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Abstract—A two-coloured digraph D(2) is a digraph in which
each arc is coloured with one of two colours – for example, red
or black. A two-coloured digraph D(2) is said to be primitive
if there are positive integers a and i such that for each pair
of points x and y in D(2) there is an (a, i)-walk from x to
y. The inner local exponent of a point pv in D(2) denoted by
expin(pv,D(2)) is the smallest positive integer a + i over all
non-negative integers a and i such that there is a walk from
each vertex in D(2) to pv consisting of a red arcs and i black
arcs. In a two-coloured primitive digraph, two cycles of length
n and 4n+1 result in four or five red arcs. For the two-coloured
digraphs, primitivity and inner local exponent are discussed at
each point.

Index Terms—primitive-digraph, two-coloured-digraph,
digraph-with-two-cycles, inner-local-exponent.

I. INTRODUCTION

A A digraph D consists of a non-empty finite set P (D)
and a set A(D) which is a sequential pair of different

elements which are still members of P (D). Set P (D) is a
set of points on digraph D and set A(D) is a directed side
called the set of arcs on digraph D. A digraph in which
the arc is coloured with only two colours, namely red or
black, is called a two-coloured digraph. An (a, i)-walk on a
digraph whose arcs are given two colours is a walk consisting
of a combination of the number of red arcs (a) and black
arcs (i). For a walk K in two-coloured digraph D(2), r(K)
and b(K) denote the number of red arcs and the number of
black arcs contained in walk K, respectively. The column

matrix
[

r(K)
b(K)

]
is the composition of the walk K, and

ℓ(K) = r(K) + b(K) is the length of the walk K.
Let a and i be non-negative integers. The primitivity

of a digraph is determined by the presence of a non-
negative integer representing the number of red and black
arcs contained in the (a, i)-walk. The exponent of a two-
coloured digraph D(2) denoted by exp(D(2)) is the smallest
positive integer a+i such that for each pair of points x and y
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in D(2) there is a (a, i)-walk from x to y. As in the digraph,
local exponents on the digraph are divided into two, namely
inner local exponents and outer local exponents. The smallest
positive integer a+i such that there is a path (a, i) from each
point at D(2) to pv is called the inner local exponent from a
point pv at D(2) and denoted by expin(D(2)).

Digraph motivation is coloured with two colours found in
computer science, namely in automata theory. In automata
theory, there is an on and off button. Red represents on,
and black represents off. The term synchronizing words in
automata theory is a sequence (0,1) with the same length,
and the sequence (0,1) is the same. So the related problem
is how to make colouring so that it can find local exponents
from points with the same length and colour sequence.
Another motivation is the Road Colouring Problem, namely
determining whether we can find a specific point from each
point so that we move from each point to a certain point
using the same number of red and black colours and the
same colour sequence.

The study of exponent numbers in the two-cycle two-
coloured digraph in terms of the length of each cycle is
classified into several types. The first type is two-cycle two-
coloured digraph exponent number research with a difference
t as in the study by Gao and Shao [1]. Included in the first
type are Suwilo [2], Suwilo [3] with a difference of 1, Shao
et al. [4], Syahmarani and Suwilo [5] with a difference of
2 and Mardiningsih et al. [6] with a difference of 3. The
second type is research on exponent numbers of two-cycle
two-coloured digraphs with a difference of (k − 1)n + 1.
The second type of research has been conducted by Luo [7]
and Sumardi and Suwilo [8] with a difference of n+ 1 and
Prasetyo et al. [12] with a difference of 2n + 1. The third
type, apart from the first and second types, were studied
by Mardiningsih et al. [9] with a difference of n − 1. This
study discusses the inner local exponent in a two-cycle two-
coloured digraph with a length of n and 4n + 1. In other
words, this study is a study of the inner local exponent of
two-cycle two-coloured digraphs with a difference of 3n+1.

II. METHOD

The primitivity requirements of the two-coloured digraph
have been discussed by Fornasini and Valcher [10]. Iff the
content of the cycle matrix is equal to 1, then the two-
coloured digraph is said to be primitive. The content of the
cycle matrix is defined as the greatest common divisor of
the submatrix determinant 2×2. The cycle matrix for a two-

cycle two-colored digraph is M =

[
r(C1) r(C2)
b(C1) b(C2)

]
, with

C1 and C2 representing the first and second cycles.

Corollary II.1. Given a strongly connected two-coloured
digraph D(2) consisting of two cycles, namely cycle n and
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cycle 4n+1. If D(2) is primitive then the matrix cycle is equal

to M =

[
1 4

n− 1 4n− 3

]
or M =

[
n− 1 4n− 3
1 4

]
.

Proof: The cycle matrix form of D(2) is M =[
r1 r2

n− r1 4n+ 1− r2

]
where 0 ≤ r1 ≤ n and 0 ≤

r2 ≤ 4n + 1. Clearly D(2) is a primitive two-coloured
digraph. Therefore, the determinant of the cycle matrix is
equal to ±1. If det (M) = 1, then (4r1 − r2)n + r1 = 1.
As 0 ≤ r2 ≤ 4n+1, we obtain 4r1− r2 = 0. Consequently

r1 = 1 and r2 = 4. Thus, M =

[
1 4

n− 1 4n− 3

]
.

If det (M) = −1, then (r2 − 4r1)n − r1 = 1. Since
0 ≤ r2 ≤ 4n+1, we obtain r2−4r1 = 1. Hence, r1 = n−1

and r2 = 4n− 3. Thus, M =

[
n− 1 4n− 3
1 4

]
.

The reversal of arc colours from red to black or from black to
red does not affect the yield of the local exponent. Therefore,

we can conclude that M =

[
1 4

n− 1 4n− 3

]
. For a

Hamiltonian two-coloured digraph, the number of red arcs
formed from the cycle matrix is four or five red arcs.

The upper and lower bounds of the inner local exponent
in the two-coloured digraph are proved by the proposition
and lemma stated by Suwilo [6].

Proposition II.1. [2] Given a two-cycle two-coloured di-
graph D(2) and any point pv located on both cycles in D(2).
If for some nonnegative integers a and i, there is a path
Ppj ,pv from point pj to pv such that system

Mz+

[
r(Ppj ,pv

)
b(Ppj ,dv

)

]
=

[
a
i

]
has a non-negative integer solution, then expin(pv, D

(2)) ≤
a+ i.

Lemma II.1. [2] Given a primitive two-coloured digraph
D(2) and pj is any point in D(2) with the inner local exponent
expin(pj , D

(2)). For every v = 1, 2, . . . , 4n+1 it follows that
expin(pv, D

(2)) ≤ expin(pj , D
(2)) + d(pj , pv).

Lemma II.2. [11] Given a primitive two-coloured digraph
D(2) which has two cycles, namely C1 and C2 with cycle

matrix M =

[
r(C1) r(C2)
b(C1) b(C2)

]
and that det(M) = 1. If

expin(pv, D
(2)) is obtained using the (av, iv)-walk, then[

av
iv

]
≥ M

[
q1
q2

]
= M

[
b(C2)r(Ppj ,pv

)− r(C2)b(Ppj ,pv
)

r(C1)b(Ppm,pv
)− b(C1)r(Ppm,pv

)

]
for the paths Ppj ,pv

and Ppm,pv
.

III. RESULTS AND DISCUSSION

A. Hamiltonian Two-coloured Digraphs with Two Cycles of
Length n and 4n+ 1

The two-coloured digraph discussed in this subsection is
Hamiltonian two-coloured digraphs with two cycles of length
n and 4n + 1 (see Fig.1). Let the first cycle with length n
be C1 : p1 → p2 → · · · → pn−1 → pn → p1 and the second
cycle with length 4n+1 be C2 : p1 → p2 → · · · → pn−1 →
pn → pn+1 · · · → p4n → p4n+1 → p1.

Let the four red arcs in D(2) be the first arc pe → pe+1

where 1 ≤ e ≤ n−1 and let the second, third and fourth arcs
be pf → pf+1, pg → pg+1 and arcs ph → ph+1, respectively,
where n ≤ f < g < h ≤ 4n+1. Let the five red arcs in D(2)

be arc pn → p1, arc pe → pe+1, arc pf → pf+1, arc pg →
pg+1 and arc ph → ph+1, for n ≤ e < f < g < h ≤ 4n+1.
In Theorem III.1, the red arcs are placed consecutively in C2,
while in Theorem III.2, the red arcs are placed alternately in
C2. Let d11 represent the distance from pe+1 to p1 in C1, d12
represent the distance from pe+1 to p1 in C2, d2 represent
the distance from pf+1 to p1, d3 represent the distance from
pg+1 to p1 and d4 represent the distance from ph+1 to p1.

Fig. 1. Hamiltonian digraph with two cycles of length n and 4n+ 1

Theorem III.1. Given D(2), a Hamiltonian two-cycle
primitive two-coloured digraph with length n and 4n + 1.
If D(2) has three or four consecutive red arcs at C2, then
for every v = 1, 2, . . . , 4n+ 1 it follows
expin(pv, D

(2)) =

16n2 + 4n (d4 − d12) + d4 + d (p1, pv) ,
for d12 − d2 ≤ n

12n2 − 9n+ d4 + d (p1, pv) ,
for n < d12 − d2 < 3n

12n2 − 9n+ 4n (d11 − d4) + d11 + d (p1, pv) ,
for d12 − d2 ≥ 3n.

Proof: Assume that expin(pv,D(2)) for every v =
1, 2, . . . , 4n + 1 is obtained using path (av, iv). The proof
will be divided into three cases as follows.
Case 1.1 : d12 − d2 ≤ n.
The first step is to show that expin(pv, D(2)) ≥
16n2 + 4n (d4 − d12) + d4 + d (p1, pv). Look
at the Ppe,pv

and Pph+1,pv
paths and define

q1 = b(C2)r(Ppe,pv
) − r(C2)b(Ppe,pv

) and
q2 = r(C1)b(Pph+1,pv

) − b(C1)r(Pph+1,pv
). The following

five subcases are taken into consideration.
Subcase 1.1.1.

The point pv is on the path p1 → pe. The path Ppe,pv
is

obtained, namely the path (4, d12−3+d(p1, pv)). Using this
path, we get q1 = 16n−4d12−4d(p1, pv). The path Pph+1,pv

is obtained, namely the path (0, d4 + d(p1, pv)). Using this
path, we get q2 = d4 + d(p1, pv). Based on Lemma II.2, we
get [

av
iv

]
≥ M

[
q1
q2

]
=
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[
16n+ 4d4

16n2 − 4nd12 + 4nd4 − 16n− 3d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 16n2+4n(d4−d12)+d4+d(p1, pv) (1)

for every point pv on the path p1 → pe.
Subcase 1.1.2.

The point pv is on the path pe+1 → pf . The path Ppe,pv is
obtained, namely the path (1, d12−4n−1+d(p1, pv)). Using
this path, we get q1 = 20n+1−4d12−4d(p1, pv). The path
Pph+1,pv

is obtained, namely the path (1, d4−1+d(p1, pv)).
Using this path, we get q2 = d4 − n + d(p1, pv). Based on
Lemma II.2, we get[

av
iv

]
≥ M

[
q1
q2

]
=[

16n+ 1 + 4d4
16n2 − 4nd12 + 4nd4 − 16n− 1− 3d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 16n2+4n(d4−d12)+d4+d(p1, pv) (2)

for every point pv on the path pe+1 → pf .
Subcase 1.1.3.

The point pv is on the path pf+1 → pg . The path Ppe,pv is
obtained, namely the path (2, d12−4n−2+d(p1, pv)). Using
this path, we get q1 = 24n+2−4d12−4d(p1, pv). The path
Pph+1,pv

is obtained, namely the path (2, d4−2+d(p1, pv)).
Using this path, we get q2 = d4 − 2n+ d(p1, pv). Based on
Lemma II.2, we get[

av
iv

]
≥ M

[
q1
q2

]
=[

16n+ 2 + 4d4
16n2 − 4nd12 + 4nd4 − 16n− 2− 3d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 16n2+4n(d4−d12)+d4+d(p1, pv) (3)

for every point pv on the path pf+1 → pg .
Subcase 1.1.4.

The point pv is on the path pg+1 → ph. The path Ppe,pv is
obtained, namely the path (3, d12−4n−3+d(p1, pv)). Using
this path, we get q1 = 28n+3−4d12−4d(p1, pv). The path
Pph+1,pv

is obtained, namely the path (3, d4−3+d(p1, pv)).
Using this path, we get q2 = d4 − 3n+ d(p1, pv). Based on
Lemma II.2, we get[

av
iv

]
≥ M

[
q1
q2

]
=[

16n+ 3 + 4d4
16n2 − 4nd12 + 4nd4 − 16n− 3− 3d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 16n2+4n(d4−d12)+d4+d(p1, pv) (4)

for every point pv on the path pg+1 → ph.
Subcase 1.1.5.

The point pv is on the path ph+1 → p4n+1. The path
Ppe,pv

is obtained, namely the path (4, d12 − 4n − 4 +
d(p1, pv)). Using this path, we get q1 = 32n + 4 −
4d12 − 4d(p1, pv). The path Pph+1,pv

is obtained, namely

the path (0, d4−4n−1+d(p1, pv)). Using this path, we get
q2 = d4 − 4n− 1+ d(p1, pv). Based on Lemma II.2, we get[

av
iv

]
≥ M

[
q1
q2

]
=[

16n+ 4d4
16n2 − 4nd12 + 4nd4 − 20n− 1− 3d4 + d(p1, pv)

]
.

Let a1 = 16n− 4d12 + 4d4 and a2 =
16n2 − 4nd12 + 4nd4 − 20n− 1 + 4d12 − 3d4 + d(p1, pv).
Considering the path (a1, a2) from ph+1 to pv , note that
the path Pph+1,pv

is (0, d4 − 4n − 1 + d(p1, pv)) and the

solution to the system Mz +

[
r(Pph+1,pv )
b(Pph+1,pv

)

]
=

[
a1
a2

]
is z1 = 16n− 4d12 + 4d4 and z2 = 0. The path Pph+1,pv

lies on cycle C2 and there is no walk (a1, a2) from ph+1

to pv . Therefore, expin(pv, D(2)) > a1 + a2. Note that the
shortest walk from ph+1 to pv containing at least a1 red arc
and least a2 black arc is (a1 + r(C2), a2 + b(C2))-walk.
Since r(C2) + b(C2) = 4n+ 1, we get[

av
iv

]
≥

[
a1
a2

]
+

[
r(C2)
b(C2)

]
=[

16n+ 4d4 + 4
16n2 − 4nd12 + 4nd4 − 16n− 4− 3d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 16n2+4n(d4−d12)+d4+d(p1, pv) (5)

for every point pv on the path ph+1 → p4n+1.
The conclusion of (1), (2), (3), (4) and (5) is

expin(pv, D
(2)) ≥ 16n2 + 4n(d4 − d12) + d4 + d(p1, pv)

for every v = 1, 2, . . . , 4n+ 1.
Next, we prove expin(pv, D

(2)) ≤ 16n2+4n(d4−d12)+
d4 + d(p1, pv) for every v = 1, 2, ..., 4n+ 1. First, we show
that expin(p1, D(2)) = 16n2 + 4n(d4 − d12 + d4 and then
by Lemma II.1 to guarantee that expin(pv, D(2)) ≤ 16n2 +
4n(d4 − d12) + d4 + d(p1, pv) for every v = 1, 2, ..., 4n+1.

From (1) we get expin(p1, D(2)) ≥ 16n2+4n(d4−d12)+
d4. Next simply show that expin(p1, D(2)) ≤ 16n2+4n(d4−
d12) + d4 for every pu = 1, 2, ..., 4n + 1, the system of
equations

Mz+

[
r(Ppu

, p1)
b(Ppu,p1

)

]
=[

16n+ 4d4
16n2 − 4nd12 + 4nd4 − 16n− 3d4

]
(6)

has a non-negative integer solution for the path Ppu,p1
. From

(6) we get z1 = 16n−4d12−(4n−3)r(Ppu,p1
)+4b(Ppu,p1

)
and z2 = d4 − (1− n)r(Ppu,p1)− b(Ppu,p1).

If pu is on p1 → pe, then there is path (4, 4n − 3 −
d(p1, pu)). Using this path, we get z1 = 16n − 4(d12 +
d(p1, pu)) ≥ 0 since d12 + d(p1, pu) ≤ 4n and z2 = d4 +
d(p1, pu)−1 ≥ 7 since d4+d(p1, pu) ≥ 2n+2 with n ≥ 3.
If pu is on pe+1 → pf , then there is a path (3, 4n − 2 −
d(p1, pu)). Using this path, we get z1 = 20n+ 1− 4(d12 +
d(p1, pu)) ≥ 17 since d12 + d(p1, pu) ≤ 4n− 1 with n ≥ 3
and z2 = d4+d(p1, pu)−n−1 ≥ 5 since d4+d(p1, pu) ≥ 3n
with n ≥ 3. If pu is on pf+1 → pg , then there is a path
(2, 4n− 1− d(p1, pu)). Using this path, we get z1 = 24n+
2 − 4(d12 + d(p1, pu)) ≥ 14 since d12 + d(p1, pu) ≤ 5n
with n ≥ 3 and z2 = d4 + d(p1, pu) − 2n − 1 ≥ 4 since
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d4+d(p1, pu) ≥ 4n− 1 with n ≥ 3. If pu is on pg+1 → ph,
then there is a path (1, 4n− d(p1, pu)). Using this path, we
get z1 = 28n + 3 − 4(d12 + d(p1, pu)) ≥ 23 since d12 +
d(p1, pu) ≤ 5n + 1 with n ≥ 3 and z2 = d4 + d(p1, pu) −
3n−1 ≥ 2 since d4+d(p1, pu) ≥ 4n with n ≥ 3. If pu is on
ph+1 → p4n+1, then there is a path (0, 4n+ 1− d(p1, pu)).
Using this path, we get z1 = 32n+4−4(d12+d(p1, pu)) ≥ 4
since d12+d(p1, pu) ≤ 8n and z2 = d4+d(p1, pu)−4n−1 ≥
0 since d4 + d(p1, pu) ≥ 4n+ 1.

Therefore, for every u = 1, 2, ..., 4n + 1, the system
of equations (6) has a non-negative integer solution.
Proposition II.1 guarantees for every u = 1, 2, ..., 4n + 1,
there is a path Ppu,p1 with a = 16n − 4d12 + 4d4
and i = 16n2 − 4nd12 + 4nd4 − 16n + 4d12 − 3d4.
Therefore, expin(p1, D

(2)) = 16n2 + 4n(d4 − d12) + d4
and by Lemma II.1 we get the conclusion that
expin(pv, D

(2)) ≤ 16n2 + 4n(d4 − d12) + d4 + d(p1, pv)
for every v = 1, 2, ..., 4n+ 1.

Case 2.1 : n < d12 − d2 < 3n.
The first step is to show that expin(pv, D(2)) ≥ 12n2 −

9n + d4 + d (p1, pv). Look at the Ppf ,pv
and Pph+1,pv

paths and define q1 = b(C2)r(Ppf ,pv
)− r(C2)b(Ppf ,pv

) and
q2 = r(C1)b(Pph+1,pv ) − b(C1)r(Pph+1,pv ). The following
five subcases are taken into consideration.
Subcase 2.1.1.

The point pv is on the path p1 → pe. The path Ppf ,pv
is

obtained, namely the path (3, d4+d(p1, pv)). Using this path,
we get q1 = 12n− 9− 4d4 − 4d(p1, pv). The path Pph+1,pv

is obtained, namely the path (0, d4 + d(p1, pv)). Using this
path, we get q2 = d4 + d(p1, pv). Based on Lemma II.2 we
get [

av
iv

]
≥ M

[
q1
q2

]
=[

12n− 9
12n2 − 21n+ 9 + d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2 − 9n+ d4 + d (p1, pv) (7)

for every point pv on the path p1 → pe.
Subcase 2.1.2.

The point pv is on the path pe+1 → pf . The path Ppf ,pv

is obtained, namely the path (4, d4 − 1 + d(p1, pv)). Using
this path, we get q1 = 16n− 8− 4d4 − 4d(p1, pv). The path
Pph+1,pv

is obtained, namely the path (1, d4−1+d(p1, pv)).
Using this path, we get q2 = d4 − n + d(p1, pv). Based on
Lemma II.2 we get[

av
iv

]
≥ M

[
q1
q2

]
=[

12n− 8
12n2 − 21n+ 8 + d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2 − 9n+ d4 + d (p1, pv) (8)

for every point pv on the path pe+1 → pf .
Subcase 2.1.3.

The point pv is on the path pf+1 → pg . The path Ppf ,pv
is

obtained, namely the path (1, d4−4n+1+d(p1, pv)). Using

this path, we get q1 = 20n− 7− 4d4 − 4d(p1, pv). The path
Pph+1,pv

is obtained, namely the path (2, d4−2+d(p1, pv)).
Using this path, we get q2 = d4 − 2n+ d(p1, pv). Based on
Lemma II.2 we get[

av
iv

]
≥ M

[
q1
q2

]
=[

12n− 7
12n2 − 21n+ 7 + d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2 − 9n+ d4 + d (p1, pv) (9)

for every point pv on the path pf+1 → pg .
Subcase 2.1.4.

The point pv is on the path pg+1 → ph. The path Ppf ,pv

is obtained, namely the path (2, d4 − 4n+ d(p1, pv)). Using
this path, we get q1 = 24n− 6− 4d4 − 4d(p1, pv). The path
Pph+1,pv

is obtained, namely the path (3, d4−3+d(p1, pv)).
Using this path, we get q2 = d4 − 3n+ d(p1, pv). Based on
Lemma II.2 we get[

av
iv

]
≥ M

[
q1
q2

]
=[

12n− 6
12n2 − 21n+ 6 + d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2 − 9n+ d4 + d (p1, pv) (10)

for every point pv on the path pg+1 → ph.
Subcase 2.1.5.

The point pv is on the path ph+1 → p4n+1. The path
Ppf ,pv

is obtained, namely the path (3, d4 − 4n − 1 +
d(p1, pv)). Using this path, we get q1 = 28n − 5 −
4d4 − 4d(p1, pv). The path Pph+1,pv is obtained, namely the
path (0, d4 − 4n − 1 + d(p1, pv)). Using this path, we get
q2 = d4 − 4n− 1 + d(p1, pv). Based on Lemma II.2 we get[

av
iv

]
≥ M

[
q1
q2

]
=

[
12n− 9

12n2 − 25n+ 8 + d4 + d(p1, pv)

]
.

Let a1 = 12n−9 and a2 = 12n2−25n+8+d4+d(p1, pv).
Considering the path (a1, a2) from ph+1 to pv , note that
the path Pph+1,pv is (0, d4 − 4n − 1 + d(p1, pv)) and the

solution to the system Mz +

[
r(Pph+1,pv

)
b(Pph+1,pv

)

]
=

[
a1
a2

]
is z1 = 12n − 9 and z2 = 0. The path Pph+1,pv lies on
cycle C2 and there is no walk (a1, a2) from ph+1 to pv .
Therefore, expin(pv, D(2)) > a1+a2. Note that the shortest
walk from ph+1 → pv containing at least a1 red arc and
least a2 black arc is (a1 + r(C2), a2 + b(C2))-walk. Since
r(C2) + b(C2) = 4n+ 1, we get[

av
iv

]
≥

[
a1
a2

]
+

[
r(C2)
b(C2)

]
=[

12n− 5
12n2 − 21n+ 5 + d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2 − 9n+ d4 + d (p1, pv) (11)
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for every point pv on the path ph+1 → p4n+1.
The conclusion of (7), (8), (9), (10) and (11) is

expin(pv, D
(2)) ≥ 12n2 − 9n + d4 + d (p1, pv) for every

v = 1, 2, . . . , 4n+ 1.
Next, we prove that expin(pv, D(2)) ≤ 12n2 − 9n+ d4 +

d (p1, pv) for every v = 1, 2, . . . , 4n+ 1. First we show that
expin(p1, D

(2)) = 12n2−9n+d4 and then by Lemma II.1 to
guarantee that expin(pv, D(2)) ≤ 12n2−9n+d4+d (p1, pv)
for every v = 1, 2, . . . , 4n+ 1.

From (7) we get expin(p1, D(2)) ≥ 12n2− 9n+ d4. Next
simply show that expin(p1, D(2)) ≤ 12n2−9n+d4 for every
pu, u = 1, 2, . . . , 4n+ 1, the system of equations

Mz+

[
r(Ppu,p1)
b(Ppu,p1

)

]
=

[
12n− 9

12n2 − 21n+ 9 + d4

]
(12)

has a non-negative integer solution for the path Ppu,p1
. From

(12) we get z1 = 12n − 9 − 4d4 − (4n − 3)r(Ppu,p1
) +

4b(Ppu,p1
) and z2 = d4 − (1− n)r(Ppu,p1

)− b(Ppu,p1
).

If pu is on p1 → pe, then there is a path (4, 4n − 3 −
d(p1, pu)). Using this path, we get z1 = 12n − 9 − 4(d4 +
d(p1, pu)) ≥ 3 since d4 + d(p1, pu) ≤ 2n with n ≥ 3 and
z2 = d4 + d(p1, pu) − 1 ≥ 1 since d4 + d(p1, pu) ≥ n − 1
with n ≥ 3. If pu is on pe+1 → pf , then there is a path
(3, 4n− 2− d(p1, pu)). Using this path, we get z1 = 16n−
8−4(d4+d(p1, pu)) ≥ 0 since d4+d(p1, pu) ≤ 4n−2 and
z2 = d4+d(p1, pu)−n−1 ≥ 3 since d4+d(p1, pu) ≥ 2n+1
with n ≥ 3. If pu is on pf+1 → pg , then there is a path
(2, 4n− 1− d(p1, pu)). Using this path, we get z1 = 20n−
7−4(d4+d(p1, pu)) ≥ 9 since d4+d(p1, pu) ≤ 4n−1 and
z2 = d4+d(p1, pu)−2n−1 ≥ 4 since d4+d(p1, pu) ≥ 4n−1
with n ≥ 3. If pu is on pg+1 → ph, then there is a path
(1, 4n− d(p1, pu)). Using this path, we get z1 = 24n− 6−
4(d4 + d(p1, pu)) ≥ 14 since d4 + d(p1, pu) ≤ 4n + 1 and
z2 = d4+d(p1, pu)−3n−1 ≥ 3 since d4+d(p1, pu) ≥ 4n+1
with n ≥ 3. If pu is on ph+1 → p4n+1, then there is a
path (0, 4n + 1 − d(p1, pu)). Using this path, we get z1 =
28n− 5− 4(d4 + d(p1, pu)) ≥ 7 since d4 + d(p1, pu) ≤ 6n
with n ≥ 3 and z2 = d4 + d(p1, pu) − 4n − 1 ≥ 0 since
d4 + d(p1, pu) ≥ 4n+ 1.

Therefore, for every u = 1, 2, ..., 4n + 1, the
system of equations (12) has a non-negative integer
solution. Proposition II.1 guarantees for every
u = 1, 2, ..., 4n + 1, there is a path Ppu,p1 with
a = 12n − 9 and i = 12n2 − 21n + 9 + d4.
Therefore, expin(p1, D

(2)) = 12n2 − 9n + d4
and by Lemma II.1 we get the conclusion that
expin(pv, D

(2)) ≤ 12n2 − 9n + d4 + d(p1, pv) for
every v = 1, 2, ..., 4n+ 1.

Case 3.1 : d12 − d2 ≥ 3n.
The first step is to show that expin(pv, D(2)) ≥

12n2 − 9n + 4n(d11 − d4) + d11 + d(p1, pv).
Look at the Ppf ,pv

and Ppe+1,pv
paths and

define q1 = b(C2)r(Ppf ,pv
) − r(C2)b(Ppf ,pv

) and
q2 = r(C1)b(Ppe+1,pv ) − b(C1)r(Ppe+1,pv ). The following
five subcases are taken into consideration.
Subcase 3.1.1.

The point pv is on the path p1 → pe. The path Ppf ,pv
is

obtained, namely the path (3, d4+d(p1, pv)). Using this path,
we get q1 = 12n− 9− 4d4 − 4d(p1, pv). The path Ppe+1,pv

is obtained, namely the path (0, d11 + d(p1, pv)). Using this

path, we get q2 = d11+ d(p1, pv). Based on Lemma II.2 we
get [

av
iv

]
≥ M

[
q1
q2

]
=[

12n− 9 + 4d11
12n2 − 21n+ 9 + 4n(d11 − d4)− 3d11 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2−9n+4n(d11−d4)+d11+d(p1, pv)

(13)
for every point pv on the path p1 → pe.
Subcase 3.1.2.

The point pv is on the path pe+1 → pf . The path Ppf ,pv

is obtained, namely the path (4, d4 − 1 + d(p1, pv)). Using
this path, we get q1 = 16n− 8− 4d4 − 4d(p1, pv). The path
Ppe+1,pv

is obtained, namely the path (0, d11−n+d(p1, pv)).
Using this path, we get q2 = d11 − n+ d(p1, pv). Based on
Lemma II.2 we get[

av
iv

]
≥ M

[
q1
q2

]
=[

12n− 8 + 4d11
12n2 − 21n+ 8 + 4n(d11 − d4)− 3d11 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2−9n+4n(d11−d4)+d11+d(p1, pv)

(14)
for every point pv on the path pe+1 → pf .
Subcase 3.1.3.

The point pv is on the path pf+1 → pg . The path Ppf ,pv

is obtained, namely the path (1, d4 − 4n + 1 + d(p1, pv)).
Using this path, we get q1 = 20n − 7 − 4d4 − 4d(p1, pv).
The path Ppe+1,pv

is obtained, namely the path (0, d11−2n−
4+ d(p1, pv)). Using this path, we get q2 = d11 − 2n− 4+
d(p1, pv). Based on Lemma II.2 we get[

av
iv

]
≥ M

[
q1
q2

]
=[

12n− 23 + 4d11
12n2 − 37n+ 19 + 4n(d11 − d4)− 3d11 + d(p1, pv)

]
.

Let a1 = 12n − 21 − 4d4 + 4d11 and a2 = 12n2 −
37n + 19 + 4n(d11 − d4) + 4d4 − 3d11 + d(p1, pv). Con-
sidering the path (a1, a2) from pe+1 to pv , note that the
path Ppe+1,pv is (0, d11 − 2n − 4 + d(p1, pv)) and the

solution to the system Mz +

[
r(Ppe+1,pv

)
b(Ppe+1,pv

)

]
=

[
a1
a2

]
is

z1 = 12n+ 23− 4d4 + 4d11 and z2 = 0. The path Ppe+1,pv

lies on cycle C2 and there is no walk (a1, a2) from pe+1

to pv . Therefore, expin(pv, D(2)) > a1 + a2. Note that the
shortest walk from pe+1 to pv containing at least a1 red arc
and at least a2 black arc is (a1 + r(C2), a2 + b(C2))-walk.
Since r(C2) + b(C2) = 4n+ 1, we get[

av
iv

]
≥

[
a1
a2

]
+ 4

[
r(C2)
b(C2)

]
=[

12n− 7 + 4d11
12n2 − 21n+ 7 + 4n(d11 − d4)− 3d11 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2−9n+4n(d11−d4)+d11+d(p1, pv)

(15)
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for every point pv on the path pf+1 → pg .
Subcase 3.1.4.

The point pv is on the path pg+1 → ph. The path Ppf ,pv

is obtained, namely the path (2, d4 − 4n+ d(p1, pv)). Using
this path, we get q1 = 24n− 6− 4d4 − 4d(p1, pv). The path
Ppe+1,pv

is obtained, namely the path (0, d11 − 3n − 2 +
d(p1, pv)). Using this path, we get q2 = d11 − 3n − 2 +
d(p1, pv). Based on Lemma II.2 we get[

av
iv

]
≥ M

[
q1
q2

]
=[

12n− 14 + 4d11
12n2 − 29n+ 12 + 4n(d11 − d4)− 3d11 + d(p1, pv)

]
.

Let a1 = 12n − 14 − 4d4 + 4d11 and a2 = 12n2 −
29n + 12 + 4n(d11 − d4) + 4d4 − 3d11 + d(p1, pv). Con-
sidering the path (a1, a2) from pe+1 to pv , note that the
path Ppe+1,pv

is (0, d11 − 3n − 2 + d(p1, pv)) and the

solution to the system Mz +

[
r(Ppe+1,pv )
b(Ppe+1,pv )

]
=

[
a1
a2

]
is

z1 = 12n+ 14− 4d4 + 4d11 and z2 = 0. The path Ppe+1,pv

lies on cycle C2 and there is no walk (a1, a2) from pe+1

to pv . Therefore, expin(pv, D(2)) > a1 + a2. Note that the
shortest walk from pe+1 to pv containing at least a1 red arc
and at least a2 black arc is (a1 + r(C2), a2 + b(C2))-walk.
Since r(C2) + b(C2) = 4n+ 1, we get[

av
iv

]
≥

[
a1
a2

]
+ 2

[
r(C2)
b(C2)

]
=

12n− 6− 4d4 + 4d11

12n2 − 21n+ 6 + 4n(d11 − d4) + 4d4 − 3d11
+d(p1, pv)

 .

Thus

expin(pv, D
(2)) ≥ 12n2−9n+4n(d11−d4)+d11+d(p1, pv)

(16)
for every point pv on the path pg+1 → ph.
Subcase 3.1.5.

The point pv is on the path ph+1 → p4n+1. The path
Ppf ,pv

is obtained, namely the path (3, d4 − 4n − 1 +
d(p1, pv)). Using this path, we get q1 = 28n − 5 −
4d4 − 4d(p1, pv). The path Ppe+1,pv is obtained, namely
the path (0, d11 − 4n + d(p1, pv)). Using this path, we get
q2 = d11 − 4n+ d(p1, pv). Based on Lemma II.2 we get[

av
iv

]
≥ M

[
q1
q2

]
=[

12n− 5 + 4d11
12n2 − 21n+ 5 + 4n(d11 − d4)− 3d11 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2−9n+4n(d11−d4)+d11+d(p1, pv)

(17)
for every point pv on the path ph+1 → p4n+1.

The conclusion of (13), (14), (15), (16) and (17) is
expin(pv, D

(2)) ≥ 12n2−9n+4n(d11−d4)+d11+d(p1, pv)
for every v = 1, 2, . . . , 4n+ 1.

Next, we prove expin(pv, D
(2)) ≤ 12n2 − 9n+4n(d11 −

d4)+d11+d(p1, pv) for every v = 1, 2, . . . , 4n+1. First we
show that expin(p1, D(2)) = 12n2−9n+4n(d11−d4)+d11

and then by Lemma II.1 to guarantee that expin(pv, D(2)) ≤
12n2 − 9n + d4 + d(p1, pv) for every v = 1, 2, . . . , 4n + 1.
From (13) we get expin(p1, D(2)) ≥ 12n2 − 9n+4n(d11 −
d4)+d11. Next simply show that expin(p1, D(2)) ≤ 12n2−
9n+ 4n(d11 − d4) + d11 for every pu, u = 1, 2, . . . , 4n+ 1,
the system of equations

Mz+

[
r(Ppu,p1

)
b(Ppu,p1)

]
=[

12n− 9− 4d4 + 4d11
12n2 − 21n+ 9 + 4n(d11 − d4) + 4d4 + 3d11

]
(18)

has a non-negative integer solution for the path Ppu,p1
. From

(18) we get z1 = 12n − 9 − 4d4 − (4n − 3)r(Ppu,p1
) +

4b(Ppu,p1) and z2 = d11 − (1− n)r(Ppu,p1)− b(Ppu,p1).
If pu is on p1 → pe, then there is a path (4, 4n − 3 −

d(p1, pu)). Using this path, we get z1 = 12n − 9 − 4(d4 +
d(p1, pu)) ≥ 23 since d4+d(p1, pu) ≤ n−2 with n ≥ 3 and
z2 = d11 + d(p1, pu)− 1 ≥ 1 since d11 + d(p1, pu) ≥ n− 1
with n ≥ 3. If pu is on pe+1 → pf , then there is a path
(3, 4n−2−d(p1, pu)). Using this path, we get z1 = 16n−8−
4(d4+d(p1, pu)) ≥ 0 since d4+d(p1, pu) ≤ 4n−2 and z2 =
d11+d(p1, pu)−n−1 ≥ 0 since d11+d(p1, pu) ≥ n+1. If pu
is on pf+1 → pg , then there is a path (2, 4n−1−d(p1, pu)).
Using this path, we get z1 = 20n−7−4(d4+d(p1, pu)) ≥ 9
since d4 + d(p1, pu) ≤ 4n − 1 with n ≥ 3 and z2 = d11 +
d(p1, pu)−2n−1 ≥ 5 since d11+d(p1, pu) ≥ 4n with n ≥ 3.
If pu is on pg+1 → ph, then there is a path (1, 4n−d(p1, pu)).
Using this path, we get z1 = 24n−6−4(d4+d(p1, pu)) ≥ 18
since d4 + d(p1, pu) ≤ 4n with n ≥ 3 and z2 = d11 +
d(p1, pu) − 3n − 1 ≥ 3 since d11 + d(p1, pu) ≥ 4n + 1
with n ≥ 3. If pu is on ph+1 → p4n+1, then there is a
path (0, 4n + 1 − d(p1, pu)). Using this path, we get z1 =
28n− 5− 4(d4+ d(p1, pu)) ≥ 31 since d4+ d(p1, pu) ≤ 4n
with n ≥ 3 and z2 = d11 + d(p1, pu) − 4n − 1 ≥ 0 since
d11 + d(p1, pu) ≥ 4n+ 1.

Therefore, for every u = 1, 2, . . . , 4n + 1, the system
of equations (18) has a non-negative integer solution.
Proposition II.1 guarantees for every u = 1, 2, . . . , 4n + 1,
there is a path Ppu,p1

with a = 12n − 9 − 4d4 + 4d11 and
i = 12n2− 21n+9+4n(d11−d4)+4d4+3d11. Therefore,
expin(p1, D

(2)) = 12n2 − 9n + 4n(d11 − d4) + d11
and by Lemma II.1 we get the conclusion that
expin(pv, D

(2)) ≤ 12n2−9n+4n(d11−d4)+d11+d(p1, pv)
for every v = 1, 2, ..., 4n+ 1.

Theorem III.2. Given D(2), a Hamiltonian two-cycle prim-
itive two-coloured digraph with cycle C1 and C2 of length n
and 4n+1. If D(2) has three or four red arcs alternating with
a difference of 1 at C2, then for every v = 1, 2, . . . , 4n+ 1
we have
expin(pv, D

(2)) =

16n2 + 4n (d4 − d12) + d4 + d (p1, pv) ,
for d12 − d2 ≤ n

12n2 − n+ 4n (d4 − d2) + d4 + d (p1, pv) ,
for n < d12 − d2 < 3n− 2

12n2 − n+ 4n (d11 − d2) + d11 + d (p1, pv) ,
for d12 − d2 ≥ 3n− 2

Proof: Assume that expin(pv,D(2)) for every v =
1, 2, . . . , 4n + 1 is obtained using path (av, iv). The proof
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will be divided into three cases as follows.
Case 1.2 : d12 − d2 ≤ n.

The proof for Case 1.2 of Theorem III.2 is the same as
Case 1.1 in Theorem III.1.
Case 2.2 : n < d12 − d2 < 3n− 2.

The first step is to show that expin(pv, D(2)) ≥ 12n2−n+
4n(d4−d2)+d4+d(p1, pv). Look at the Ppf ,pv

and Pph+1,pv

paths and define q1 = b(C2)r(Ppf ,pv
)− r(C2)b(Ppf ,pv

) and
q2 = r(C1)b(Pph+1,pv

) − b(C1)r(Pph+1,pv
). The following

five subcases are taken into consideration.
Subcase 2.2.1.

The point pv is on the path p1 → pe. The path Ppf ,pv

is obtained, namely the path (3, d2 − 2 + d(p1, pv)). Using
this path, we get q1 = 12n− 1− 4d2 − 4d(p1, pv). The path
Pph+1,pv is obtained, namely the path (0, d4 + d(p1, pv)).
Using this path, we get q2 = d4+d(p1, pv). Based on Lemma
II.2 we get [

av
iv

]
≥ M

[
q1
q2

]
=[

12n− 1 + 4d4
12n2 + 4n(d4 − d2)− 13n+ 1− 3d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2−n+4n(d4− d2)+ d4+ d (p1, pv)

(19)
for every point pv on the path p1 → pe.
Subcase 2.2.2.

The point pv is on the path pe+1 → pf . The path Ppf ,pv
is

obtained, namely the path (4, d2− 3+ d(p1, pv)). Using this
path, we get q1 = 16n−4d2−4d(p1, pv). The path Pph+1,pv

is obtained, namely the path (1, d4 − 1 + d(p1, pv)). Using
this path, we get q2 = d4 − n+ d(p1, pv). Based on Lemma
II.2 we get [

av
iv

]
≥ M

[
q1
q2

]
=[

12n+ 4d4
12n2 + 4n(d4 − d2)− 13n− 3d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2−n+4n(d4− d2)+ d4+ d (p1, pv)

(20)
for every point pv on the path pe+1 → pf .
Subcase 2.2.3.

The point pv is on the path pf+1 → pg . The path Ppf ,pv is
obtained, namely the path (1, d2−4n−1+d(p1, pv)). Using
this path, we get q1 = 20n+1− 4d2 − 4d(p1, pv). The path
Pph+1,pv

is obtained, namely the path (2, d4−2+d(p1, pv)).
Using this path, we get q2 = d4 − 2n+ d(p1, pv). Based on
Lemma II.2 we get[

av
iv

]
≥ M

[
q1
q2

]
=[

12n+ 1 + 4d4
12n2 + 4n(d4 − d2)− 13n− 1− 3d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2−n+4n(d4− d2)+ d4+ d (p1, pv)

(21)
for every point pv on the path pf+1 → pg .

Subcase 2.2.4.
The point pv is on the path pg+1 → ph. The path Ppf ,pv is

obtained, namely the path (2, d2−4n−2+d(p1, pv)). Using
this path, we get q1 = 24n+2− 4d2 − 4d(p1, pv). The path
Pph+1,pv

is obtained, namely the path (3, d4−3+d(p1, pv)).
Using this path, we get q2 = d4 − 3n+ d(p1, pv). Based on
Lemma II.2 we get[

av
iv

]
≥ M

[
q1
q2

]
=[

12n+ 2 + 4d4
12n2 + 4n(d4 − d2)− 13n− 2− 3d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2−n+4n(d4− d2)+ d4+ d (p1, pv)

(22)
for every point pv on the path pg+1 → ph.
Subcase 2.2.5.

The point pv is on the path ph+1 → p4n+1. The path
Ppf ,pv is obtained, namely the path (3, d2 − 4n − 3 +
d(p1, pv)). Using this path, we get q1 = 28n + 3 −
4d2 − 4d(p1, pv). The path Pph+1,pv

is obtained, namely the
path (0, d4 − 4n − 1 + d(p1, pv)). Using this path, we get
q2 = d4 − 4n− 1 + d(p1, pv). Based on Lemma II.2 we get[

av
iv

]
≥ M

[
q1
q2

]
=[

12n− 1 + 4d4
12n2 + 4n(d4 − d2)− 17n− 3d4 + d(p1, pv)

]
.

Let a1 = 12n − 1 − 4d2 + 4d4 and a2 = 12n2 + 4n(d4 −
d2) − 17n + 4d2 − 3d4 + d(p1, pv). Considering the path
(a1, a2) from ph+1 to pv , note that the path Pph+1,pv

is
(0, d4 − 4n − 1 + d(p1, pv)) and the solution to the system

Mz+

[
r(Pph+1,pv

)
b(Pph+1,pv

)

]
=

[
a1
a2

]
is z1 = 12n−1−4d2+4d4

and z2 = 0. The path Pph+1,pv lies on cycle C2 and
there is no walk (a1, a2) from ph+1 to pv . Therefore,
expin(pv, D

(2)) > a1+a2. Note that the shortest walk from
ph+1 to pv containing at least a1 red arc and least a2 black
arc is (a1+r(C2), a2+b(C2))-walk. Since r(C2)+b(C2) =
4n+ 1, we get[

av
iv

]
≥

[
a1
a2

]
+

[
r(C2)
b(C2)

]
=[

12n+ 3 + 4d4
12n2 + 4n(d4 − d2)− 13n− 3− 3d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2−n+4n(d4− d2)+ d4+ d (p1, pv)

(23)
for every point pv on the path ph+1 → p4n+1.

The conclusion of (19), (20), (21), (22) and (23) is
expin(pv, D

(2)) ≥ 12n2−n+4n(d4− d2)+ d4+ d (p1, pv)
for every v = 1, 2, . . . , 4n+ 1.

Next, we will prove that expin(pv, D(2)) ≤ 12n2 − n +
4n(d4 − d2) + d4 + d (p1, pv) for every v = 1, 2, . . . , 4n +
1. First we show that expin(p1, D

(2)) = 12n2 − n +
4n(d4 − d2) + d4 and then by Lemma II.1 to guarantee that
expin(pv, D

(2)) ≤ 12n2 − n + 4n(d4 − d2) + d4 for every
v = 1, 2, . . . , 4n+ 1.
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From (19) we get expin(p1, D(2)) ≥ 12n2 −n+4n(d4 −
d2) + d4. Next simply show that expin(p1, D(2)) ≤ 12n2 −
n+4n(d4− d2)+ d4 for every pu, u = 1, 2, . . . , 4n+1, the
system of equations

Mz+

[
r(Ppu,p1

)
b(Ppu,p1)

]
=

[
12n− 1− 4d2 + 4d4

12n2 + 4n(d4 − d2)− 13n+ 1 + 4d2 − 3d4

]
(24)

has a non-negative integer solution for the path Ppu,p1 . From
(24) we get z1 = 12n − 1 − 4d2 − (4n − 3)r(Ppu,p1

) +
4b(Ppu,p1

) and z2 = d4 − (1− n)r(Ppu,p1
)− b(Ppu,p1

).
If pu is on p1 → pe, then there is a path (4, 4n − 3 −

d(p1, pu)). Using this path, we get z1 = 12n − 1 − 4(d2 +
d(p1, pu)) ≥ 3 since d2+d(p1, pu) ≤ 2n+2 with n ≥ 3 and
z2 = d4 + d(p1, pu) − 1 ≥ 1 since d4 + d(p1, pu) ≥ n − 1
with n ≥ 3. If pu is on pe+1 → pf , then there is a path
(3, 4n− 2− d(p1, pu)). Using this path, we get z1 = 16n−
4(d2 + d(p1, pu)) ≥ 0 since d2 + d(p1, pu) ≤ 4n and z2 =
d4+d(p1, pu)−n−1 ≥ 0 since d4+d(p1, pu) ≥ n+1. If pu
is on pf+1 → pg , then there is a path (2, 4n−1−d(p1, pu)).
Using this path, we get z1 = 20n+1− 4(d2 + d(p1, pu)) ≥
5 since d2 + d(p1, pu) ≤ 5n − 1 with n ≥ 3 and z2 =
d4 + d(p1, pu) − 2n − 1 ≥ 2 since d4 + d(p1, pu) ≥ 3n
with n ≥ 3. If pu is on pg+1 → ph, then there is a path
(1, 4n− d(p1, pu)). Using this path, we get z1 = 24n+2−
4(d2 + d(p1, pu)) ≥ 10 since d2 + d(p1, pu) ≤ 6n − 2 and
z2 = d4+d(p1, pu)−3n−1 ≥ 1 since d4+d(p1, pu) ≥ 4n−1
with n ≥ 3. If pu is on ph+1 → p4n+1, then there is a
path (0, 4n + 1 − d(p1, pu)). Using this path, we get z1 =
28n+3−4(d2+d(p1, pu)) ≥ 7 since d2+d(p1, pu) ≤ 6n+2
with n ≥ 3 and z2 = d4 + d(p1, pu) − 4n − 1 ≥ 0 since
d4 + d(p1, pu) ≥ 4n+ 1.

Therefore, for every u = 1, 2, ..., 4n + 1, the system of
equations (24) has a non-negative integer solution. Propo-
sition II.1 guarantees for every u = 1, 2, ..., 4n + 1, there
is a path Ppu,p1

with a = 12n − 1 − 4d2 + 4d4 and
i = 12n2 + 4n(d4 − d2)− 13n+ 1 + 4d2 − 3d4.

Therefore, expin(p1, D(2)) = 12n2−n+4n(d4−d2)+d4
and by Lemma II.1 we get the conclusion that
expin(pv, D

(2)) ≤ 12n2−n+4n(d4− d2)+ d4+ d (p1, pv)
for every v = 1, 2, ..., 4n+ 1.

Case 3.2 : d12 − d2 ≥ 3n− 2.
The first step is to show that expin(pv, D(2)) ≥

12n2 − n + 4n(d11 − d2) + d11 + d(p1, pv).
Look at the Ppf ,pv

and Ppe+1,pv
paths and

define q1 = b(C2)r(Ppf ,pv ) − r(C2)b(Ppf ,pv ) and
q2 = r(C1)b(Ppe+1,pv ) − b(C1)r(Ppe+1,pv ). The following
four subcases are taken into consideration.
Subcase 3.2.1.

The point pv is on the path p1 → pe. The path Ppf ,pv

is obtained, namely the path (3, d2 − 2 + d(p1, pv)). Using
this path, we get q1 = 12n− 1− 4d2 − 4d(p1, pv). The path
Ppe+1,pv

is obtained, namely the path (0, d11 + d(p1, pv)).
Using this path, we get q2 = d11 + d(p1, pv). Based on
Lemma II.2 we get[

av
iv

]
≥ M

[
q1
q2

]
=

[
12n− 1 + 4d11

12n2 − 13n+ 1 + 4n(d11 − d2)− 3d11 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2−n+4n(d11−d2)+d11+d(p1, pv)

(25)
for every point pv on the path p1 → pe.
Subcase 3.2.2.

The point pv is on the path pe+1 → pf . The path Ppf ,pv
is

obtained, namely the path (4, d2− 3+ d(p1, pv)). Using this
path, we get q1 = 16n−4d2−4d(p1, pv). The path Ppe+1,pv

is obtained, namely the path (0, d11 − n+ d(p1, pv)). Using
this path, we get q2 = d11−n+d(p1, pv). Based on Lemma
II.2 we get [

av
iv

]
≥ M

[
q1
q2

]
=[

12n+ 4d11
12n2 − 13n+ 4n(d11 − d2)− 3d11 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2−n+4n(d11−d2)+d11+d(p1, pv)

(26)
for every point pv on the path pe+1 → pf .
Subcase 3.2.3.

The point pv is on the path pf+1 → pg . The path Ppf ,pv

is obtained, namely the path (1, d2 − 4n − 1 + d(p1, pv)).
Using this path, we get q1 = 20n+1−4d2−4d(p1, pv). The
path Ppe+1,pv

is obtained, namely the path (1, d11 −n− 1+
d(p1, pv)). Using this path, we get q2 = d11−2n+d(p1, pv).
Based on Lemma II.2 we get[

av
iv

]
≥ M

[
q1
q2

]
=[

12n+ 1 + 4d11
12n2 − 13n− 1 + 4n(d11 − d2)− 3d11 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2−n+4n(d11−d2)+d11+d(p1, pv)

(27)
for every point pv on the path pf+1 → pg .
Subcase 3.2.4.

The point pv is on the path pg+1 → ph. The path Ppf ,pv

is obtained, namely the path (2, d2 − 4n − 2 + d(p1, pv)).
Using this path, we get q1 = 24n+2−4d2−4d(p1, pv). The
path Ppe+1,pv

is obtained, namely the path (2, d11 −n− 2+
d(p1, pv)). Using this path, we get q2 = d11−3n+d(p1, pv).
Based on Lemma II.2 we get[

av
iv

]
≥ M

[
q1
q2

]
=[

12n+ 2 + 4d11
12n2 − 13n− 2 + 4n(d11 − d2)− 3d11 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 12n2−n+4n(d11−d2)+d11+d(p1, pv)

(28)
for every point pv on the path pg+1 → ph.

The conclusion of (25), (26), (27) and (28) is
expin(pv, D

(2)) ≥ 12n2−n+4n(d11−d2)+d11+d(p1, pv)
for every v = 1, 2, . . . , 4n+ 1.
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Next, we prove expin(pv, D
(2)) ≤ 12n2 − n + 4n(d11 −

d2)+d11+d(p1, pv) for every v = 1, 2, . . . , 4n+1. First we
show that expin(pv, D(2)) = 12n2−n+4n(d11−d2)+d11
and then by Lemma II.1 to guarantee that expin(pv, D(2)) ≤
12n2 − n + 4n(d11 − d2) + d11 + d(p1, pv) for every v =
1, 2, . . . , 4n+ 1.

From (25) we get expin(p1, D(2)) ≥ 12n2−n+4n(d11−
d2)+d11. Next simply show that expin(p1, D(2)) ≤ 12n2−
n + 4n(d11 − d2) + d11 for every pu, u = 1, 2, . . . , 4n + 1,
the system of equations

Mz+

[
r(Ppu,p1

)
b(Ppu,p1)

]
=[

12n− 1 + 4d11
12n2 − 13n+ 1 + 4n(d11 − d2)− 3d11 + d(p1, pv)

]
(29)

has a non-negative integer solution for the path Ppu,p1
. From

(29) we get z1 = 12n − 1 − 4d2 − (4n − 3)r(Ppu,p1
) +

4b(Ppu,p1) and z2 = d11 − (1− n)r(Ppu,p1)− b(Ppu,p1).
If pu is on p1 → pe, then there is a path (4, 4n − 3 −

d(p1, pu)). Using this path, we get z1 = 12n − 1 − 4(d2 +
d(p1, pu)) ≥ 15 since d2+d(p1, pu) ≤ 2n−1 with n ≥ 3 and
z2 = d11 + d(p1, pu)− 1 ≥ 1 since d11 + d(p1, pu) ≥ n− 1
with n ≥ 3. If pu is on pe+1 → pf , then there is a path
(3, 4n− 2− d(p1, pu)). Using this path, we get z1 = 16n−
4(d2 + d(p1, pu)) ≥ 0 since d2 + d(p1, pu) ≤ 4n and z2 =
d11+d(p1, pu)−n−1 ≥ 0 since d11+d(p1, pu) ≥ n+1. If pu
is on pf+1 → pg , then there is a path (2, 4n−1−d(p1, pu)).
Using this path, we get z1 = 20n+1−4(d2+d(p1, pu)) ≥ 5
since d2 + d(p1, pu) ≤ 5n − 1 with n ≥ 3 and z2 = d11 +
d(p1, pu) − 2n − 1 ≥ 3 since d11 + d(p1, pu) ≥ 3n + 1
with n ≥ 3. If pu is on pg+1 → ph, then there is a path
(1, 4n− d(p1, pu)). Using this path, we get z1 = 24n+2−
4(d2 + d(p1, pu)) ≥ 10 since d2 + d(p1, pu) ≤ 5n+ 1 with
n ≥ 3 and z2 = d11 + d(p1, pu) − 3n − 1 ≥ 2 since d11 +
d(p1, pu) ≥ 4n with n ≥ 3. If pu is on ph+1 → p4n+1, then
there is a path (0, 4n+1−d(p1, pu)). Using this path, we get
z1 = 28n−3−4(d2+d(p1, pu)) ≥ 13 since d2+d(p1, pu) ≤
5n+ 2 with n ≥ 3 and z2 = d11 + d(p1, pu)− 4n− 1 ≥ 0
since d11 + d(p1, pu) ≥ 4n+ 1.

Therefore, for every u = 1, 2, . . . , 4n + 1, the system of
equations (29) has a non-negative integer solution. Proposi-
tion II.1 guarantees for every u = 1, 2, . . . , 4n + 1, there
is a path Ppu,p1 with a = 12n − 1 − 4d2 + 4d11 and
i = 12n2−13n+1+4n(d11−d2)+4d2−3d11+d(p1, pv).

Therefore, expin(p1, D
(2)) = 12n2 − n + 4n(d11 −

d2) + d11 and by Lemma II.1 we get the conclusion that
expin(pv, D

(2)) ≤ 12n2−n+4n(d11−d2)+d11+d(p1, pv)
for every v = 1, 2, ..., 4n+ 1.

B. Non-Hamiltonian Two-coloured Digraphs with Two Cy-
cles of Length n and 4n+ 1

Next, the two-coloured digraph discussed in this article
is non-Hamiltonian two-coloured digraphs with two cycles
of length n and 4n + 1 (see Fig.2). Let the first cycle with
length n be C1 : p1 → p2 → · · · → pn−1 → pn = p1 and
the second cycle with length 4n+ 1 be C2 : p1 → pn+1 →
pn+2 → · · · → p4n → p4n+1 → p1.

Let the five red arcs in D(2) be the first arc ph → ph+1

where 1 ≤ h ≤ n − 1 and let the second, third, fourth and

fifth arcs be pe → pe+1=f , pf → pf+1, pf+1 → pf+2=g and
arcs pg → pg+1, respectively, where 1 ≤ e < f < f + 1 <
g ≤ 4n+ 1. The second, third, fourth, and fifth red arcs are
laid consecutively in the second cycle (C2). Let d1 represent
the distance from pe+1 to p1, d2 represent the distance from
pf+1 to p1, d3 represent the distance from pg+1 to p1, and
d4 represent the distance from ph+1 to p1.

Fig. 2. Non-Hamiltonian digraph with two cycles of length n and 4n+1

Conjecture III.1. Given D(2), a non-Hamiltonian two-cycle
primitive two-coloured digraph with length n and 4n + 1.
If D(2) has four consecutive red arcs at C2, then for every
v = 1, 2, . . . , 4n+ 1 it follows
expin(pv, D

(2)) =

16n2 − 12n+ d3 + d (p1, pv) ,
for d3 ≥ d4, d3 − d4 ≤ 2n+ 1, d4 ≤ n− 1

16n2 − 12n+ 4n(d4 − d3) + d4 + d (p1, pv) ,
for d3 < d4

4n2 − 3n+ 4n (d3 − d4) + d3 + d (p1, pv) ,
for d3 > d4, d3 − d4 ≥ 2n+ 1, d4 ≤ n− 2.

The following are the steps in making conjecture III.1.
Assume that expin(pv,D(2)) for every v = 1, 2, . . . , 4n+ 1
is obtained using path (av, iv). The step will be divided into
three cases as follows.
Case 1.3 : d3 ≥ d4, d3 − d4 ≤ 2n+ 1, d4 ≤ n− 1.
The first step is to show that expin(pv, D(2)) ≥ 16n2 −
12n+d3+d (p1, pv). Look at the Ppe,pv

and Ppg+1,pv
paths

and define q1 = b(C2)r(Ppe,pv )− r(C2)b(Ppe,pv ) and q2 =
r(C1)b(Ppg+1,pv )− b(C1)r(Ppg+1,pv ).

The point pv is on the path p1 → pe. The path Ppe,pv is
obtained, namely the path (4, d3+d(p1, pv)). Using this path,
we get q1 = 16n−12−4(d3+d(p1, pv)). The path Ppg+1,pv

is obtained, namely the path (0, d3 + d(p1, pv)). Using this
path, we get q2 = d3 + d(p1, pv). Based on Lemma II.2, we
get [

av
iv

]
≥ M

[
q1
q2

]
=[

16n− 12
16n2 − 28n+ 12 + d3 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 16n2 − 12n+ d3 + d (p1, pv) (30)

for every point pv on the path p1 → pe.
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Case 2.3 : d3 < d4.
The first step is to show that expin(pv, D(2)) ≥ 16n2−12n+
4n(d4−d3)+d4+d (p1, pv). Look at the Ppe,pv

and Pph+1,pv

paths and define q1 = b(C2)r(Ppe,pv
)− r(C2)b(Ppe,pv

) and
q2 = r(C1)b(Pph+1,pv

)− b(C1)r(Pph+1,pv
).

The point pv is on the path p1 → pe. The path Ppe,pv is
obtained, namely the path (4, d3+d(p1, pv)). Using this path,
we get q1 = 16n−12−4(d3+d(p1, pv)). The path Pph+1,pv

is obtained, namely the path (0, d4 + d(p1, pv)). Using this
path, we get q2 = d4 + d(p1, pv). Based on Lemma II.2, we
get [

av
iv

]
≥ M

[
q1
q2

]
=

[
16n+ 4(d4 − d3)

16n2 − 28n+ 4n(d4 − d3) + 4d3 − 3d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 16n2−12n+4n(d4−d3)+d4+d (p1, pv)

(31)
for every point pv on the path p1 → pe.
Case 3.3 : d3 > d4, d3 − d4 ≥ 2n+ 1, d4 ≤ n− 2.
The first step is to show that expin(pv, D(2)) ≥
4n2 − 3n + 4n (d3 − d4) + d3 + d (p1, pv). Look
at the Pph,pv and Ppg+1,pv paths and define
q1 = b(C2)r(Pph,pv

) − r(C2)b(Pph,pv
) and

q2 = r(C1)b(Ppg+1,pv
)− b(C1)r(Ppg+1,pv

).
The point pv is on the path p1 → pe. The path Pph,pv

is
obtained, namely the path (1, d4+d(p1, pv)). Using this path,
we get q1 = 4n− 3− 4(d4 + d(p1, pv)). The path Ppg+1,pv

is obtained, namely the path (0, d3 + d(p1, pv)). Using this
path, we get q2 = d3 + d(p1, pv). Based on Lemma II.2, we
get [

av
iv

]
≥ M

[
q1
q2

]
=

[
4n− 3 + 4(d3 − d4)

4n2 − 7n+ 3 + 4n(d3 − d4)− 3d3 + 4d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 4n2−3n+4n (d3 − d4)+d3+d (p1, pv)

(32)
for every point pv on the path p1 → pe.

Furthermore, the arcs in cycle C2 are placed alternately.
In a non-Hamilton D(2) two-coloured digraph with five red
arcs, the first arc lies in cycle C1, namely arc ph → ph+1

with 1 ≤ h ≤ n−1. The second arc, third arc, fourth arc, and
fifth arc are located alternately in cycle C2, namely pe →
pe+1, pf → pf+1, pf+2 → pf+3, and pf+4=g → pg+1 with
1 ≤ e < e+1 < f < f +1 < f +2 < f +3 < g ≤ 4n+1.
Let d1 represent the distance from pe+1 to p1, d2 represent
the distance from pf+1 to p1, d3 represent the distance from
pg+1 to p1, and d4 represent the distance from ph+1 to p1.

Conjecture III.2. Given D(2), a non-Hamiltonian two-cycle
primitive two-coloured digraph with length n and 4n + 1.
If D(2) has four alternating red arcs at C2, then for every
v = 1, 2, . . . , 4n+ 1 it follows
expin(pv, D

(2)) =



16n2 + 4n(d3 − d1) + d3 + d (p1, pv) ,
for d3 ≥ d4, d3 − d4 ≤ n+ 1, d4 ≤ n− 1

16n2 + 4n(d4 − d1) + d4 + d (p1, pv) ,
for d3 < d4

4n2 − 3n+ 4n (d3 − d4) + d3 + d (p1, pv) ,
for d3 > d4, d3 − d4 ≥ n+ 1, d4 ≤ n− 2.

The following are the steps in making conjecture III.2.
Assume that expin(pv,D(2)) for every v = 1, 2, . . . , 4n+ 1
is obtained using path (av, iv). The step will be divided into
three cases as follows.
Case 1.4 : d3 ≥ d4, d3 − d4 ≤ n+ 1, d4 ≤ n− 1.
The first step is to show that expin(pv, D(2)) ≥ 16n2 +
4n(d3−d1)+d3+d (p1, pv). Look at the Ppe,pv

and Ppg+1,pv

paths and define q1 = b(C2)r(Ppe,pv
)− r(C2)b(Ppe,pv

) and
q2 = r(C1)b(Ppg+1,pv )− b(C1)r(Ppg+1,pv ).

The point pv is on the path p1 → pe. The path Ppe,pv
is

obtained, namely the path (4, d1− 3+ d(p1, pv)). Using this
path, we get q1 = 16n−4(d1+d(p1, pv)). The path Ppg+1,pv

is obtained, namely the path (0, d3 + d(p1, pv)). Using this
path, we get q2 = d3 + d(p1, pv). Based on Lemma II.2, we
get [

av
iv

]
≥ M

[
q1
q2

]
=[

16n+ 4(d3 − d1)
16n2 + 4n(d3 − d1)− 16n+ 4d1 − 3d3 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 16n2+4n(d3−d1)+d3+d (p1, pv) (33)

for every point pv on the path p1 → pe.
Case 2.4 : d3 < d4.
The first step is to show that expin(pv, D(2)) ≥ 16n2 +
4n(d4−d1)+d4+d (p1, pv). Look at the Ppe,pv and Pph+1,pv

paths and define q1 = b(C2)r(Ppe,pv )− r(C2)b(Ppe,pv ) and
q2 = r(C1)b(Pph+1,pv

)− b(C1)r(Pph+1,pv
).

The point pv is on the path p1 → pe. The path Ppe,pv is
obtained, namely the path (4, d1− 3+ d(p1, pv)). Using this
path, we get q1 = 16n−4(d1+d(p1, pv)). The path Pph+1,pv

is obtained, namely the path (0, d4 + d(p1, pv)). Using this
path, we get q2 = d4 + d(p1, pv). Based on Lemma II.2, we
get [

av
iv

]
≥ M

[
q1
q2

]
=[

16n+ 4(d4 − d1)
16n2 + 4n(d4 − d1)− 16n+ 4d1 − 3d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 16n2+4n(d4−d1)+d4+d (p1, pv) (34)

for every point pv on the path p1 → pe.
Case 3.4 : d3 > d4, d3 − d4 ≥ n+ 1, d4 ≤ n− 2.
The first step is to show that expin(pv, D(2)) ≥
4n2 − 3n + 4n (d3 − d4) + d3 + d (p1, pv). Look
at the Pph,pv

and Ppg+1,pv
paths and define

q1 = b(C2)r(Pph,pv
) − r(C2)b(Pph,pv

) and
q2 = r(C1)b(Ppg+1,pv

)− b(C1)r(Ppg+1,pv
).

The point pv is on the path p1 → pe. The path Pph,pv
is

obtained, namely the path (1, d4+d(p1, pv)). Using this path,
we get q1 = 4n− 3− 4(d4 + d(p1, pv)). The path Ppg+1,pv

is obtained, namely the path (0, d3 + d(p1, pv)). Using this
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path, we get q2 = d3 + d(p1, pv). Based on Lemma II.2, we
get [

av
iv

]
≥ M

[
q1
q2

]
=[

4n− 3 + 4(d3 − d4)
4n2 − 7n+ 3 + 4n(d3 − d4)− 3d3 + 4d4 + d(p1, pv)

]
.

Thus

expin(pv, D
(2)) ≥ 4n2− 3n+4n(d3− d4)+ d3+ d (p1, pv)

(35)
for every point pv on the path p1 → pe.

IV. CONCLUSION

The inner local exponent of two-coloured digraphs with
cycles length n and 4n+1 have been carried out. The inner
local exponent is specialized in two-coloured digraphs with
consecutive red arcs and alternating at C2. The theorems
and conjectures show three inner local exponent patterns for
two-coloured digraphs with n and 4n+1 cycle lengths. This
research is significant to complete so that generalizations can
be made for cases n and kn+ 1.
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