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Abstract—The design of fixed-time trajectory tracking con-
troller for nonholonomic wheeled mobile robots (WMRs) subject
to spatial constraint is addressed in this paper. Firstly, a tan-type
Barrier Lyapunov Function (BLF) that equates to the classical
one for unconstrained systems is exploited. Then, by employing
the adding a power integrator technique and switching control
strategy, a state feedback controller is successfully constructed to
forces the error dynamic states of the closed-loop system (CLS)
to zero in a given fixed time without violation of the constraint.
Finally, simulation results are given to confirm the efficacy of the
presented control scheme.

Index Terms—wheeled mobile robots, spatial constraint, fixed-
time, trajectory tracking.

I. INTRODUCTION

WHEELED mobile robots (WMRs) have been playing
a crucial role in various applications such as en-

tertainment, security, rescue missions, spacial missions and
assistant health-care because of their simplicity, efficiency
and flexibility [1-3]. An important feature of WMRs is that
the number of control inputs is less than the number of
degree of freedom, which leads to the control of WMRs
challenging. As pointed out by Brockett in [4], there is not
any smooth (or even continuous) time-invariant state feedback
to stabilize such category of nonlinear systems. To give this
difficulty a solution, a number of control approaches have been
proposed, which mainly are time-varying feedback [5-7] and
discontinuous time-invariant feedback [8,9] With these valid
approaches, lots of important results on asymptotical control
have been established over the last years, see, e.g., [10-16]
and the references therein.

However, in many practical applications it be very desir-
able that system trajectories converge to the equilibrium in
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finite time because finite-time stable system retains not only
faster convergence, but also better robustness and disturbance
rejection properties [17-20]. Motivated by this, the finite-
time control of nonholonomic systems has attained significant
amount of interests and efforts over the last years [21-27].
But the existing finite-time control results suffer from two
shortcomings: one is that convergence rate is relatively slow
when the system states are far away from the equilibrium
points, and the other is that the settling time heavily relies on
initial system conditions. To address these two shortcomings,
the idea of fixed-time stability that the involved settling time
function is irrespective of initial system conditions was put
forward in [28]. Soon afterwards, the research on fixed-time
control has become a popular topic [29, 30]. As for fixed-
time control of nonholonomic systems, some interesting results
have recently been also reported [31]. Notwithstanding, the
effect of state/output constraints is omitted in the above-
mentioned works.

Note any constraint breach could result in system failure
or performance deterioration, system failure or industrial ac-
cidents during operation[32–35]. Therefore, how to overcome
the constraint is meaningful and crucial in practice. Motivated
by the above observations, this paper focuses on solving the
fixed-time trajectory tracking control of nonholonomic WMRs
subject to spatial constraint which equates to the state/output
constraints nonholonomic systems. The contributions are high-
lighted as follows. (i) Different from the existing asymptotic
stabilization in [34] or finite-time stabilization in [36], fully
taking into consideration of practical system requirements,
both spatial constraint and fixed-time tracking are included to
study the trajectory tracking problem of nonholonomic WMRs.
(ii)To handle the obstacle caused by the spatial constraint, a
new tan-type Barrier Lyapunov Function (BLF) that equates to
the classical one for unconstrained systems is exploited. (iii)
Based on the adding a power integrator technique and switch-
ing control strategy, a systematic design method is proposed
to ensure the achievement of the performance requirements.

Notations. The notations adopted in this paper are fairly
standard. Specifically, for a vector z = (z1, . . . , zn)

T ∈ Rn,
define ⌈z⌉δ as ⌈z⌉δ = sign(z)|z|δ .

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the tracking control of nonholonomic WMRs in a
restricted area shown in Fig.1. The following kinematic states
are assumed as: (x, y) denotes the position of the center of
mass of the robot, θ is the heading angle of the robot, v is the
forward velocity while ω is the angular velocity of the robot,
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Fig. 1. Tracking control of nonholonomic WMRs.

r is the radius of the rear wheels and b is the distance between
the rear wheels. Under the condition of pure rolling and
non-slippage, the WMRs satisfy the following nonholonomic
constraint

ẏ cos θ − ẋ sin θ = 0, (1)

and it is easy to obtain that the following relationships de-
scribing the robots’ motion

v =
vR + vL

2
,

w =
vR − vL

2b
,

(2)

where system inputs vL, vR are the linear speeds of the left
and right wheels, respectively. Further, the kinematic model
of the robots is reformulated as

ẋ = v cos θ,
ẏ = v sin θ,

θ̇ = ω,
(3)

Introducing the following change of coordinates

x0 = x, x1 = y, x2 = tan θ,
u0 = v cos θ, u1 = w sec2 θ,

(4)

system (3) is transformed into

ẋ0 = u0,
ẋ1 = u0x2,
ẋ2 = u1.

(5)

Similarly, the kinematic equations of target robot are repre-
sented by

ẋ0d = u0d,
ẋ1d = u0dx2d,
ẋ2d = u1d.

(6)

To tackle the problem of trajectory tracking, define

x0e = x0 − x0d, x1e = x1 − x1d, x2e = x2 − x2d, (7)

Then, the tracking error dynamics are obtained as

ẋ0e = u0 − u0d,
ẋ1e = u0dx2e + (u0 − u0d)x2,
ẋ2e = u1 − u1d.

(8)

Clearly, the tracking of the spatial constrained WMRs is
a state-constrained control problem. In this paper, we want
to design control signals u0, u1 to achieve that x0e x1e and
x2e converge zero in a fixed time, and meanwhile all system
tracking errors are kept in the predefined constrained regions

Ωxie = {−ki < xie < ki}, i = 0, 1, (9)

where ki and ki are positive funcitons.
The following assumptions, definitions and lemmas will

serve as the basis of the coming control design and perfor-
mance analysis.

Assumption 1. The reference control input u0d(t) satisfies
that u2

0d(t) + u̇2
0d(t) ≤ m where constant m > 0, and it is

also known, positive, and bounded, that is, there exist positive
constants u0d, u0d such that 0 < u0d < u0d(t) < u0d.

Assumption 2. The time-varying functions ki(t) (i = 0, 1)
are continuous differentiable and there are positive constants
ki, ki and ki3 such that ki ≤ ki(t) ≤ ki, |k̇i(t)| ≤ ki3.

Definition 1[17]. Consider the nonlinear system

ẋ = f(t, x) with f(t, 0) = 0, x ∈ Rn, (10)

where f : R+ ×U0 → Rn is continuous with respect to x on
an open neighborhood U0 of the origin x = 0. The equilibrium
x = 0 of the system is (locally) uniformly finite-time stable
if it is uniformly Lyapunov stable and finite-time convergent
in a neighborhood U ⊆ U0 of the origin. By “finite-time
convergence,” we mean: If, for any initial condition x(t0) ∈ U
at any given initial time t0 ≥ 0, there is a settling time
T > 0 , such that every x(t, t0, x(t0)) of system (10) is defined
with x(t, t0, x(t0)) ∈ U/{0} for t ∈ [t0, T ) and satisfies
limt→T x(t, t0, x(t0)) = 0 and x(t, t0, x(t0)) = 0 for any
t ≥ T . If U = U0 = Rn, the origin is a globally uniformly
finite-time stable equilibrium.

Lemma 1[17]. Consider the nonlinear system described in
(10). Suppose there is a C1 function V (t, x) defined on Û ⊆
U0 × R, where Û is a neighborhood of the origin, class K
functions π1 and π2, real numbers c > 0 and 0 < α < 1, for
t ∈ [t0, T ) and x ∈ Û such that

π1(|x|) ≤ V (t, x) ≤ π2(|x|),∀t ≥ t0,∀x ∈ Û ,

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_17

Volume 50, Issue 3: September 2023

 
______________________________________________________________________________________ 



and
V̇ (t, x) + cV α(t, x) ≤ 0,∀t ≥ t0 ,∀x ∈ Û .

Then, the origin of (10) is finite-time stable with T ≤
V 1−α(t0,x(t0))

c(1−α) for initial condition x(t0) in some open neigh-
borhood Û of the origin at initial time t0. If Û = U0 = Rn

and π1 and π2 are class K∞ functions, the origin of system
(10) is globally finite-time stable.

Definition 2[28]. The origin of system (10) is said to be
globally fixed-time stable if it is globally finite-time stable and
the settling time function T (x0) is bounded, that is, there exists
a positive constant Tmax such that T (x0) ≤ Tmax, ∀x0 ∈ Rn.

Lemma 2[28]. Consider the nonlinear system (10). Suppose
there exist a C1, positive definite and radially unbounded
function V (x) : Rn → R and real numbers c > 0, d > 0,
0 < α < 1, γ > 1, such that

V̇ (x) ≤ −cV α(x)− dV γ(x), ∀x ∈ Rn.

Then, the origin of system (10) is globally fixed-time stable
and the settling time T (x0) satisfies

T (x0) ≤ Tmax :=
1

c(1− α)
+

1

d(γ − 1)
, ∀x0 ∈ Rn.

Lemma 3[36]. For x ∈ R, y ∈ R, p ≥ 1 and c > 0 are con-
stants, the following inequalities hold: (i) |x+y|p ≤ 2p−1|xp+
yp|, (ii) (|x|+|y|)1/p ≤ |x|1/p+|y|1/p ≤ 2(p−1)/p(|x|+|y|)1/p,
(iii) ||x| − |y||p ≤ ||x|p − |y|p|, (iv) |x|p + |y|p ≤ (|x|+ |y|)p,
(v) |⌈x⌉1/p−⌈y⌉1/p| ≤ 21−1/p|x−y|1/p, (vi) |[⌈x⌉p−⌈y⌉p| ≤
c|x− y|||x− y|p−1 + |y|p−1|.

Lemma 4[36]. For any positive real numbers c, d and any
real-valued function π(x, y) > 0, one has

|x|c|y|d ≤ c

c+ d
π(x, y)|x|c+d +

d

c+ d
π−c/d(x, y)|y|c+d.

III. FIXED-TIME TRACKING CONTROL DESIGN

In this section, we give a constructive procedure for the
design of fixed-time tracking controller for system (8). The
overall controller design consists of two steps. First of all,
a fixed-time tacking control law u0 is put forward to force
x0e and u0d − u0d tend to zero within a fixed time T1. Then,
under x0e = 0 and u0d − u0d = 0 for t ≥ T1, control input
u1 is designed to force x1e and x2e convergent to zero a fixed
time and keep in the predefined state-constrained region. In the
second control stage, on time interval [0, T1], control law u1

is reconstructed to keep that the solution of the whole closed-
loop system will not escape.

A. Fixed-time tracking control of the x0e-subsystem
To avoid the state x0e violating the constraints, let us con-

sider a candidate of asymmetric BLF function V0 : Ω0 → R
is given as follows:

V0 =
k20
π

tan

(
πx2

0e

2k20

)
. (11)

Differentiating the function V0 obtains that
∂V0

∂x0e
= Λ0(x0e)x0e,

∂V0

∂k0
=

2k0
π

tan

(
πx2

0e

2k20

)
− 1

k0
Λ0(x0e)x

2
0e,

(12)

with Λ0(x0e) defined as

Λb0(x0e) = sec2
(
πx2

0e

2k20

)
, (13)

Based on (12), the derivative of V0 arrives

V̇0 =
∂V0

∂x0e
ẋ0e +

∂V0

∂k0
k̇0

= Λ0(x0e)x0e(u0 − u0d) +
2k0
π

tan

(
πx2

0e

2k20

)
k̇0

− 1

k0
Λ0(x0e)x

2
0ek̇0

≤ Λ0(x0e)x0e(u0 − u0d) +
2

k0
Λ0(x0e)x

2
0e|k̇0|

≤ Λ0(x0e)
(
x0e(u0 − u0d) + x2

0eφ0

)
,

(14)

where φ0 ≥ 2k03/k0 is a positive constant.
Take

u0 = u0d − l⌈x0e⌉1−τ − l⌈x0e⌉1+p−τ − x0eφ0, (15)

where l > 0, 0 < τ < 1 and p > τ are positive constants.
Then, by substituting (15) into (14), one has

V̇0 ≤ −Λ0

(
l|x0e|2−τ + l|x0e|2+p−τ

)
. (16)

As a result, the following result can be established.
Theorem 1. For the x0e-subsystem, suppose that −k0 <

x0e(0) < k0, the fixed-time tracking control strategy (15) can
guarantee that x0e and u0d−u0d tend to and keep zero within
a fixed time T1. Meantime, the desired state constraint −k0 <
x0e(t) < k0 holds.

Proof. The proof is divided into two parts.
Part I: Verification of the constraint −k0 < x0e(t) < k0
From the definitions of V0, we can easily verify that it is

positive definite on Ωx0e
. This together with (16) renders that

the origin of CLS is asymptotically stable. Therefore, for all
t ≥ 0, one has

V0(t) ≤ V (0), (17)

that is
π|x0e|2−τ

2k2−τ
0

≤ tan−1

(
π(2− τ)

2k2−τ
0

V0(0)

)
<

π

2
, (18)

for all t ≥ 0. As a result, the state x0e will stay in the set
Ωx0e and not violate the constraint.

Part II: Fixed-time stable analysis
Since the CLS is asymptotically stable at the origin is

proved in Part I. From Definitions 1 and 2, to accomplish
the fixed-time stability of the CLS, we take only to show that
its bounded settling-time function exists here. Above all, by
Lemma 3, it easily checks that

V0 ≤ 2k2−τ
0

π(2− τ)
tan

(
π|x0e|2−τ

2k2−τ
0

)
. (19)

What is more, for all x0e ∈ Ωx0e
, 0 ≤ π|x0e|2−τ

2k2−τ
0

≤ π
2 since

2 − τ > 1. Then, according to the characteristics of tangent
function, it is obtained that

tan

(
π|x0e|2−τ

2k2−τ
0

)
≤ π

2k2−τ
0

Λ
1
2 (x0e)|x0e|2−τ

≤ π(2− τ)

2k2−τ
0

Λ
1
2 (x0e)|x0e|2−τ ,

(20)
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tan

(
π|x0e|2−τ

2k2−τ
0

)
≤ π

2k2−τ
0

Λ(x0e)|x0e|2−τ

≤ π(2− τ)

2k2−τ
0

Λ(x0e)|x0e|2−τ .
(21)

Noting the fact that Λ(x0e) ≥ 1 for all x0e ∈ Ωx0e
and

0 < 2/(2− τ) < 1, by (19), (21) and Lemma 3, it is deduced
that

V
2

2−τ

0 ≤ 2k2−τ
0

π(2− τ)
tan

(
π|x0e|2−τ

2k2−τ
0

)
≤ 2Λ(x0e)|x0e|2.

(22)

On the other hand, observing 1 < (2 + p)/(2− τ) < 2, by
Lemma 3 and taking (19) and (20) into account, one can get

V
2+p
2−τ

0 ≤ 2k2−τ
0

π(2− τ)
tan

(
π|x0e|2−τ

2k2−τ
0

)
≤

(
Λ

1
2 (x0e)|x0e|2−τ

) 2+p
2−τ

≤ Λ
2+p
4−2τ (x0e)|x0e|2+p

(23)

Therefore, by considering (16), (22) and (23), it follows that

V̇0 ≤ −l2−1V α
0 − l2−γV γ

0 , (24)

where α = 2/(2− τ) and γ = (2 + p)/(2− τ).
Thus, according to Lemma 2, we conclude that the equilib-

rium x0e = 0 of the CLS is fixed-time stable and the settling
time function T1 satisfies

T1 ≤ 2

l(1− α)
+

2γ

l(γ − 1)

=
2(τ − 2)

lτ
+

(2− τ)2
2+p
2−τ

l(p+ τ)

(25)

Thus, the proof is completed.

B. Fixed-time tracking control of the (x1e, x2e)-subsystem for
t ≥ T1

In light of u0 − u0d ≡ 0 when t ≥ T1, it is easily known
that the dynamic of (x1e, x2e)-subsystem can be written as

ẋ1e = u0dx2e,
ẋ2e = u1 − u1d.

(26)

for which, a fixed-time controller will be designed for u1 by
employing recursive technique.

Step 1. choose

V1 =
k21
π

tan

(
πx2

1e

2k21

)
. (27)

Then, we have

V̇1 =
∂V1

∂x1e
ẋ1e +

∂V1

∂k1
k̇1

≤ Λ(x1e)u0dx1ex2e +
2

k1
Λ(x1e)x

2
1e|k̇1|

≤ Λ(x1e)u0dx1e(x2e − x∗
2e)

+Λ(x1e)u0dx1e(x2e − x∗
2e) + Φ(x1)|x1e|2φ1,

(28)

where φ1 ≥ 2k13/k11 is a positive constant.

Select the virtual controller x∗
2e as

x∗
2e = − 1

u0d

(
1 + λ+ λ|ξ1|p + φ1(1 + x2

1e)
1/2

)
⌈x1e⌉1−ν

:= −α1(x1e)⌈x1e⌉1−ν ,
(29)

with design parameters0 < ν < 1/2, λ > 0 and q > ν to be
determined later.

Substituting (29) into (28), it can be obtained that

V̇1 ≤ −λΛ(x1e)(|x1e|2−ν + |x1e|2+p−ν)− |x1e|2−ν

+Λ(x1e)x1eu0d(x2e − x∗
2e).

(30)

Step 2. Based on the virtual controller x∗
2e, we define ξ2 =

⌈x2e⌉
1

1−ν −⌈x∗
2e⌉

1
1−ν and choose the Lyapunov function V2 =

V1 +W2 with

W2 =

∫ x2e

x∗
2e

⌈
⌈s⌉

1
1−ν − ⌈x∗

2e⌉
1

1−ν

⌉1+ν

ds. (31)

Since

∂W2

∂x2e
= ⌈ξ2⌉1+ν ,

∂W2

∂x1e
= − (1 + ν)

∂
(
⌈x∗

2e⌉
1

1−ν

)
∂x1e

×
∫ x2e

x∗
2e

⌈
⌈s⌉

1
1−2ν − ⌈x∗

2e⌉
1

1−2ν

⌉ν
ds

(32)

a direct calculation gives

V̇2 ≤ −λΛ(x1e)(|x1e|2−ν + |x1e|2+p−ν)− |x1e|2−ν

+Λ(x1e)x1eu0d(x2e − x∗
2e)

+
∂W2

∂x1e
ẋ1e + ⌈ξ2e⌉1−2ν(u1 − u1d),

(33)

We give the upper bound estimates for some terms in the right
hand of (33).

First, by the definition of ξ2, we have

|⌈x2e⌉ − ⌈x∗
2e⌉| =

∣∣∣(⌈x2e⌉
1

1−ν

)r2
−
(
⌈x∗

2e⌉
1

1−ν

)r2 ∣∣∣
≤ 2ν

∣∣∣⌈x2e⌉
1

1−ν − ⌈x∗
2e⌉

1
1−ν

∣∣∣1−ν

= 2ν |ξ2|1−ν .

(34)

Thus, from (34) and Lemma 4, we can obtain that

Λ(x1e)x1eu0d(x2e − x∗
2e) ≤ 2νΛ(x1e)|u0dx1e|ξ2|1−ν

≤ 1

3
|x1e|2−ν + |ξ2|2−νh21,

(35)
where h21 ≥ 0 is a smooth function.

Secondly, note that

− (1 + ν)

∫ x2e

x∗
2e

⌈
⌈s⌉

1
1−ν − ⌈x∗

2e⌉
1

1−ν

⌉ν
ds

≤ (1 + ν) |ξ2|ν |x2e − x∗
2e|

≤ (1 + ν) 2ν |ξ2|,

(36)

and∣∣∣∣∣∣
∂
(
⌈x∗

2e⌉
1

1−ν

)
∂x1e

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
∂

(
α

1
1−ν

1

)
∂x1e

∣∣∣∣∣∣∣∣ |x1e|+ α1 ≤ γ21, (37)
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where γ21 ≥ 0 is a smooth function.
Therefore, according to (9), (36), (37) and Lemma 4, we

have
∂W2

∂x1e
ẋ1e ≤

1

3
|x1e|2−ν + |ξ2|2−νh22, (38)

where h22 ≥ 0 is a smooth function.
Substituting (35) and (38) into (34) yields

V̇2 ≤ −λΛ(x1e)(|x1e|2−ν + |x1e|2+p−ν)
+⌈ξ2e⌉1+ν(u1 − u1d) + (h21 + h22)|ξ2|2−ν .

(39)

Designing the controller

u1 = u1d − (λ+ λ|ξ2|p + h21 + h22) ⌈ξ2⌉1−2ν , (40)

then the time derivative of V2 becomes

V̇2 ≤ −λΛ(x1e)(|x1e|2 + |x1e|2+p)− λ(|ξ2|2 + |ξ2|2+p).
(41)

Consequently, the following result is obtained.
Theorem 2. If the controller u1 of system (26) is specified

by (40) then the closed-loop system is globally fixed-time
stable without violating the constraint.

Proof. This proof follows the same line of that of Theorem
1.

C. Tracking control of the (x1e, x2e)-subsystem for [0, T1)

Next, it will be shown that system states of (8) will not
escape to infinity in the time interval [0, T1). To proceed the
coming control design, Assumption 1 is further limited as the
following assumption:

Assumption 3. For u0d, it further assumes that

u0d > lk
1−τ

0 + lk
1+p−τ

0 k0φ0. (42)

It is easy to verify that (42) leads to u0(t) > 0 for any
t ≥ 0. In addition, since u0d is specified by (15), u0d, u1d,
and xid are bounded, therefore, there are positive constants di
such that |f1| = |x2d(u0−u0d)| < d1 and |f2| = |−u1d| < d2.
To facilitate the presentation, we rewritten system (26) as

ẋ1e = u0x2e + f1,
ẋ2e = u1 + f2,

(43)

which is very similar to system (26) except for the presence
of the terms fi. But it does not cause much difficulty to use
the above control design for generating a controller

u1 = u1new. (44)

such that the closed-loop system states are bounded on the
time interval [0, T1] and the desired state constraints are not
violated.

By summarizing the above results, we can get the main
results of this paper as follows:

Theorem 3. Consider the resulting closed-loop error system
(8) under Assumptions 1–3, if the tracking control inputs u0

and u1 are actualized in the following way:

u0 = u0|(15), (45)

u1 =

{
u1|(44), t < T1,
u1|(40), t ≥ T1,

(46)

then the states of the closed-loop error system are regulated
to zero within a fixed-time while, at the same time constraint
(9) is met.

IV. SIMULATION RESULTS

In this section, we illustrate the effectiveness of the proposed
approach with the boundedness of k0(t) = k1(t) = 1 +
0.1 sin 2t, which satisfies the assumption made in this paper
with k0 = k1 = 0.9, k0 = k1 = 1.1 and k03 = k13 = 0.1.
To carry out the tracking simulation, the fixed time is picked
as T1 = 2, the control design parameters are configured as
u0d = 2, u1d = 1, l = 2, λ = 1, p = 2 and τ = ν = 1/3.
For different initial conditions: (i) (x0e(0), x1e(0), x2e(0))=
(−0.2, 0.4, 1), (ii)(x0e(0), x1e(0), x2e(0))= (−0.4, 0.6, 5) and
(iii) (x0e(0), x1e(0), x2e(0))= (−0.6, 0.9, 50), the responses
of tracking errors are exhibited in Fig. 2. We can clearly
observe that, when the initial value increases, the convergence
time of the fixed-time control algorithm increase slowly and
has upper constant-bounds, which demonstrates the effective-
ness of the control method proposed in this paper.

V. CONCLUSION

This paper has studied the problem of fixed-time tracking
control for nonholonomic WMRs subject to spatial constraint.
Based on tan-type Barrier Lyapunov Function (BLF) and
by skillfully using recursive technique, a systematic design
procedure is given to render the error dynamics states to zero
for any given fixed time while the constraint is not violated.
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