
Accelerated Greedy Randomized Kaczmarz
Algorithm for Solving Linear Systems

Yong Liu, Shimin Liu and Zhiyong Zhang

Abstract—The greedy randomized Kaczmarz (GRK) algo-
rithm is more powerful than the randomized Kaczmarz (RK)
algorithm for large sparse consistent linear systems. Motivated
by GRK algorithm and Nesterov’s acceleration scheme, we
propose an accelerated greedy randomized Kaczmarz (AGRK)
algorithm by using an equal probability criterion. We present
convergence analysis for the AGRK algorithm and compare
its performance and effectiveness with the GRK algorithm on
random matrices as well as real-world datasets. Numerical
results show that the AGRK algorithm performs better than
the GRK algorithm in both iteration counts and computing
times.

Index Terms—consistent linear systems, greedy randomized
Kaczmarz, equal probability criterion, Nesterov acceleration,
convergence property.

I. INTRODUCTION

WE consider an iterative solution of a consistent linear
system of the form

Ax = b, (1)

where A ∈ Rm×n, m ≥ n, is of full column rank,
b ∈ Rm is an m-dimensional vector and x ∈ Rn is an n-
dimensional unknown vector. Under these assumptions, we
know that the linear system (1) admits a unique solution
x∗ = (ATA)−1AT b = A†b, where A† denotes the Moore-
Penrose pseudoinverse of the matrix A and the superscript
T is the transpose of a vector or a matrix; see, e.g., [1]-[3].
The randomized Kaczmarz (RK) algorithm [4] proposed in
2009 is a powerful iterative projection algorithm for solving
such system (1), and it is a worthy development and quality
improvement of the original Kaczmarz algorithm [5] by
introducing a probabilistic frame for the selection of target
rows in each iteration. More precisely, let A(i) and b(i) be the
i-th row of the matrix A and the i-th entry of the vector b,
respectively, then given initial estimate x0, the RK algorithm
can be described as

xk+1 = xk +
b(ik) −A(ik)xk
‖A(ik)‖22

(A(ik))T ,

where ‖ · ‖2 is the Euclidean norm and the target row ik is
randomly selected from all rows of the coefficient matrix A
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with probability P (row = ik) =
‖A(ik)‖22
‖A‖2F

, in which ‖A‖F
represents the Frobenius norm of matrix A.

To further improve the convergence behavior of the RK
algorithm, Bai and Wu [1] proposed a new probability
criterion involving the residual vector of the linear system
at each iteration step of the RK algorithm, and constructed
a greedy randomized Kaczmarz (GRK) algorithm, which
performs better than the RK algorithm in both theory and
experiments; see also [6]-[8]. The GRK algorithm has been
widely discussed and generalized by many researchers. For
example, Liu and Gu [9] applied the GRK algorithm to
ridge regression problem [10],[11], Zhang [12] proposed
a different greedy Kaczmarz algorithm for (1) by using
the greedy idea of the GRK, Jiang et al. [13], Gu [14],
Niu and Zheng [15] proposed some block variants of the
GRK algorithm. Both the RK and the GRK algorithms are
especially preferred for the case of m� n. However, when
m is close to n, both algorithms converge very slowly, see
[16],[17]. For this problem, Liu and Wright [18] proposed
an accelerated RK (ARK) algorithm by using Nesterov’s
acceleration scheme [19], and their numerical experiments
show that the ARK converges much faster than the RK when
m is close to n. Inspired by the work of [18], Morshed et
al. [20] applied also Nesterov’s acceleration scheme to the
generalized sampling Kaczmarz Motzkin (SKM) algorithm
for solving large-scale linear feasibility problems and showed
that the resulting method, i.e., accelerated SKM (ASKM) al-
gorithm, has higher computational efficiency than the original
method. For more details about the application of Nesterov’s
acceleration scheme, we refer to [21]-[25].

Motivated by the success of the ARK and the ASKM, we
intend to use Nesterov’s acceleration scheme to construct an
accelerated version of the GRK algorithm. Compared with
the ARK algorithm, the difficulty of our generalization is
that it seems impossible to choose the working row with
equal probability (even if the coefficient matrix A of (1)
is row-normalized), which is the key to demonstrate the
convergence of the ARK algorithm. To solve this problem,
we will additionally make use of the uniform probability
to construct the accelerated GRK (AGRK) algorithm. In
theory, we prove that the AGRK algorithm for (1) converges
with the expected exponential rate. And in computations,
we show that the AGRK algorithm has higher computing
efficiency than the GRK algorithm in both iteration steps
and computation times.

The paper is structured as follows. In Section II we first
describe the GRK algorithm and then present the algorithmic
description of the AGRK algorithm. In Section III we prove
the convergence of the AGRK algorithm. Numerical results
are given in Section IV. Finally, in Section V we end the
paper with succinct concluding remarks.
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II. THE AGRK ALGORITHM

Throughout this paper, we use Aτ to represent the row
submatrix of A indexed by a subset τ of the row indices
of A and bτ to represent the subvector of b with compo-
nents listed in τ . For a real matrix A ∈ Rm×n, we use
AT , A†, λmin(·) and λmax(·) to represent its transpose,
Moore-Penrose pseduinverse, smallest nonzero eigenvalue
and largest eigenvalue, respectively. The inner product in
Rn is represented by 〈·, ·〉. Given a positive definite matrix
M , ‖x‖M =

√
xTMx = ‖Mx‖2 denotes the energy norm

(induced by M ) of any x ∈ Rn.
For a positive integer `, the authors of [1] constructed the

following GRK algorithm.

Algorithm 1 GRK Algorithm [1]

Require: A, x0, b and `.
Ensure: x`.

1: for k = 0, 1, 2, · · · , `− 1 do
2: Compute ηk =

‖b−Axk‖22
‖A‖2F

and

εk =
1

2

(
max

1≤ik≤m

{∣∣b(ik) −A(ik)xk
∣∣2

‖A(ik)‖22

}
+ ηk

)

3: Compute the index set Uk by

Uk =
{
ik

∣∣∣ |b(ik) −A(ik)xk|2 ≥ εk‖A(ik)‖22
}

4: Determine the ith entry r̃(i)k of the vector r̃k by using

r̃
(i)
k =

{
b(i) −A(i)xk, if i ∈ Uk,
0, otherwise

5: Pick ik ∈ Uk with probability Pr(row= ik)=
|r̃(ik)k |2

‖r̃k‖22
6: Set xk+1 = xk +

b(ik) −A(ik)xk
‖A(ik)‖22

(A(ik))T

7: end for

Analogous to the ARK algorithm, the main idea of the
AGRK algorithm is to introduce Nesterov’s accelerated pro-
cedure into the GRK algorithm, so it can be easily described
as Algorithm 2.

From Algorithm 2, we know that the AGRK algorithm
can be viewed as the GRK algorithm with equal probability
criterion in conjunction with Nesterov’s acceleration scheme.

III. CONVERGENCE ANALYSIS

In this section, we will give the convergence theory for
AGRK. Here and in the sequel we set ‖A(i)‖2 = 1 for
any i ∈ {1, 2, · · · ,m}. We let Ek to be the expected value
conditional on the first k iterations, i.e.,

Ek[·] = E[·| i0, i1, · · · , ik−1],

where it(t = 0, 1, · · · , k − 1) is the t-th row chosen at the
t-th iterate. Then, from the law of iterated expectations, we
have E[Ek[·]] = E[·].

For the AGRK algorithm, we can establish the following
convergence theorem.

Algorithm 2 AGRK Algorithm

Require: A, b, `, x0, v0 = x0, γ−1 = 0.
Ensure: x`.

1: for k = 0, 1, 2, · · · , `− 1 do
2: Compute ηk =

‖b−Axk‖22
‖A‖2F

and

εk =
1

2

(
max

1≤ik≤m

{∣∣b(ik) −A(ik)xk
∣∣2

‖A(ik)‖22

}
+ ηk

)
(2)

3: Compute the index set Uk by

Uk =

{
ik

∣∣∣ |b(ik) −A(ik)xk|2

‖A(ik)‖22
≥ εk

}
(3)

4: Choose λk ∈
[
0, λmin(ATUkAUk)

)
5: Compute the large root γk of

γ2k −
1

|Uk|
γk =

(
1− λk
|Uk|

γk

)
γ2k−1 (4)

6: Set αk and βk as follows:

αk =
|Uk| − λkγk

γk (|Uk|2 − λk)
(5)

βk = 1− λk
|Uk|

γk (6)

7: Set
yk = αkvk + (1− αk)xk (7)

8: Determine the ith entry ˜̃r
(i)

k of the vector ˜̃rk by using

˜̃r
(i)

k =

{
1, if i ∈ Uk,
0, otherwise

9: Choose ik ∈ Uk with probability Pr(row= ik)= 1
|Uk|

10: Set xk+1 = yk −
A(ik)yk − b(ik)

‖A(ik)‖22
(A(ik))T

11: Set

vk+1 = βkvk+(1−βk)yk−γk
A(ik)yk − b(ik)

‖A(ik)‖22
(A(ik))T

(8)
12: end for

Theorem 1. For any initial vector x0 in the column space
of AT , the sequence {xk} generated by the AGRK algorithm
converges linearly to the unique solution x∗ = A†b of (1) in
expectation with error estimate as follows

E
(
‖xk+1 − x∗‖2(AT

Uk
AUk )

†

)
<

4λkmin‖x0 − x∗‖22
(δ̌k − δ̂k)2

,

in which

δ̂k =

k∏
i=0

(
1−

√
λkmin

2|Ui|

)
and δ̌k =

k∏
i=0

(
1 +

√
λkmin

2|Ui|

)
,

where

λkmin = min{λ0, λ1 · · · , λk} with λk ∈
[
0, λmin(ATUkAUk )

)
.

The proof of Theorem 1 follows the framework derived
by Liu and Wright [18] for the ARK algorithm and the
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convergence proofs for the ASKM algorithm proposed by
Morshed et al. [20]. We commence with two simple lemmas.

Lemma 1. For any y ∈ Rn, we have

Ek

(∥∥∥(A(ik)y − b(ik)
)

(A(ik))T
∥∥∥2
(AT
Uk
AUk )

†

)
≤ 1

|Uk|
‖AUky − bUk‖22,

where the random variable ik follows the uniform distribu-
tion over the set Uk defined in (3).

Proof: Let AUk = UUkΣUkV
T
Uk be the singular value

decomposition of AUk , then (ATUkAUk)−1 = VUkΣ−2Uk V
T
Uk .

As a result, we see that

Ek

(∥∥∥(A(ik)y − b(ik)
)

(A(ik))T
∥∥∥2
(AT
Uk
AUk )

−1

)
=

1

|Uk|
trace

[
UTUkdiag (AUky − bUk)

2
UUk

]
=

1

|Uk|

∥∥∥diag (AUky − bUk)
2
UUk

∥∥∥2
F

=
1

|Uk|
∑
ik∈Uk

(
A(ik)y − b(ik)

)2 ∥∥∥U (ik)
Uk

∥∥∥2
2

≤ 1

|Uk|
∑
ik∈Uk

(
A(ik)y − b(ik)

)2
=

1

|Uk|
‖AUky − bUk‖22.

Lemma 2. For the solution x∗ of (1), we have

Ek
(
‖xk+1 − x∗‖22

)
= ‖yk − x∗‖22 −

1

|Uk|
‖AUkyk − bUk‖22.

Proof: According to the step 10 of the AGRK algorithm,
we can obtain

Ek
(
‖xk+1 − x∗‖22

)
= Ek

(
‖yk − (A(ik)yk − b(ik))(A(ik))T − x∗‖22

)
= ‖yk − x∗‖22 + Ek(|A(ik)yk − b(ik)|2)

− 2Ek
∑
ik∈Uk

〈
yk − x∗, (A(ik))T (A(ik)yk − b(ik))

〉
= ‖yk − x∗‖22 +

1

|Uk|
∑
ik∈Uk

|A(ik)yk − b(ik)|2

− 2

|Uk|
∑
ik∈Uk

(A(ik)yk − b(ik)) ·A(ik)(yk − x∗)

= ‖yk − x∗‖22 +
1

|Uk|
∑
ik∈Uk

|A(ik)yk − b(ik)|2

− 2

|Uk|
∑
ik∈Uk

|A(ik)yk − b(ik)|2

= ‖yk − x∗‖22 −
1

|Uk|
‖AUkyk − bUk‖22.

Here in the fourth equality we have used the consistency of
the system (1), i.e., A(ik)x∗ = b(ik).

Proposition 1. Assume that γk ≤ 1/
√
λk+1, then it follows

that both αk and βk, defined in (5) and (6) respectively, are
lie in (0,1] for all k.

Proof: Define quadratic function fk : R→ R as follows:

fk(γ) = γ2− γ

|Uk|
(1−λkγ2k−1)− γ2k−1, k ∈ {0, 1, 2, · · · }.

Then it follows that fk(0) < 0 and fk(1/|Uk|) < 0, which
imply that γk > 1/|Uk| for all k ≥ 0.

Using the assumption that γk ≤ 1/
√
λk+1, we have

fk(γk−1) = −(γk−1/|Uk|)(1− λkγ2k−1) ≤ 0

and

fk(1/
√
λk) =

1

λk
− 1

|Uk|
√
λk

(1− λkγ2k−1)− γ2k−1

=
1

λk
− 1

|Uk|
√
λk

+ γ2k−1

(√
λk
|Uk|

− 1

)
≥ 1

λk
− 1

|Uk|
√
λk

+
1

λk

(√
λk
|Uk|

− 1

)
= 0,

which indicate that

γk ∈
[
γk−1, 1/

√
λk

]
.

The above relation straightforwardly leads to

0 < |Uk| −
√
λk ≤ |Uk| − λkγk < γk|Uk|2 − λkγk

and

0 < 1−
√
λk
|Uk|

≤ 1− λkγk
|Uk|

≤ 1.

Recalling that the definitions in (5) and (6), we immediately
achieve the conclusion that we were proving.

Based on Lemma 1, Lemma 2, and Proposition 1, we can
give the following proof of Theorem 1:

Let rk = ‖vk − x∗‖(AT
Uk−1

AUk−1
)−1 with U−1 = U0, then

it holds that

r2k+1 = ‖vk+1 − x∗‖2(AT
Uk
AUk )

−1

= ‖βkvk + (1− βk)yk − x∗‖2(AT
Uk
AUk )

−1

+ γ2k‖(A(ik)yk − b(ik))(A(ik))T ‖2(AT
Uk
AUk )

−1

− 2γk

〈
βkvk + (1− βk)yk − x∗,

(ATUkAUk)−1(A(ik)yk − b(ik))(A(ik))T
〉

= ‖βkvk + (1− βk)yk − x∗‖2(AT
Uk
AUk )

−1

+ γ2k‖(A(ik)yk − b(ik))(A(ik))T ‖2(AT
Uk
AUk )

−1

− 2γk

〈
βk

(
1

αk
yk −

1− αk
αk

xk

)
+ (1− βk)yk

− x∗, (ATUkAUk)−1(A(ik)yk − b(ik))(A(ik))T
〉

= ‖βkvk + (1− βk)yk − x∗‖2(AT
Uk
AUk )

−1

+ γ2k‖(A(ik)yk − b(ik))(A(ik))T ‖2(AT
Uk
AUk )

−1

+ 2γk

〈
x∗ − yk +

1− αk
αk

βk(xk − yk),

(ATUkAUk)−1(A(ik)yk − b(ik))(A(ik))T
〉
, (9)

where the last equality follows from (7).
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Now we are going to estimate the three terms in (9),
respectively. For the first term in (9): since ‖ · ‖2

(AT
Uk
AUk )

−1

is a convex function and βk = 1− λk

|Uk|γk ∈ (0, 1], we have

‖βkvk + (1− βk)yk − x∗‖2(AT
Uk
AUk )

−1

≤ βk‖vk − x∗‖2(AT
Uk
AUk )

−1 + (1− βk)‖yk − x∗‖2(AT
Uk
AUk )

−1

= βk‖vk − x∗‖2(AT
Uk
AUk )

−1 +
λkγk
|Uk|
‖yk − x∗‖2(AT

Uk
AUk )

−1

= βk‖vk − x∗‖2(AT
Uk
AUk )

−1+

λkγk
|Uk|
〈(ATUkAUk)−1(yk − x∗), yk − x∗〉

= βk‖vk − x∗‖2(AT
Uk
AUk )

−1+

λkγk
|Uk|
〈VUkΣ−2Uk V

T
Uk(yk − x∗), yk − x∗〉

= βk‖vk − x∗‖2(AT
Uk
AUk )

−1+

λkγk
|Uk|

(yk − x∗)TVUkΣ−2Uk V
T
Uk(yk − x∗)

= βk‖vk − x∗‖2(AT
Uk
AUk )

−1 +
λkγk
|Uk|
‖Σ−1Uk V

T
Uk(yk − x∗)‖22

≤ βk‖vk − x∗‖2(AT
Uk
AUk )

−1 +
λkγk
|Uk|
‖Σ−1Uk V

T
Uk‖

2
2‖yk − x∗‖22

≤ βk‖vk − x∗‖2(AT
Uk
AUk )

−1 +
λkγk
|Uk|
‖Σ−1Uk ‖

2
2‖yk − x∗‖22

= βk‖vk − x∗‖2(AT
Uk
AUk )

−1 +
λkγk
|Uk|

‖yk − x∗‖22
λmin(ATUkAUk)

< βk‖vk − x∗‖2(AT
Uk
AUk )

−1 +
γk
|Uk|
‖yk − x∗‖22, (10)

where the last inequality follows from λk < λmin(ATUkAUk).
For the second term in (9): using Lemmas 1 and 2, we

easily obtain

Ek
(
γ2k‖(A(ik)y − b(ik))(A(ik))T ‖2(AT

Uk
AUk )

−1

)
= γ2kEk

(
‖(A(ik)y − b(ik))(A(ik))T ‖2(AT

Uk
AUk )

−1

)
≤ γ2k‖yk − x∗‖22 − γ2kEk(‖xk+1 − x∗‖22). (11)

For the third term in (9): we have

Ek
[
2γk〈x∗ − yk +

1− αk
αk

βk(xk − yk),

(ATUkAUk)−1(A(ik)yk − b(ik))(A(ik))T 〉
]

= 2γk

〈
x∗ − yk +

1− αk
αk

βk(xk − yk),

(ATUkAUk)−1Ek
(

(A(ik)yk − b(ik))(A(ik))T
)〉

=
2γk
|Uk|

〈
x∗ − yk +

1− αk
αk

βk(xk − yk),

(ATUkAUk)−1
∑
ik∈Uk

(A(ik)yk − b(ik))(A(ik))T
〉

=
2γk
|Uk|

〈
x∗ − yk +

1− αk
αk

βk(xk − yk),

(ATUkAUk)−1ATUkAUk(yk − x∗)
〉

=
2γk
|Uk|

〈
x∗ − yk +

1− αk
αk

βk(xk − yk), yk − x∗
〉

=
2γk
|Uk|

(
−‖yk − x∗‖22 +

1− αk
αk

βk〈xk − yk, yk − x∗〉
)

=
2γk
|Uk|

(
− ‖yk − x∗‖22 +

1− αk
2αk

βk

(
‖xk − x∗‖22

− ‖yk − x∗‖22 − ‖xk − yk‖22
))

≤ −
(

2γk
|Uk|

+ γ2k−1βk

)
‖yk − x∗‖22 + γ2k−1βk‖xk − x∗‖22.

(12)

Here, the last inequality follows from the definition in (5) of
the quantity αk and the quadratic equation (4), which lead
to the following equality

1− αk
αk

= |Uk| ·
|Uk|γk − 1

|Uk| − λγk
=
|Uk|γ2k−1

γk
.

Hence, with the substitution of (10), (11) and (12) into (9)
we can obtain

Ek(r2k+1) < βk‖vk − x∗‖2(AT
Uk
AUk )

−1 +
γk
|Uk|
‖yk − x∗‖22

+ γ2k‖yk − x∗‖22 − γ2kEk(‖xk+1 − x∗‖22)

−
(

2γk
|Uk|

+ γ2k−1βk

)
‖yk − x∗‖22

+ γ2k−1βk‖xk − x∗‖22
= βk‖vk − x∗‖2(AT

Uk
AUk )

−1 − γ2kEk(‖xk+1 − x∗‖22)

+ γ2k−1βk‖xk − x∗‖22, (13)

where the last equality is a consequence of the quadratic
equation (4).

Defining two scalar sequences {Ak} and {Bk} as follows:

B2
k+1 =

B2
k

βk
, A2

k+1 = γ2kB
2
k+1

with
Ak ≥ 0, Bk ≥ 0 and B0 6= 0.

It is easy to see that Bk+1 ≥ Bk for any k ≥ 0 due to
βk ∈ (0, 1]. On the other hand, by using equation (4), we
can obtain

A2
k+1 =

B2
kγ

2
k

βk
=

A2
kγ

2
k

βkγ2k−1
=

A2
kγ

2
k

γ2k − γk/|Uk|
,

which implies that {Ak} is an increasing sequence. Also, it
follows from directly computations that

B2
k+1γ

2
k = A2

k+1, B
2
k+1βk = B2

k, B
2
k+1βkγ

2
k−1 = A2

k.

Hence, multiplying both sides of (13) by B2
k+1, we have

B2
k+1Ek(r2k+1) +A2

k+1Ek(‖xk+1 − x∗‖22)

< B2
k‖vk − x∗‖2(AT

Uk
AUk )

−1 +A2
k‖xk − x∗‖22,

i.e.,

Ek(B2
k+1r

2
k+1 +A2

k+1(‖xk+1 − x∗‖22))

< B2
k‖vk − x∗‖2(AT

Uk
AUk )

−1 +A2
k‖xk − x∗‖22. (14)

By taking the full expectation for both sides of (14), we can
obtain

E(B2
k+1r

2
k+1 +A2

k+1(‖xk+1 − x∗‖22))

< E(B2
k‖vk − x∗‖2(AT

Uk
AUk )

−1 +A2
k‖xk − x∗‖22).
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By applying induction to the above inequality, we can get

E(B2
k+1r

2
k+1 +A2

k+1(‖xk+1 − x∗‖22))

< E(B2
k‖vk − x∗‖2(AT

Uk
AUk )

−1 +A2
k‖xk − x∗‖22)

< · · · · · ·
< B2

0r
2
0 +A2

0‖x0 − x∗‖22
= B2

0r
2
0.

Therefore, we have

E(‖xk+1 − x∗‖22) <
B2

0

A2
k+1

r20. (15)

Besides, it is straightforward to check that

B2
k = B2

k+1

(
1− λk
|Uk|

γk

)
= B2

k+1

(
1− λkAk+1

|Uk|Bk+1

)
,

hence,
λk
|Uk|

Ak+1Bk+1 = (Bk+1 +Bk)(Bk+1 −Bk).

Using the fact that Bk ≤ Bk+1, we can obtain

λk
|Uk|

Ak+1Bk+1 = (Bk+1 +Bk)(Bk+1 −Bk)

≤ 2Bk+1(Bk+1 −Bk),

i.e.,

Bk+1 ≥ Bk +
λk

2|Uk|
Ak+1.

Furthermore, by denoting

λkmin := min{λ0, λ1, · · · , λk},

we immediately get

Bk+1 ≥ Bk +
λkmin

2|Uk|
Ak+1. (16)

On the other hand, we have

A2
k+1

B2
k+1

− Ak+1

|Uk|Bk+1
= γ2k −

γk
|Uk|

=

(
1− λkγk

|Uk|

)
γ2k−1

= βkγ
2
k−1 =

βkA
2
k

B2
k

=
A2
k

B2
k+1

,

and furthermore
1

|Uk|
Ak+1Bk+1 = A2

k+1 −A2
k

= (Ak+1 +Ak)(Ak+1 −Ak)

≤ 2Ak+1(Ak+1 −Ak),

therefore,

Ak+1 ≥ Ak +
Bk+1

2|Uk|
≥ Ak +

Bk
2|Uk|

. (17)

By combining the inequalities (16) and (17), we can obtain(
Ak+1

Bk+1

)
≥

(
1 1

2|Uk|
λk
min

2|Uk|
1

)(
Ak
Bk

)

≥

(
1 1

2|Uk|
λk
min

2|Uk|
1

)(
1 1

2|Uk−1|
λk
min

2|Uk−1|
1

)(
Ak−1

Bk−1

)
≥ · · ·

≥

(
1 1

2|Uk|
λk
min

2|Uk|
1

)(
1 1

2|Uk−1|
λk
min

2|Uk−1|
1

)
· · ·
(

0
B0

)
.

Using the Jordan decomposition of the following matrix(
1 1

2|Uk|
λk
min

2|Uk|
1

)
=

(
−
√

1

λk
min

√
1

λk
min

1 1

)
·1−

√
λk
min

2|Uk|
0

0 1 +

√
λk
min

2|Uk|

 · (− 1
2

√
λkmin

1
2

1
2

√
λkmin

1
2

)
,

we can obtain(
Ak+1

Bk+1

)
≥

(
−
√

1

λk
min

√
1

λk
min

1 1

)1−
√
λk
min

2|Uk|
0

0 1 +

√
λk
min

2|Uk|


· · ·
(
− 1

2

√
λkmin

1
2

1
2

√
λkmin

1
2

)(
0
B0

)
.

Letting

δ̂k =

k∏
i=0

(
1−

√
λkmin

2|Ui|

)
and δ̌k =

k∏
i=0

(
1 +

√
λkmin

2|Ui|

)
,

then the above inequality can be rewritten as(
Ak+1

Bk+1

)
≥

(
−
√

1

λk
min

√
1

λk
min

1 1

)(
δ̂k 0
0 δ̌k

)
(
− 1

2

√
λkmin

1
2

1
2

√
λkmin

1
2

)(
0
B0

)
=

(
B0

2
√
λk
min

(δ̌k − δ̂k)

B0
2

(δ̌k + δ̂k)

)
,

which implies

Ak+1 ≥
B0

2
√
λkmin

(δ̌k − δ̂k) and Bk+1 ≥
B0

2
(δ̌k + δ̂k).

Hence, with the substitution of these two bounds into (15) we have

E
(
‖xk+1 − x∗‖2(AT

Uk
AUk )−1

)
<

4λkmin‖x0 − x∗‖22
(δ̌k − δ̂k)2

.

IV. NUMERICAL EXPERIMENTS

In this section, we implement the GRK algorithm and our
proposed AGRK algorithm on a consistent linear system (1) in
MATLAB (R2016b). The coefficient matrix A ∈ Rm×n of (1) is
selected from the University of Florida sparse matrix collection [26]
and the matrix collection randomly generated by MATLAB function
randn(m,n) with different m and n. We set the right-hand side
b is set to be Ax∗, where x∗ is the solution vector generated
by randn(n,1). In addition, we set ‖A(i)‖2 = 1 for any
i ∈ {1, 2, · · · ,m}. All experiments are performed on a workstation
with 2.67 GHz central processing unit (Intel(R) Core(TM) i5 CPU),
4.00 GB memory, and Windows operating system (Windows 10).

The numerical performance of GRK and AGRK are evaluated
with respect to the iteration counts (shorten as ‘IT’) and the
computation time in seconds (shorten as ‘CPU’). All experimental
results are the average of 50 times of repeated runs of the GRK
and AGRK algorithms. We set the initial guess x0 to be zero vector
for all experiments and terminate the iterations when the relative
solution error (RSE) at the current iterates xk satisfy

RSE =
‖xk − x∗‖22
‖x∗‖22

≤ 10−6.

A. Comparison of GRK and AGRK on random data
In order to select an appropriate parameter λk at the kth iterate

of the AGRK algorithm, we must calculate the minimum nonzero
eigenvalue of ATUkAUk , which is the extremely arithmetically
expensive step in AGRK algorithm. Considering the substantial
amount of computation needed per iteration, in our experiments, we
use (1 −

√
|Uk|/n)2 as the approximate value of λmin(ATUkAUk )

according to the random matrix theory [27]. In addition, since the
coefficient matrix A ∈ Rm×n has been normalized to have unit
row norm, λmin(ATUkAUk ) ≤ 1, and note that λmin(ATUkAUk ) < 1
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unless |Uk| = 1. Therefore, the parameter λk at the kth iterate of
the AGRK algorithm can be chosen as

λk ≈ (1−
√
|Uk|/n)2p for any p ∈ {1, 2, · · · }. (18)

For the random matrices, we study the computational behavior of
the AGRK algorithm under different p values, and the correspond-
ing algorithm is abbreviated as AGRK(p). We show the log10(RSE)
versus the IT and the CPU time in Figures 1-2. From these two
figures, we observe that, for each p ∈ {1, 2, 3, 4, 5, 6}, AGRK(p)
algorithm succeeds in solving the Gaussian systems and converges
faster than the GRK algorithm in terms of both iteration counts and
computing times. Loosely speaking, for a smaller value of n such
as n = 50, the iteration counts and the computation times of the
AGRK(4) are at least two and two times of those of the GRK, while
for a larger value of n such as n = 80, the iteration counts and
the computation times of the AGRK(4) are at least two and four
times of those of the GRK, respectively. By comparing Figures 1
and 2, we see that when m is very close to n, the AGRK algorithm
converges faster and faster with respect to the increase of the p
value.
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Fig. 1. log10(RSE) versus IT and CPU for GRK and
AGRK(p) on random Gaussian system with m = 100 and
n = 50, 80.

B. Comparison of GRK and AGRK for real-world non-
random data

For a random matrix A ∈ Rm×n whose entries are i.i.d. Gaussian
with mean 0 and variance σ2 = 1, we can use (18) to estimate
the minimum nonzero eigenvalue λmin(ATA) of symmetric matrix
ATA. However, for a non-random matrix A = (aij) ∈ Rm×n, that
is, the mean of aij , i = 1, 2, · · · ,m; j = 1, 2, · · · , n is not 0, and
the variance σ2 is not 1, the quantity (18) can no longer be used to
estimate λmin(ATA). In this case, we are giving here the following
quantity presented in [28]

(1−
√
m/n)2σ2

to estimate λmin(ATA), because the nonzero mean only affects
λmax(ATA), and the variance that is not equal to 1 only affects
the multiple of λmin(ATA) (see, e.g., [29], [30]). Therefore, the
quantity (1−

√
m/n)2σ2 can be used as an upper limit on the value

of λmin(ATUkAUk ) at each iteration step of the AGRK. Of course,
this estimation is not optimal, but it is much cheaper than directly
calculating λmin(ATUkAUk ), so we set λk = (1 −

√
m/n)2σ2

with σ2 being the variance of the corresponding sparse matrices
Stranke94, Can−24, Cities and well1033. Some features of the
above four sparse matrices are listed in the following table.
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Fig. 2. log10(RSE) versus IT and CPU for GRK and
AGRK(p) on random Gaussian system with m = 1000 and
n = 500, 800.

TABLE I: Some properties of Florida sparse matrices.
Name Stranke94 Can−24 Cities well1033
m× n 10× 10 24× 24 55× 46 1033× 320
density 90.00% 27.77% 53.04% 1.43%
cond(A) 51.73 77.75 207.15 166.13

In Figure 3, we show the log10(RSE) versus IT and CPU for the
above four sparse matrices. The curves in Figure 3 show that the
RSE of the AGRK is decaying more quickly than that of the GRK
when the iteration counts or CPU time is increasing.

After analyzing Figures 1-3, we can conclude that when the
coefficient matrix of (1) is very close to square matrix, the AGRK
algorithm with appropriate choice of λk converges much faster than
the GRK algorithm.

V. CONCLUSION

Nesterov’s acceleration scheme was first successfully employed
in the coordinate descent algorithm, later in the RK and the SKM
algorithms, and has been further applied to the GRK algorithm. We
have established the convergence theory for the resulting algorithm
and derived an estimate about its convergence rate depending on the
geometric properties of the submatrices of the coefficient matrix and
on the size of a subset of the constraints at each step. Numerical
experiments show that our proposed algorithm performs better than
the GRK algorithm in both IT and CPU for consistent linear system
with m ≥ n, especially for the case where m is very close to
n. In addition, the proposed algorithm can be more efficient than
the GRK algorithm if the parameter λk in Algorithm 2 can be
estimated more accurately. In fact, for our proposed algorithm, it is
difficult to determine the best parameter λk due to the difficulty of
estimating the smallest nonzero eigenvalue of the submatrix at each
step. Hence, in the future, we plan to use the quantity εk defined
in (2) instead of Uk defined in (3) and select λk associated with εk
to construct a new accelerated GRK algorithm to avoid estimating
the smallest nonzero eigenvalue of the submatrix at each step.
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