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EAST: Extensible Attentional Self-Learning
Transformer for Medical Image Segmentation

Na Tian, Wencang Zhao

Abstract—Existing medical image processing models based
on Transformers primarily rely on self-attention mechanisms to
capture short-range and long-range visual dependencies. How-
ever, this approach has limitations in modeling the global con-
text of full-resolution images, resulting in the loss of significant
details. In order to address these issues, we propose an Extensi-
ble Attentional Self-learning Transformer (EAST) architecture
for medical image segmentation. In EAST, tokenized images
are input into an extensible attention module, enabling the
training of multi-scale representations that effectively capture
both fine-grained local interactions and coarse-grained global
relationships. This allows for more comprehensive learning of
semantic information. The obtained features are then passed
through a self-learning module, further refining the represen-
tations of different samples to generate a more accurate feature
map. To handle high-resolution images, the EAST architecture
utilizes a U-shaped structure and skip connections for sequential
processing of extensible attention feature maps. Experimental
results on the Synapse dataset and ACDC dataset demonstrate
the superior performance of our EAST architecture compared
to other methods. Additionally, the EAST model is capable
of capturing more detailed information, leading to precise
localization of structures.

Index Terms—Transformer, Medical image, Extensible atten-
tion, Self-learning.

I. INTRODUCTION

EDICAL image segmentation methods used in
computer-aided diagnosis and image-guided surgery

tasks require high accuracy and robustness [1]. The main-
stream approaches for medical image segmentation primarily
rely on convolutional neural networks (CNNs) [2], such as
U-Net [3] and its various derivatives [4—8]. However, these
methods often suffer from the limitation of convolutional
localization, which hampers their ability to effectively model
and understand contextual information, as shown in Fig. 1(a).
To address this limitation, there is an urgent need for efficient
networks in medical segmentation that can leverage the ad-
vantages of both local and global attention mechanisms. The
Transformer architecture [9], known for its superior global
processing capabilities, emerges as a promising alternative to
CNN and has gained significant attention in recent research.
With the widespread success of Transformer architecture
in natural language processing (NLP) [9, 10] and computer
vision (CV) [11-13], numerous researchers have started to
investigate its potential for enhancing the local modeling
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capabilities of CNN. Transformer architectures excel in cap-
turing global contextual semantics, allowing them to capture
both short-range and long-range visual dependencies. Indeed,
this advantage often comes at the cost of requiring large-
scale pre-training and involving computationally expensive
quadratic operations. As a result, the processing speed of
Transformer-based models may be compromised, particularly
in the context of medical image analysis.

In recent studies, researchers have made attempts to in-
tegrate Transformer architectures with CNN for medical
image segmentation. Chen [15] introduced Vision Trans-
former, combining the locality of convolution and the global
strategy of Transformer to mitigate the need for large-scale
training. Cao [16] explored the use of pre-training Swin
Transformer for medical image segmentation, demonstrating
the feasibility of replacing CNN backbones with convolution-
free models. At this time, considerable researchers attempted
various methods of combining CNN with Transformer [17-
19] to achieve medical segmentation. However, these pure
Transformer approaches have revealed weaknesses, including
a tendency to overlook low-level details and high computa-
tional costs. Moreover, most Transformers focus on modeling
the global context of all stages as shown in Fig. 1(b), neglect-
ing fine-grained positioning information and the correlation
between different samples, leading to coarse segmentation.

To address the global modeling limitations of Transform-
ers, some researchers have explored the use of different atten-
tion windows as illustrated in Fig 1(c). Liu [12] introduced
shifted windows, which restrict self-attention calculations
to non-overlapping local windows. Dong [14] developed
cross windows for parallel computing to form cross-shaped
windows with Self-attention of horizontal and vertical stripes.
Huang [20] proposed criss-cross attention by considering
row attention and column attention alternately to capture
global context. But these approaches are still limited to a
few areas of attention interaction and fail to establish close
relationships between samples.

With the purpose to overcome these issues, we introduce
an Extensible Attentional Self-learning Transformer (EAST)
for medical image segmentation. Our goal is to develop a
pure Transformer architecture that is completely convolution-
free and capable of capturing both short-range and long-
range correlation information. The EAST model combines
extensible attention to learn multi-scale attention maps and
self-learning to integrate correlation information between
different samples. As illustrated in Fig. 1(d), EAST over-
comes the limitations of traditional transformers in medical
image segmentation. It enhances the localization capabilities
of convolutional methods while leveraging the benefits of a
pyramid structure to learn multi-granularity features.

The core component of our EAST model is the EL block,
which consists of the EA (Extensible Attention) and SL
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Fig. 1. The operation comparisons of different structures. From left to right: (a) CNNs: U-Net [3], Res-Unet [6], etc. (b) ViT [11], (c) The variants of

ViT: Swin Transformer [12], CSwin Transformer [14], etc. (d) EAST (ours). The colored blocks in the CD represent the attention-handling process of the
Transformer. By comparing the convolution operation and window attention operation of different network architectures, our EAST can realize the finer
division of the window and interact with the global semantics to greatly increase the accuracy of medical image segmentation.

(Self-Learning) modules, as illustrated in Fig. 2. EA is de-
signed to capture both local and global information through
its attention-based step-wise expansion operations, as shown
in Section III-Al and Fig. 4. This allows the model to
attend to different regions of the image and capture relevant
features at multiple scales and resolutions. In addition, skip
connections make it possible to refine low-level information
extractions through a U-shaped structure, as described in
Section III-B. By combining EA and skip connections, our
model effectively captures both local and global information
while preserving important low-level information. This can
contribute to more accurate and robust segmentation results
for medical images.

Furthermore, our EAST model incorporates a self-learning
module, which plays a crucial role in improving the accuracy
of segmentation predictions while reducing model complex-
ity. This module leverages a self-attention mechanism to
focus on different parts of the feature map and learn the
relationships between them. By integrating the self-learning
module into the model, we are able to refine the features
and generate more representative feature maps. The details
of the self-learning module are described in Section III-A2
and visualized in Fig. 5. These components are combined to
form a pyramid structure within EAST, enabling the model
to expand its processing from local to global image contexts.
This architecture enhances the accuracy of segmentation
results and improves performance on challenging medical
image datasets.

Our proposed medical image segmentation model is
unique in that it is the first to use a multi-scale self-learning
approach without the use of convolutional neural networks.
We make several significant contributions in our approach:

e We introduce the Extensible Attentional Self-learning
Transformer, which enables the processing of medical
feature maps at multiple scales and resolutions. This
leads to more accurate and efficient feature extraction.

e The EA module is introduced to handle multi-scale
attention maps, significantly improving segmentation
and positioning accuracy.

e The traditional feedforward neural network is replaced
with an SL module that integrates information from
different samples, resulting in improved segmentation
accuracy while reducing model complexity.

e We construct a U-shaped pure Transformer network

specifically tailored for medical image segmentation,
demonstrating excellent performance and robustness.
The effectiveness of our approach is validated through
experiments on the Synapse and ACDC datasets.

II. RELATED WORK

Medical image segmentation, which involves the pixel-
level separation of organs or lesions from medical images,
has benefited greatly from the success of convolutional neural
networks (CNNs). CNNs have played a crucial role in achiev-
ing accurate segmentation in medical images. However, re-
searchers have been exploring the integration of transformers
in medical image segmentation to address the limitations of
CNNs and improve segmentation accuracy. In recent years,
there have been significant efforts to introduce transformers
into the medical field, aiming to maximize segmentation
accuracy. In the following section, we will present and
analyze the progress made by CNNs and transformers in the
medical imaging domain.

A. CNN-based methods

With the development of modern science and technology,
deep learning for medical segmentation has become very
prevalent. CNN has been the dominant framework in the
field of image vision for a long time, especially Fully
Convolutional Networks (FCN). Initially, a given image has
been separated into feature maps of arbitrary size by using
a fully convolutional structure [2]. Inspired by FCN, U-net
has undoubtedly become the optimal solution for medical
image segmentation. It has made multi-scale and multi-
granularity prediction possible by adding skip connections
between corresponding low-level and high-level feature maps
of the same spatial size. Zhao [21], Kirillov [22] and Lin
[23] have designed multiple pyramid modules through a
variety of different methods in order to obtain richer se-
mantic information and segmentation results. Hu [24] has
optimized the structure of CNN in a differential evolutionary
algorithm way to achieve global capabilities. For a long
time, everyone researcher has been devoted to exploring
various optimization methods of CNN to obtain accurate
results on corresponding tasks. However, the convolutional
layer in CNN does not have the ability to capture long-range
correlation. Even if optimization methods such as multi-
scale [25, 26] are added, there are still shortcomings like
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Fig. 2. The schematic of our EAST architecture, which consists of Encoder, Decoder and skip Connections. The EL block is the most crucial component
of the entire framework and serves as the core part of implementing extensible attention.

local dependence, difficult training and high cost. How to
obtain a more efficient and multi-scale attention network
architecture has become a direction of constant exploration.
The emergence of Transformer undoubtedly provides a fresh
solution idea to these issues.

B. Transformers

Before the advent of Transformer, most backbones for
medical segmentation were based on CNN [3, 4]. Especially
BERT [10] shining in NLP, researchers have begun to explore
its possibilities in CV. The emergence of ViT [11] has
undoubtedly broken this gap. Although the design of ViT
is a pure transformer model, it is mainly used for image
classification and has certain limitations. After that, the Mi-
crosoft team and those involved in the field are designing the
Transformer for superior performance, including a generic
visual backbone network with partially sliding windows
[12, 13] and its variants [14, 27-29]. Moreover, there are

also researchers devoted to reducing the high computational
costs associated with global attention while improving the
accuracy of attention. For the purpose of obtaining more
regional attention maps and reducing the computational cost
of global self-attention, Dong [14] tried to use a cross-shaped
window to improve. Yang [27] proposed a focal attention
method to focus on a new mechanism of coarse and fine-
grained attention. Wang [28] explored out of the pyramid
visual transformer for dense prediction. Chen [30] pro-
cessed image tokens using cross-attention of two independent
branches to obtain a multi-scale visual transformer. Zhang
[31] explored multi-scale feature maps for high-resolution
encoding to improve ViT. Wang [32] employed cross-scale
attention and Xu [33] utilized co-scale and convolutional
attention mechanisms to enhance image transformers and
more. After seeing the success of transformer and its variants
on various tasks, many medical researchers also want to
transfer it to the field of medical image processing. But
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the accuracy of medical image processing has always been
extremely demanding.

After being heartened by the positive experience of Tran-
sUnet [15], Swin-Unet [16], Msu-Net [25], and Ds-transunet
[34], we are promising for explorations of Transformer in
medical image applications. However, there existed several
serious issues in most transformer experiments. They all
have concentrated excessive attention on global features yet
ignored local details. This has proven to be a significant
challenge for the task of medical image segmentation. To
address this problem, we introduce an extensible attention
mechanism that can process feature maps at multiple gran-
ularities, allowing it to focus on both texture features and
high-level semantic features of the images. By combining
the proposed EAST with the classic U-Net codec and skip
connections, we achieve accurate segmentation of both intra-
and inter-image relationships in medical images.

III. METHODS

At present, medical images are not closely related to the
context so segmentation is not accurate. Most processing
networks can only handle local or global situations, so we
devise the Extensible Attentional Self-learning Transformer
(EAST) architecture in Fig. 2 to solve these issues. This
work is based on a U-shaped encoder-decoder structure with
several skip connections, which can recover low-level spatial
information and mix it with high-level semantic features for
enhancing finer segmentation details. As is demonstrated,
EAST also adopts a similar pyramid structure with [12, 28],
which can help us obtain high-resolution feature maps suit-
able for medical image segmentation tasks. In the encoder
stage, the medical image H x W x 3 is firstly divided into
patches of size 4 x 4, while the feature dimension of each
patch is 4 x 4 x 3 = 48. Then these patches are projected
to the hidden space of the corresponding dimension through
the patch embedding layers. This spatial feature map will
then be fed to EL blocks. Furthermore, the patch expanding
layers[16] are devoted to implementing channel expansion
and up-sampling in the decoder stage. The whole procedure
is served for the fusion of contextual features and multi-
scale semantic features through skip connections. Feeding
the up-sampled features to the linear projection layer is the
ultimate step that could output more accurate segmentation
prediction results. We will explain the core block named EL,
which consists of EA module and SL. module. Then, we will
describe other modules of the overall architecture in EAST.
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Fig. 3. The schematic diagram of the proposed EL block, which contains
Layer Norm, Extensible Attention Module and Self-Learning Module with
residual connections.

A. EL Block

The accuracy of segmentation targets is frequently affected
by the interested region size. For a long time, Transformer
has mostly focused on the global situation. It is difficult to
obtain relatively refined segmentation results. Besides, ViT
results in higher Flops and larger memory consumption with
the fine-grained patch size focusing on images.

Based on these issues, the EL structure proposed by us
includes both EA (Eq. (1)) and SL (Eq. (2)) as illustrated
in Fig. 3. The self-attention is divided by using scalable
windows from local to global in EA. It is a prominent
way to understand the image and avoid ignoring the main
features. The expanded attention windows are then fed into
Multi-Head attention for interactive operations to capture
the relationship between tokens. The output feature map is
processed by SL after passing through LN layer[12]. This
operation aims to improve communication between samples
by using self-learning attention and multi-head attention.
Not only does SL improve the generalization ability by
introducing a self-learning matrix between samples, but also
it continues to improve the ability of single-head attention
by applying multi-head attention.

Thence, the output of the I-th layer in EL block can be
written as follows:

28 =EA(LN (27Y)) + 271, (1)

2' = SL (LN (£)) +2* )

where 2¢ represents the outputs of EA module, ¢ donates the
(-layer feature representation and z* denotes the output after
SL module of the [-th block.

1) EA Module:

For the sake of completing the capture of coarse-grained
and fine-grained targets to obtain attention regions of differ-
ent scales, we introduce the EA module.

In the i-th stage,an input feature map F' is given as
F;_y € RHi-xWiixCizai (' is denoted as an arbitrary
dimension projecting by a linear embedding layer. In Exten-
sible Window, F is firstly divided into Hgl X WTZI patches,
where P is the window partition size. Then we arrange the
attention map in different scales according to the segmenta-
tion size. These tokens are extracted at multiple granularity
levels. In Multi-Head Attention, each patch is flattened and
projected to a C;-dimensional embedding. Windows can
be gradually expanded to the global. Window pooling is
performed at each scaling level to obtain pooled tokens
of different scales. Then the tokens of multiple expanded
windows are concatenated together for a linear mapping to
obtain the query Q € RN**dx key K € RN"*dx and value
V € RN*Xdv 9, 12]. N is the number of patches gotten
from each window. dx and dy are query/key dimension
and value dimension in the embedding space, respectively.

At this point, we can calculate extensible attention:

T

. QK
Attention(Q, K, V) = softmax (
(@5 N

among them, B is the learnable relative position deviation

taken from a smaller-sized bias matrix B€ R(N—1)x(2N+1),

Dividing each element of QK7 by the square root of \/d is

+B> )]
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Fig. 4. An illustration of our expanded attention module. The feature
maps are subdivided into different window sizes of particular granularity.
We first take the most fine-grained window as the query matrix. The tokens
of other relatively coarse-grained windows are connected immediately to
map the key and value matrix. The obtained query, key and value matrix
are combined with learnable relative positional encoding to perform softmax
operation for getting attention results.

to prevent the magnitude of the values from growing wildly
and to help back-propagation well.

To refine feature extraction, we introduce multi-head at-
tention to learn attention operations, where the details are
stated tersely as follows:

MultiHead (Q;, K;, Vi) = Con (ho, hi, ..., hm) WO (4)
h; = Attention (QWZQ, KWK, QWiV) )

where C'on () is the concatenation operation as in [9]. h and
m are denoted as the head and the number of the attention
layer, respectively. The parameter matrices W;9 e Rixdx
WK € Rixdx W,V € RIXdv and W;° € RIX4 are the
projections. W;© as a linear transformation matrix is intro-
duced to make the dimensions of input and output consistent.

With this design, EA could not only pay attention to fine-
grained features in the local region, but also concentrate
on the coarse-grained feature in the extensible region and
the global scope. In addition, the heads are separated by
extracting the query. It can reduce the complexity of the
network while obtaining accurate segmentation.

2) SL Module:

SL module is proposed in this work to achieve more
accurate and less complex segmentation tasks. Its main
process is shown in Fig. 5 in detail, and then we will describe
it formulaically.

Assume that the given/ feature map input after Layer Norm
in Fig. 3 is Fgp, € RN X4 where N’ denotes the number
of pixels in images and d denotes the number of feature
dimension. We follow the design rule of External Attention

[35] that all samples share two different memory units Mg €
R%*4 and My € R%*, in which the main self-learning unit
of EAST will be constituted. ,

The feature Fisy, first obtains the query matrix Q € RY *9
through the linear mapping of the self-attention mechanism.
The attention between input pixels and self-learning memory
cells is computed via the learnable key matrix, which is
calculated as:

:L';’j = (QMKT) (6)

where x;] is the similarity between the i-th row Mpg. In
order to avoid the input features being too sensitive to scale
and ignoring the correlation between feature maps, double
normalization [36] is introduced. The operation in Equations
(7) and (8) is to normalize columns normalization and rows
respectively.

z;; = exp (‘T;j) /Zemp (lej) (7N
K
vig =,/ exp (] k) ®)
K

where the simplified calculation of z;; is expressed as
z;; = Norm (QMF). The obtained attention map is then
calculated more accurately with the learnable value matrix
My, to improve the self-learning ability of this network as
follows:

Fou = ;;My = (Norm (QMg)) My~ (9)

where Fj,,; is the output of attentional feature map. SL
continues to use multi-head attention to enhance the ability of
the self-learning matrix, where each head can activate regions
of interest to varying degrees. Its multi-head self-learning
module can be written as:

Fous = MultiHead (F, Mg, My) (10)
= CO’I’L(hl,hg,...,hH) WO (11)

where Con (-) is the concatenation operation. h; denotes
the i-th head and H denotes the number of heads. Wy is
similar to WZ—O in EA module to make the dimensions of
input and output consistent. After this module, we could get a
novel learnable attention map. The concatenated linear layer
and the normalized layer are operated for connecting internal
pixels to external elements.
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Fig. 5. The schematic process of our self-learning module. Query matrix
is obtained through linear embedding, while My and My, are the main
learnable memory units used in this module.

B. Other Module of EAST

Our implementation of the extensible attention feature
extraction model EAST relies on several modules, including
EL blocks, skip connections, patch merging layer, and patch
expanding layer.
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1) EL Block:

The EL blocks are used to extract high-level features from
the input data. These blocks use the attention of Transformer
to extract features at multiple scales. The EL blocks are
used in Section III-A to extract features that are sensitive
to different spatial resolutions.

2) Skip Connection:

Skip connections are used to connect the output of a deep
layer to a shallower layer, which allows for the integration of
information from different depths. This helps to mitigate the
vanishing gradient problem and allows the network to better
capture both local and global information. To fuse multi-scale
features obtained from the encoder with up-sampled features,
skip connection is introduced. Its structure and function are
mostly the same as U-Net [3]. Skip connection could reduce
the loss of spatial information due to down-sampling and
ensure the reusability of features. The dimension of the
concatenated features has remained the same as the dimen-
sion of the up-sampled features. Moreover, we compared
and discussed in detail the influence of the number of skip
connections on EAST in Section IV-D3.

3) Patch Merging Layer:

The patch merging layer is used to reduce the dimension-
ality and merge features across different spatial locations.
This is done to reduce the data volume and to allow for
the efficient processing of large images. As the network
gets deeper, the number of tokens increases dramatically.
Therefore, we use the patch merging layer to reduce its
number and achieve the purpose of generating hierarchical
representations. A patch merging layer concatenates the
features of each group of 2 x 2 neighboring patches and
applies a linear layer on the 4C-dimensional concatenated
features. This operation down-samples the resolution of the
features by 2x, and the output dimension is set to 2x. Then
it is applied for feature transformation in EAST. This process
is carried out three times in the encoder stage, and the output

resolutions are % x W H o W and 3% x W respectively.

8° 16 7 16 32°

4) Patch Expanding Layer:

The patch expanding layer is responsible for restoring
the dimensionality and resolution of the merged features.
This is done to preserve spatial information and to allow
for the extraction of features at multiple scales. It is the
inverse operation of patch merging layer, which expands the
resolution of the input features by 2x. And the size of the
input features is reduced to 1/4 of the original. This layer
is employed four times in the decoder stage, and the feature

outputsareﬂxw ﬁxﬂand%x%andeW,

] 16 ~ 16> 8 8
respectively.

Overall, these modules work together to extract extensible

attention features from the input data, which can be used for

medical image segmentation.

IV. EXPERIMENTS
A. Datasets

1) Synapse multi-organ segmentation dataset (Synapse):

We utilized the public multi-organ dataset from the MIC-
CAI2015 Multi-Atlas Abdomen Labeling Challenge contain-
ing 30 abdominal CT scans. According to the setting of
TransUnet [15], the dataset was divided into a training set
with 18 samples and a test set with 12 samples.

For a fair comparison, we used the average Dice Similarity
Coefficient (DSC) and the 95% Hausdorff Distance (HD95)
as evaluation criteria to verify its segmentation performance
for 8 abdominal organs (aorta, gallbladder, spleen, left kid-
ney, right kidney, liver, pancreas, spleen and stomach).

2) Automated Cardiac Diagnosis Challenge dataset
(ACDC):

ACDC is also a public dataset, which is the result of
cardiac MRI scans collected from different patients. The MR
images of each patient were labeled with left ventricle (LV),
right ventricle (RV) and myocardium (MYO).

Here, we randomly divided the dataset into 70 training
samples, 10 validation samples and 20 test samples similar
to TransUnet [15]. We have continued to report with DSC
to validate our experiments.

B. Implementation Details

The Extensible Attentional Self-learning Transformer is
executed with Pytorch and all experiments are performed on
4 NVIDIA GTX 1080Ti GPUs. We augment the data with
random flips and rotations to increase the diversity of the
data. The size of the input images is set to 224 x 224 for
all methods. Our model is trained from scratch on ImageNet
[40]. During training, the default batch size is 12 about 200
epochs. The model is back propagated with the Adam [41]
optimizer learning rate 0.01, momentum 0.9, and weight
decay le-4.

C. Experiment results

We experimentally compared the Synapse multi-organ
segmentation dataset with the most advanced methods [3,
11, 15, 16, 37-39], as shown in Table I. First of all, it
can be seen that the traditional CNN methods still have
good performance. But it has been proven to be effective by
adding a Transformer or using pure transformer architecture.
These frameworks could achieve better results than CNN in
a certain extent. Among them, R50 U-Net, R50 Att-Unet,
and R50 ViT are all compared according to the setting mode
of TransUnet [15]. Compared with V-Net [37], DARR [38]
and ViT [11], other methods have reached more than 70%
of DSC, but still have high HD. The experimental results
are present that this method achieves the best segmentation
effect, reaching 79.44% DSC and 19.28mm HD on Synapse.
It is not difficult to see that our algorithm achieves an
accuracy improvement of 0.31% and 2.27% in DSC and
HD evaluation indexes. Compared with CNN models (e.g.
R50 U-Net, R50 Att-Unet, U-Net, Att-Unet) or Transformer-
related models (e.g. R50 ViT, TransUnet, Swin-Unet [16]),
our experiments all obtained higher DSC and lower HD.
And our model has achieved better segmentation results. Fur-
thermore, it demonstrates the best segmentation performance
for individual organs, namely Kidney (L), Liver, Pancreas,
and Stomach, surpassing the best results by 0.63%, 0.24%,
0.74%, and 0.32%, respectively.

The progress of the experimental results in these two
indicators proves that the method of gradually expanding
attention proposed by us is feasible. Fig. 6 also shows some
segmentation results. It can also be observed from this figure
that our framework can increase the accuracy of segmentation
to a certain extent. EAST architecture could learn high-level
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Fig. 6. The qualitative verification and comparison of different methods’ segmentation results on the Synapse multi-organ CT dataset. From left to right:
(a) Ground Truth, (b) Swin-UNet, (c) TransUNet, (d) EAST (ours). Our prediction results exit finer division and more accurate segmentation.

semantic features and low-level texture features at the same
time, and realize accurate positioning and segmentation.

In order to evaluate the generalization ability of EAST
model, we also train and test the medical image segmentation
on the ACDC dataset. The results are shown in Table II,
we still chose some state-of-the-art methods for comparison.
The experimental results are displayed that our method has
higher accuracy, which is similar to our results on Synapse.
Although our method has 0.25% improvement compared
with Swin-Unet [16], the success and improvement of these

experiments prove that the framework has excellent general-
ization ability and robustness.

D. Ablation Study

We conducted ablation research on the main components
of EAST to investigate the effectiveness of the proposed
expanded attention and self-learning structure and explore the
impact of image input scale and number of skip connections
on the accuracy of model segmentation.
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TABLE 1
PERFORMANCE COMPARISON OF DIFFERENT SEGMENTATION EXPERIMENTAL RESULTS ON THE SYNAPSE MULTI-ORGAN SEGMENTATION DATASET.
THE AVERAGE DSC %, HD IN MM AND THE AVERAGE DSC OF EACH SINGLE ORGAN ARE PRESENTED RESPECTIVELY.

Methods Aorta  Gallbladder  Kidney(L) Kidney(R) Liver Pancreas Spleen  Stomach  DSC HD
V-Net [37] 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98 68.81 -
DARR [38] 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96 69.77 -

R50 U-Net [15] 87.74 63.66 80.60 78.19 93.74 56.90 85.87 74.16 74.68  36.87
R50 Att-UNet [15] 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95 75.57 3697
U-Net [3] 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58 76.85 39.70
Att-UNet [39] 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75 76.85 39.70
ViT [11] 44.38 39.59 67.46 62.94 89.21 43.14 75.45 69.78 61.50 39.61
R50 ViT [15] 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95 71.29  32.87
TransUNet [15] 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62 7748 31.69
Swin-UNet [16] 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60 79.13  21.55
EAST (ours) 87.39 67.57 83.91 77.88 94.53 57.46 89.85 76.92 79.44  19.28
TABLE II

THE PERFORMANCE DEMONSTRATION OF CARDIAC SEGMENTATION IN
ACDC DATASET BY USING SOME DIFFERENT METHODS. THERE ARE
ALSO SHOWN THE SEGMENTATION RESULTS FOR MYO AND LV.

Methods DSC RV MYO LV
R50 U-Net 87.55 87.10 80.63 94.92
R50 Att-UNet  86.75 87.58 79.20 93.47
ViT 81.45 8146 70.71 92.18
R50 ViT 87.57 86.07 81.88 9475
TransUNet 89.71 88.86 84.53 95.83
Swin-UNet 90.00 88.55 85.62 95.83
EAST(ours) 90.25 88.82 86.07 95.87

1) The influence of EA / SL:

We attempt to delete EA or SL in our experimental
architecture to verify the validity of the proposed module.
The experimental results are listed in Table III. Experiments
show that EA and SL are pretty vital for the model, and the
lack of any module will lead to a decline in performance.
In summary, EAST can achieve better segmentation perfor-
mance, and it is indispensable to extensible attention and self-
learning. The experiment illustrates the importance of inter-
sample information interactions, since SL is more volatile
for the results. EA, on the other hand, is less volatile for the
results, which we suspect is because Transformer itself has
global strengths. In addition, the addition of skip connections
to lower-level information can compensate for its attention
from local information in some way. A later experiment on
the ablation of the number of skip connections confirmed
this assumption.

TABLE III
RESULTS OF ABLATION EXPERIMENTS ON DIFFERENT MODULES OF
EAST. SEPARATE TESTS ON THE INFLUENCE OF EA AND SL MODULES
ON SEGMENTATION RESULTS

Methods EA  SL DSC HD
EAST 7 X 79.02 20.86
EAST X J 7897 2173
EAST J J 7944 1928

2) The influence of image input scale:

Fig. 7 shows the input resolution of 224 x 224 and 512 x
512 experimental results. When we utilize 512 x 512 size
as an image input, the input sequence length of Transformer
will get larger. The larger size makes the experimental results
more excellent and the segmentation results more accurate.
However, the model accuracy is improved at the expense of
computing speed and increasing computing overhead. Like
TransUnet [15] and Swin-Unet [16], we still use the default

resolution of 224 x 224 for reducing the computing overhead
and improving the network computing speed.
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Fig. 7. Ablation study on the influence of image input scale about the

average DSC (%) and the accuracy of various organs (%). It is proved that
a larger input size has higher performance.

3) The influence of the number of skip connections:

It has been mentioned before that skip connection is
extremely profitable for EAST. It allows the extraction of
low-level spatial information to enhance the region of interest
for segmentation in detail. The main interest of this ablation
is to measure the effect of the number of skip connections
on the segmentation performance.

The skip connections in EAST are located at resolution
levels of 1/4,1/8,1/16. The average DSC and its scores on
the 8 organs are compared in Fig. 8 by varying the number
of skip connections to 0,1,2,3. For the “1-skip” setting, we
only added skip connections in the 1/4 resolution range. For
the “2-skip” setting, we added skip connections in the 1/4
and 1/8 resolution range.

The more skip connections we add, the superior the
segmentation will be. It increases the segmentation of small
organs even more. When skip connections are added for the
first time, the segmentation performance is raised up even
faster. This experiment verifies that skip connections are
critical for extracting low-level detail. In fact, our validation
shows that EAST (72.98%) performs much better than Swin-
Unet (72.46%) without any skip connection, which demon-
strates the superiority of the EA and SL modules for medical
image processing. The best average DSC and HD shown in
Fig. 8 could be gained by inserting skip connections into all
three up-sampling steps of the EAST (i.e., in the 1/4, 1/8
and 1/16 resolution range). Therefore, we have adopted this
configuration for EAST.
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Fig. 8. Ablation study on the influence of the number of skip connections
about the average DSC(%) and the accuracy of various organs (%). It shows
that the best performance is achieved when the number of skip connections
is 3, which is the chosen number in EAST.

V. CONCLUSION

Accurate image segmentation plays a crucial role in medi-
cal imaging applications, as it can greatly enhance diagnostic,
therapeutic, and surgical outcomes. In order to achieve pre-
cise segmentation and improve overall effectiveness, we pro-
pose a robust and efficient visual Transformer named Exten-
sible Attentional Self-learning Transformer (EAST) specif-
ically designed for medical image segmentation tasks. By
leveraging the Extensible Attention (EA) and Self-Learning
(SL) modules, our model is capable of capturing image
information accurately and comprehensively. Additionally,
our model benefits from its global processing capabilities,
allowing it to process image features in a sequential man-
ner and enhance semantic understanding through the U-
shaped structure. Through extensive experiments conducted
on the Synapse and ACDC datasets, we have demonstrated
the capable performance and generalization ability of our
proposed algorithm in the auxiliary task of medical image
segmentation.

VI. DATA AVAILABILITY

The data that support the findings of this study are avail-
able from the corresponding author upon reasonable request.
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