): The nearest neighbor between xi and other

classes in T ;
• r(xi) = d(xi, NE(xi, T )): The radius of xi in set T ;
• s(xi): Classification contribution score of sample xi;
• IS(xi, T ): Sample classification contribution scoring

function, return the classification contribution score of
sample xi;

• R: Final subset after reduction;
• L(T ): Class label set of dataset T .

A. Sample classification contribution definition

Inspired by the training dataset cleaning method [23] based
on the classification ability ranking of KNN classifier, we
describe the location distribution of samples in the dataset
by their classification contribution to other samples in the
dataset.

For a given initial training set T and selected sample
xi, we obtain the classification contribution score s(xi) of
sample xi by the following strategy.

The sample xj (xj ̸= xi) in T is recorded as the test
sample, and the rest of the sample set T ∗ is recorded as the
training set. The KNN algorithm is used to predict the class
label of sample xj . This process is repeated N − 1 times,
and five cases occur in each classification process:

case 1: xi /∈ NNK(xj , T );
case 2: xi ∈ NNK(xj , T ), yi ̸= l(xj) ∧ yi ̸= yj ;
case 3: xi ∈ NNK(xj , T ), yi ̸= l(xj) ∧ yi = yj ;
case 4: xi ∈ NNK(xj , T ), yi = l(xj) ∧ yi ̸= yj ;
case 5: xi ∈ NNK(xj , T ), yi = l(xj) ∧ yi = yj .
It can be seen that in case 1, sample xi does not belong

to the nearest neighbors of xj , and we consider that sample
xi does not contribute to the classification result of xj . In
case 2, xi has confusing effect on the correct classification
of xj . Although xi is one of the K nearest neighbors of xj ,
it has a different class label than most of the samples in the
K nearest neighbors of xj . In cases 3 and 5, xi has positive
effect on the correct classification of xj . This is because xi

is not only a neighbor of xj , but the class label is the same.
In particular, in case 5, the class to which xi belongs is the
more dominant class among the K nearest neighbors of xj ,
which plays a decisive role in the correct classification of
xj . On the contrary, in case 4, xi plays a negative role in
the classification of xj . xi is the majority of class samples in
the nearest neighbors of xj , and their different class labels
directly lead to the misclassification of xj .

The classification ability of xi depends on its contribution
to the correct classification of xj . The higher the contribution,
the higher the score. To quantify the classification contri-
bution of the sample xi, we set five scores in the above
five different cases. In i = 1, 2, · · · , 5, the scores of the
corresponding cases are denoted by ai, a1 = 0, a2 = 0.2,
a3 = 0.4, a4 = −0.6, and a5 = 1.

In the N − 1 classification process, the number of oc-
currence of different cases is recorded and denoted by
n1, n2, n3, n4 and n5 respectively. It is obvious that n1+n2+
n3+n4+n5 = N−1. Finally, the classification contribution
score of sample xi is s(xi), which can be obtained from Eq.
1.

s(xi) =

{ n2×a2+n3×a3+n4×a4+n5×a5

n2+n3+n4+n5
, n1 ̸= N − 1,

0, n1 = N − 1.
(1)

The classification contribution score of the sample shows
that the higher score of the sample, the more frequently case
5 appears. This means that the higher score, the sample is
closer to the center of the class. The lower score of the
sample, the more frequently case 4 appears. This means that
the sample is closer to the boundary of the class. The pseudo
code of sample classification contribution scoring algorithm
is shown in Algorithm 1.

Algorithm 1: Sample classification contribution scoring algorithm.

Input:
training dataset T , Sample to be graded xi (xi ∈ T ),
the neighborhood size K.

Output:
s(xi): Classification contribution score of sample xi.

1. for 1 ≤ l ≤ 5 do
nl = 0

end for
2. for xj ∈ T, xj ̸= xi do

find NNK(xj , T ) and l(xj) = Classmax(NNK(xj , T ))
if case 1 is satisfied, then n1 = n1 + 1
else if case 2 is satisfied, then n2 = n2 + 1
else if case 3 is satisfied, then n3 = n3 + 1
else if case 4 is satisfied, then n4 = n4 + 1
else if case 5 is satisfied, then n5 = n5 + 1

end for
3. if n1 = N − 1

s(xi) = 0
else if

s(xi) =

{
n2×a2+n3×a3+n4×a4+n5×a5

n2+n3+n4+n5
, n1 ̸= N − 1,

0, n1 = N − 1.

IV. THE PROPOSED SRCCR METHOD

A. motivation

After analyzing many different sample reduction algo-
rithms, we realize that most algorithms focus on selecting
boundary samples and that samples near the boundary have
much information to describe the decision boundary accu-
rately.In contrast, center samples far from the class boundary
have less impact on classification accuracy, but retaining
proper core samples also improve classification accuracy.
In addition, noise samples near the class boundary have
significant impact on the classification performance of the al-
gorithm. Therefore, our proposed SRCCR algorithm removes
a great number of noise and redundant points through three
steps: noise filtering, contribution ranking of samples, and
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selection of the final subset, while retaining representative
boundary samples and small number of center samples. The
pseudo code of SRCCR is detailed in Algorithm 2.

Algorithm 2: The proposed SRCCR method

Input:
T : training dataset.
K: the number of nearest neighbors.

Output:
R: The reduced final subset.

Initialization: T ∗ = T,R = ∅.
1. for xi ∈ T do

if yi ̸= Classmax(NN3(xi, T )) then
T ∗ = T ∗ \ xi

end if
for

2. for xi ∈ T ∗ do
r(xi) = d(xi, NE(xi, T

∗))
s(xi) = IS(xi, T

∗)
end for
T ∗ = sortAscByS(T ∗)

3. for xi ∈ T ∗ d0
xj = NN1(xi, R)
if yi /∈ L(R) or d(xi, xj) > r(xj)
R = R ∪ xi

end if
end for

The presence of noise samples significantly weakens the
classification performance of algorithm, so SRCCR uses
ENN to denoise the sample set in the first step. Existing
papers show that ENN works best when the K value is set
to 3. Therefore, in this step, we also set the parameter K
to 3. The second step is to calculate the radius and classi-
fication contribution score for each sample in the dataset T
respectively, and then use T ∗ = sortAscByS(T ∗) to sort
the samples in T in descending order by score. The third
step is to selectively retain the sorted samples. If the class
label of sample xi is not in the final subset R or the distance
between xi and the nearest NN1(xi, R) in R is greater than
the radius of NN1(xi, R), then xi is added to the final subset
R.

V. EXPERIMENTS

A. Data information

In this section, we briefly present information about the
datasets that are used in the experiments. The 31 real datasets
are collected from the UCI database [24] and the Keel
database [25]. All data information, including sample size,
number of attributes and number of classes, is displayed in
Table I. In these datasets, the maximum and minimum sample
sizes are 19020 and 106, respectively; the maximum and
minimum attribute sizes are 41 and 2, respectively. Among
them, there are 13 datasets with sample sizes larger than
1000.

B. Experiments on real datasets

The experiment is divided into two parts. The first part
shows the execution results of SRCCR intuitively on the two-
dimensional data ‘Banana’; in the second part, we compare
SRCCR algorithm with several classical algorithms on the
above datasets to verify the performance of SRCCR. All
algorithms are written in Python and use Euclidean distance
norm as distance measure. Using the 10-fold cross-validation

TABLE I: The details of datasets.

Data Samples Attributes Classes

Appendicitis 106 7 2
Balance 625 4 2
Banna 5300 2 2
BanKnote 1372 4 2
Biopsy 683 9 2
Breast caner 569 30 2
Bupa 347 6 2
Column 310 6 2
Contraceptive 1473 9 3
Forestypes 523 27 4
German 1000 24 2
Haberman 306 3 2
Heart failure 299 12 2
Indian liver 579 10 2
Ionosphere 351 34 2
Messidor features 1151 19 2
Pima 532 7 2
QsaK 1055 41 2
Satimage 6435 36 7
Thyroid 7200 21 3
Titanic 2201 3 2
Transfusion 748 4 2
Wirelsee 2000 7 4
Yeast 1334 8 5
Plrx 180 18 2
Phoneme 5404 4 2
Mammographic 827 5 2
Heart 462 9 2
Saheart 270 13 2
Page blocks 5473 10 5
Magic 19020 10 2

scheme, we divide the dataset into 10 subsets. Nine subsets
are used as training sets to train the model, and the remaining
one subset is used as test set to test the performance of
the model. For each algorithm, we perform 5 times 10-
fold cross-validation on each dataset shown in Table I and
use the average of the classification accuracy, reduction rate
(Re) obtained from these 5 times experiments to evaluate the
performance of algorithms.

Sample reduction is actually a double objective optimiza-
tion problem. When we compare the performance of the two
algorithms, we need to pay attention to all the objectives.
To verify the effectiveness of the algorithm, this paper uses
two metrics to evaluate classification performance of the
algorithms.

Re = 100× (1− |R|
|T |

) (2)

where |R| is the number of samples of the final subset after
reduction, |T | is the number of samples of original dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
. (3)

where TP is true positive, TN is true negative, FP is false
positive and FN is false negative.

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_04

Volume 50, Issue 3: September 2023

 
______________________________________________________________________________________ 



−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

1 Banana

−3 −2 −1 0 1 2

−2

−1

0

1

2

3

2 The reduced set of Banana

Fig. 1: The result of SRCCR on the Banana.

C. Experimental results and analysis

To visually demonstrate the reduction effect of the SRCCR
algorithm, we use a two-dimensional dataset ”Banana” from
the KEEL dataset, as shown in Fig. 1. This data contains
two classes and 5300 samples. From the left figure it is seen
that many samples are overlapping. From the right figure it
is seen that the SRCCR algorithm removes a major number
of redundant samples and retains small number of samples.
We find that more samples located at the decision boundary
are retained, and these samples are important samples on
the decision boundary. As can be seen from the Fig. 1,
as the noise samples are removed, the decision boundary
becomes smoother. Although the SRCCR algorithm retains
small number of samples, these samples perfectly outline the
distribution of original dataset.

The classification accuracy and reduction ratio of SRCCR
algorithm on ’Banana’ dataset are listed in Table II and Table
III. In terms of classification accuracy achieved on ‘Banana’
dataset, SRCCR (90%) is higher than CNN (86.71%), ATISA
(88.96%) and KNN (88.48%); in terms of reduction ratio,
SRCCR (90.42%) is also higher than by ATISA (89.55%)
and CNN (83.5%).

The experimental results are shown in Table II and Table
III. In order to evaluate whether the differences in classifica-
tion accuracy, reduction rates obtained by these algorithms
are significant, we use the nonparametric Wilcoxon signed-
rank test with a confidence of 0.05 [26]. In order to facilitate
reading, this chapter uses ‘ + ’, ‘ - ’, ‘ ∼ ’ symbols to
indicate that SRCCR algorithm is significantly better, worse
or equivalent than other algorithms.

Table II shows the classification accuracy of the KNN of
the three reduction algorithms and the original data without
reduction, and the best performance obtained on each dataset
is displayed in bold. The results show that the classification
accuracy of SRCCR algorithm is the best in 23 of 31 datasets,
and the average classification effect is also significantly better
than that of other methods. According to Wilcoxon test,
SRCCR is significantly better than KNN, ATISA and CNN.
Table III shows the reduction ratio of the three reduction
methods. Although the reduction ratio of SRCCR method

TABLE II: The classification accuracy rates(%) of every
algorithm.

Data KNN CNN ATISA SRCCR

Appendicitis 83.95 80.18 79.32 87.51
Balance 80.96 71.39 84.16 85.19
Banana 88.48 86.71 88.96 90.00
BanKnote 99.94 69.70 98.45 99.21
Biopsy 96.70 95.25 96.44 96.50
Breast caner 92.68 92.23 94.36 96.24
Bupa 63.15 59.17 60.28 67.00
Column 81.48 65.90 72.29 82.13
Contraceptive 49.45 43.16 51.53 52.39
Forestypes 88.77 79.80 87.12 89.14
German 68.63 62.96 69.20 71.28
Haberman 70.16 65.83 71.34 74.70
Heart failure 58.89 63.67 64.78 66.92
Indian liver 65.90 64.59 63.89 68.28
Ionosphere 84.70 81.46 83.97 84.96
Messidor features 63.95 58.27 61.87 65.86
Pima 73.64 70.20 72.45 75.07
QSAR 82.16 70.46 82.47 80.80
Satimage 91.08 87.76 90.05 90.00
Thyroid 93.87 90.07 92.68 93.92
Titanic 67.70 57.73 59.78 70.05
Transfusion 74.57 61.93 75.34 76.28
Wirelsee 98.37 71.73 97.60 98.86
Yeast 57.44 36.40 56.70 60.72
Plrx 63.99 54.30 63.61 69.28
Phoneme 89.11 82.79 86.86 85.82
Mammographic 79.64 76.40 77.69 78.55
Heart 64.14 60.85 63.40 65.26
Saheart 57.08 59.67 67.01 66.14
Page blocks 95.68 94.03 95.53 95.73
Magic 80.04 35.16 83.16 80.88

Mean 77.61 69.35 77.17 79.51
Wilcoxon + + + N/A

is superior to other methods in most data, it can be seen
from the Wilcoxon test results that there is no significant
difference between them in reduction ratio.To sum up, the
SRCCR method can largely reduce the sample size of the
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TABLE III: The reduction rates(%) of every algorithm.

Data CNN ATISA SRCCR

Appendicitis 94.04 88.90 86.20
Balance 68.95 77.23 81.89
Banana 83.50 89.55 90.42
BanKnote 99.76 94.67 95.58
Biopsy 94.10 91.96 92.86
Breast caner 88.83 78.52 92.60
Bupa 58.26 53.72 57.12
Column 93.79 67.53 69.18
Contraceptive 81.40 69.25 62.45
Forestypes 77.80 69.67 74.24
German 60.71 64.82 70.07
Haberman 62.29 78.43 80.93
Heart failure 63.00 70.60 75.04
Indian liver 62.78 63.60 70.70
Ionosphere 82.27 73.55 73.75
Messidor features 58.48 63.85 66.84
Pima 61.97 76.21 73.79
QsaK 93.70 69.08 68.53
Satimage 86.26 78.84 81.28
Thyroid 85.94 91.05 92.38
Titanic 65.64 99.15 99.49
Transfusion 65.76 81.14 84.82
Wirelsee 99.42 85.99 88.59
Yeast 91.19 68.81 59.31
Plrx 54.48 65.38 54.54
Phoneme 81.31 79.36 82.48
Mammographic 67.27 82.02 83.77
Heart 54.23 68.30 66.69
Saheart 57.99 71.87 73.68
Page blocks 92.68 93.29 94.99
Magic 99.84 79.79 78.82

Mean 77.00 76.96 78.15
Wilcoxon ∼ ∼ N/A

dataset and improve the classification performance. It is a
competitive sample reduction method.

TABLE IV: The comparison of classifiers on 31 datasets
using Friedman test.

Method CNN ATISA KNN SRCCR

Mean rank 3.87 2.55 2.23 1.35

Then, significance test is performed using Friedman test
for KNN, CNN, ATISA and SRCCR. Based on the clas-
sification performance obtained by these methods on each
dataset, we sort these algorithms in descending order. After
that, the best performing algorithm is recorded as 1, the
second algorithm is recorded as 2, if two algorithms have
the same classification performance, these two algorithms get
equal ranking, and so on. Let Rj

i be the ranking of the j-th
algorithm on the i-th dataset, and the mean ranking of j-th
algorithm is computed as Rj =

1
n

∑
i R

j
i . The Friedman test

is distributed in accordance χ2
F with L-1 degrees of freedom

when n > 10 and L ≥ 5.

χ2
F =

12n

L(L+ 1)
[
∑
j

R2
j −

L(L+ 1)2

4
]. (4)

where n is the number of datasets and L is the number of
algorithms.

In order to evaluate the performance of SRCCR, we
compare the classification accuracy obtained by SRCCR
with the other three algorithms. The average ranking of the
obtained results is shown in Table IV. According to Eq.
(4), χ2

F (=60.79). If all algorithms have the same accuracy
on each dataset, the average ranking R is 2.5. From Table
IV, we find that the average ranking Rj computed by each
algorithm is significantly different from R and χ2

F is greater
than (χ2

F )0.01(=11.34). Therefore, we obtain that there is a
significant difference between these algorithms.

We use Friedman test to prove that there is a signifi-
cant difference between the proposed method and the other
methods, but we need to further distinguish between the
algorithms. We test these four methods with the Holm post
hoc test, calculated as follows

Z = (Ri −R0)/SE (5)

where R0 and Ri are the average rankings of SRCCR and
the i-th method in CNN, ATISA and KNN, respectively.

SE is obtained from formula
√

L(L+1)
6n (=

√
4×(4+1)
6×31 =

0.327). Based on the calculated Z-value, it is compared with
α(=0.05). Table V shows the Z-values obtained for each
comparison method as well as the p values. Based on the
results in the table, we find that the obtained p values are
much smaller than the α values. Therefore, we reject the
original hypothesis (i.e., there is no significant difference
between the proposed method and the other methods). The
results indicate that the SRCCR method is superior to the
other methods.

TABLE V: The p values are obtained using Holm’s post hoc
test.

i Method Z = (Ri −R0)/SE p value α/(k − i)

1 CNN 6.047 1.5× 10−9 0.0167
2 ATISA 4 6.3× 10−5 0.025
3 KNN 3.341 6× 10−4 0.05

Finally, according to the classification accuracy obtained
by each algorithm, we use T-test to compare SRCCR with
CNN, ATISA, and KNN, and the results are shown in Table
VI. According to the experimental results, we find that the p
value obtained from the pairwise test between the proposed
method and other methods is less than 0.01, so the proposed
method SRCCR is significantly different from CNN, ATISA,
and KNN.

In a word, the proposed SRCCR classification performance
is widely verified in real datasets. The results can be sum-
marized as follows:

• In the SRCCR algorithm, the method of dividing the
data based on the sample classification contribution
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TABLE VI: The pairwise contrasts of SRCCR with other
algorithms on 31 datasets using T-test (’yes’ indicate the
dramatic difference between two algorithms)

Pairwise comparison p-value Significant

CNN VS. SRCCR 2.88× 10−6 yes
ATISA VS. SRCCR 2.14× 10−4 yes
KNN VS. SRCCR 4.02× 10−4 yes

identifies well whether the sample is located at the class
center or at the boundary.

• The experimental part intuitively shows the reduction
effect of the algorithm on two-dimensional data, which
shows that SRCCR ensure that the distribution of the
reduced subset is consistent with the initial dataset.

• Compared with other algorithms, SRCCR effectively
improves the classification effectiveness of the algo-
rithm while ensuring the reduction rate, which indicates
that the samples selected by SRCCR contain more
information useful for classification and better represent
the original dataset.

• Experimental results on 31 real datasets show that
SRCCR is competitive in terms of classification per-
formance and reduction rate.

VI. CONCLUSION

This paper introduces a new sample reduction algorithm
SRCCR based on classification contribution ranking. SRCCR
mainly includes three steps. The first step is to filter out
the noisy samples. The second step is to sort the samples
in the training set in descending order according to the
classification contribution rate. The third step is to select
representative boundary samples and center samples to obtain
an optimized final subset. SRCCR significantly improves the
prediction accuracy of KNN and reduces the storage require-
ment. Through experimental analysis, SRCCR achieves high
accuracy and high reduction rate to improve the classification
performance of KNN compared with the existing classical
methods. In future work, we plan to find a suitable sample
selection process with deeper filtering of the final subset to
further improve the classification performance.
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