
 

  

Abstract— Cloud computing platforms like OpenStack use 

orchestration as a crucial component in the deployment and 

administration of cloud services. For the deployment and 

management of virtualized resources, these platforms mainly 

rely on orchestration techniques. Cloud orchestration services 

like Service Function Chaining (SFC) have benefited from 

lower costs and increased scalability for cloud computing 

platforms thanks to the introduction of technologies like 

Software-Defined Networking (SDN) and Network Function 

Virtualization (NFV). The use of gRPC APIs and an SDN 

switch with P4 support is described in this research as an 

innovative method for enhancing SFC orchestration service in 

OpenStack computing platforms. The proposed approach uses 

a P4 enabled SDN switch and gRPC APIs to enhance network 

performance in data plane communication with the underlying 

infrastructure and performance in terms of service creation 

time between the SFC orchestration services. Our evaluation's 

findings demonstrate that this strategy greatly boosts the 

orchestration service's performance, making it more 

appropriate for usage in extensive cloud-based deployments. 

Additionally, the possibility of combining gRPC APIs and P4 

switch to improve the efficiency and flexibility of orchestration 

service in cloud computing platforms is demonstrated by the 

performance analysis of the proposed approach on numerous 

platforms across diverse use cases. 

 
Index Terms— GRPC, Orchestration, OpenStack, P4, REST. 

 

I. INTRODUCTION 

loud computing platforms are utilized for offering 

infrastructure-as-a-service (IaaS) and platform-as-a-

service (PaaS) capabilities. These platforms 

empower cloud service providers to efficiently create and 

oversee virtual machine (VM) instances, storage, and 

networking resources within a cloud environment [1].  

 

Through the provision of Application Programming 

Interfaces (APIs) and Graphical User Interfaces (GUIs), 

users are enabled to automate and control the process of 

creating and managing cloud resources. The Software-

Defined Networking (SDN) architecture separates the  
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control plane and data plane in a network. SDN aims to 

deliver a highly flexible software-driven network that 

supports dynamic and high-bandwidth applications, such as 

cloud computing, while ensuring superior performance and 

minimal overhead [2]. Network functions virtualization 

(NFV) enhances networking flexibility and agility by 

enabling the implementation of network functions in 

software, which can run on standard servers instead of 

relying on specialized hardware [3]. The combination of 

cloud computing platforms and technologies like SDN and 

NFV enables the establishment of more adaptable and agile 

networking in modern data centers and cloud environments. 

This empowers organizations to create and manage their 

networking resources swiftly and easily.  

 

A. SFC Orchestration on SDN and NFV Platform 

The effective deployment of infrastructure or a platform 

as a service in a cloud computing environment like 

OpenStack [4] relies heavily on the concept of Service 

Function Chaining (SFC) orchestration. SFC orchestration 

utilizes the combined power of SDN and NFV technologies 

to construct and manage intricate networking and computing 

environments [5]. NFV simplifies the deployment and 

configuration of instances by virtualizing network functions. 

On the other hand, SDN, a networking architecture, 

decouples the control and data plane, enabling the 

implementation of complex SFC. Through well-defined 

SDN APIs, the SDN controller acts as an abstraction layer 

between the control and data plane. The utilization of both 

SDN and NFV technologies contributes to enhancing the 

flexibility and scalability of SFC orchestration, enabling 

more efficient management of resources. 

 

B. Components of SFC orchestration in OpenStack 

Within the context of SFC orchestration in OpenStack, 

two crucial components are Open vSwitch (OVS) [6] and a 

REST (Representational State Transfer) API [7]. To execute 

the intended SFC, OVS is crucial in the creation and 

management of virtual switches. On the other hand, the 

REST API enables programmatic access to the functionality 

of the OVS-based network while facilitating communication 

between the key orchestration components. One of the most 

effective OpenFlow implementations is OVS, which is well 

known for this. In many different scenarios, including 

servers, hypervisors, and containers, it is widely used to 

provide virtual networking. OVS performs the function of a 

virtual switch for the installation of virtual networking in 
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cloud computing environments like OpenStack. By utilizing 

the OVS and REST APIs within OpenStack's Neutron 

networking service, users can create VM instances and other 

resources while enabling seamless communication between 

these components [8].  

 

C. Advancing OpenFlow to P4 

Due to its drawbacks, such as fixed header fields and the 

requirement to implement a newer version of the protocol, 

the OpenFlow protocol has drawn criticism. Additionally, 

the number of research contributions aimed at enhancing 

OpenFlow has decreased because of the advent of the 

Domain Specific Language (DSL) known as Programming 

Protocol-Independent Packet Processors (P4) [9]. P4 is 

becoming more popular as a competitive substitute, 

especially in the field of programmable data planes [10]. 

Through capabilities like customization, stateful packet 

processing, high programmability, and an efficient method 

for introducing new protocols from SDN controllers to 

switches [11], it provides more flexibility. The growing 

popularity of P4 signifies its potential to address the 

shortcomings of OpenFlow and provide advanced 

capabilities for network programming. 

 

D. Contributions of the Paper 

The performance of REST API and OVS in OpenStack 

cloud environments has raised concerns, especially when 

deploying services like IaaS. However, the evolution of 

networking components and APIs within OpenStack 

indicates that integrating P4-based SDN solutions and gRPC 

APIs could significantly enhance the performance of cloud-

based connectivity services. P4 offers greater 

programmability and flexibility compared to OVS, enabling 

more efficient and advanced network management. It can be 

leveraged to implement advanced networking features and 

achieve high-speed packet processing. On the other hand, 

gRPC provides superior performance and efficient data 

interchange, making it particularly valuable for building 

high-performance, low-latency services. 

 

The primary focus of this paper is to address the following 

objectives: 

 

1. Enhancing the network performance of the data 

plane in SDN-enabled cloud computing platforms, 

such as OpenStack, by utilizing a P4 software 

switch. 

 

2. Integrating gRPC API with the P4-based solution to 

improve the throughput of SFC orchestration, 

specifically reducing service creation time and 

enabling faster orchestration. 

 

3. Developing SFC use cases and implementing SFC 

orchestration platforms using different 

combinations, including REST API with OVS, 

gRPC API with P4, REST API with P4, and gRPC 

API with OVS. 

 

This paper presents a performance analysis of an SFC 

orchestration strategy developed using gRPC API and a P4-

enabled software switch within the OpenStack cloud 

environment. To the best of our knowledge, this is the first 

attempt to quantify the performance gains achieved through 

SFC orchestration using gRPC API with P4-based SDN 

switch solutions in OpenStack. The analysis aims to explore 

the potential of gRPC API and P4 switch integration within 

OpenStack, paving the way for the platform to evolve into 

an integrated solution for NFV deployments at a production 

level. This integration would contribute to achieving a fully-

fledged virtualized infrastructure management component. 

 

E. Organization of the Paper 

The rest of the paper is structured as follows: Section II 

presents the related work, a brief background of 

technologies and followed by related work with identified 

research gaps. Section III describes the design of the 

proposed orchestration strategy using gRPC API and P4 

switch, including the procedure or algorithm used to 

implement them. Section IV details the deployment 

scenarios and subsequently covers the simulation results and 

comparative analysis for orchestration time and network 

performance. Section V concludes the paper by 

summarizing the research findings and presenting proposed 

future work. 

II. BACKGROUND AND RELATED WORK 

This section gives a brief explanation of the underlying 

technologies before delving into a thorough analysis of 

relevant research on the topic, as well as prior studies that 

have addressed it. It also identifies any research gaps that 

need to be filled. 

 

A. Background 

Open vSwitch (OVS): OVS is an open-source software 

switch that is adaptable and scalable and may be utilized in a 

variety of settings. Numerous technologies and protocols are 

supported, including OpenFlow, which makes SDN 

possible. OVS is a virtual switching system that has grown 

in popularity in cloud environments and is widely used in 

data centers across the world [12]. 

 

P4: P4 is a programming language used to define packet 

processing in network devices. Its primary objective is to 

offer a high-level language for flexible and programmable 

packet processing pipelines. P4 has gained traction in 

programmable networking and is utilized in diverse 

environments such as data centers, service provider 

networks, and enterprise networks [13]. 

 

OpenStack: OpenStack is an open-source platform for 

building and managing cloud computing infrastructure. 

Comprising several components, it provides IaaS 

capabilities, including virtualization, storage, and 

networking functionalities. OpenStack has gained 

significant popularity and is adopted by various 

organizations, including large enterprises, service providers, 

and government agencies [14]. 

 

P4 Switch: P4 switches are network switches that can be 

programmed using the P4 programming language. They 

offer greater flexibility and dynamism compared to 

traditional switches. P4 switches are widely employed in 
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different environments, including data centers, service 

provider networks, and enterprise networks. They play a 

crucial role in SDN and are often used alongside SDN 

controllers to create highly programmable and flexible 

networks [15]. 

 

gRPC: gRPC is a modern, high-performance Remote 

Procedure Call framework that is open-source and platform-

agnostic. It combines efficient inter-process communication 

with a simple, elegant design. The gRPC API enables 

communication between clients and servers using HTTP/2 

as the transport protocol. Protocol buffers, a high-

performance serialization mechanism, serve as the interface 

definition language (IDL) for defining services and data 

structures exchanged between the client and server [16]. 

 

B. Related Work 

The discussion begins by focusing on the performance 

evaluation of network virtualization in cloud computing 

environments utilizing the OpenStack platform. Network 

virtualization enables the creation of virtual network 

infrastructure on top of a physical network, allowing for 

isolated and shared virtual networks for multiple tenants or 

users in the cloud. In a cloud computing system powered by 

OpenStack, the performance evaluation of network 

virtualization scenarios is presented in the research article 

[17]. The study evaluates alternative virtual switch 

implementations and looks at how different network 

topologies affect performance. 

 

In a different study [18], the authors do experiments to 

evaluate the effectiveness of OpenStack's virtual 

networking, specifically for applications involving NFV. 

According to the findings, virtual networking in OpenStack 

demonstrates positive performance traits, such as reduced 

latencies and high throughput. The study also emphasizes 

how virtual networking in OpenStack results in efficient use 

of network resources and lessened network congestion. 

 

Additionally, researchers [19] contend that incorporating 

native SDN into OpenStack can improve the platform's 

networking capabilities. Native SDN integration allows 

advanced networking capabilities like load balancing and 

Quality of Service (QoS) and promotes more effective use 

of network resources. The authors assess the performance of 

OpenStack with and without native SDN integration through 

their evaluation, finding that native SDN integration results 

in better network performance and less congestion. 

Additionally, they discovered that native SDN integration 

facilitates network management and configuration by 

offering more precise control over network behavior. 

 

The evaluation of network performance improvement 

methods for cloud-native network functions (CNFs) is the 

subject of another paper [20]. CNFs, or cloud network 

functions, are software-based network services that are 

implemented in cloud settings and include services like 

firewalls, load balancers, and VPNs. The study investigates 

several methods, including making use of multiple 

processors (cores) for parallel processing, high-speed 

networking interfaces, and offloading and batching to cut 

down on packet processing overhead. The results show that 

the performance of CNF is greatly enhanced by several 

cores and fast networking interfaces. Depending on the 

workload and system design, offloading and batching 

strategies also show performance advantages. The research 

provides several ways to improve CNF network 

performance, with each method's success depending on 

certain conditions and limitations. 

 

Another study [21] investigates how using a high-

performance cloud infrastructure affects NFV performance. 

The authors run tests to gauge NFV performance on a 

powerful cloud platform designed for performance-critical 

applications. The study contrasts the performance of NFV 

on a high-performance cloud system with that of a regular 

cloud system and finds that the high-performance cloud 

environment exhibits noticeably increased performance. The 

results demonstrate that resource-intensive applications or 

those needing low latencies notably benefit from the high-

performance cloud infrastructure. According to the research, 

using a high-performance cloud infrastructure can greatly 

improve NFV performance, especially for applications that 

require performance. 

 

The survey report [11] gives a thorough summary of the 

OpenFlow protocol and how SDN has progressed in favor of 

more adaptable and programmable techniques like P4. The 

authors examine numerous NFV, data center networking, 

and IoT P4 applications and use cases within SDN. The 

report summarizes the body of literature and provides 

insightful analyses of the difficulties and possibilities for 

further study. The authors also execute tests to assess the 

effectiveness and performance of their suggested solution, 

contrasting it with existing NFV implementation strategies. 

For scholars and practitioners interested in the transition 

from OpenFlow to P4 in SDN, this paper is a great resource. 

 

The authors of the paper [22] talk about the drivers for 

implementing hardware acceleration in NFV, highlighting 

the demand for enhanced performance and scalability. To 

offload packet processing work from the CPU, they discuss 

their architecture and implementation, which makes use of 

hardware acceleration technologies including FPGAs and 

NPUs. Another investigation [23] contrasts several 

orchestration techniques applied to the OpenStack cloud 

computing infrastructure. The goal of the paper is to shed 

light on the advantages and disadvantages of various 

orchestration techniques, allowing readers to assess how 

well they work in diverse environments or use cases. 

 

An exploratory study assessing the design quality of REST 

APIs in cloud computing is presented in the research on 

cloud computing APIs in [24]. The authors evaluate the 

design and point out any potential problems or areas that 

may be improved. 

 

Recently, [25] gave a thorough analysis of NFV and SFC 

frameworks. The authors talk about the history and 

inspiration behind NFV and SFC, describe the needs and 

goals of these frameworks, and give an overview of the 

current implementations, which include both closed-source 

and open-source options. They highlight the utilization of 

containerization and SDN in NFV and SFC, as well as well-

known open-source systems like OpenStack and ONOS.  

The paper concludes by identifying open research 

challenges in the field, such as better integration with cloud 
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and edge computing and the development of efficient 

resource allocation algorithms. 

 

C. Summary and Research Gaps in Existing Work 

In the context of orchestration in cloud computing, there 

are several research gaps that can be addressed: 

1. P4-enabled SDN switch integration in cloud 

computing platforms: Additional study is required 

to examine the integration of P4-enabled SDN 

switches, such as P4-based programmable data 

planes, with cloud computing platforms like 

OpenStack. By utilizing P4's skills for controlling 

and processing network traffic, this research may 

concentrate on improving network performance, 

flexibility, and programmability. 

2. Increasing REST API performance: REST APIs are 

frequently used in cloud environments, but there is 

little study on how to do so. Future research can 

concentrate on increasing the throughput and 

response time of REST APIs while considering 

variables like network latency, scalability, and load 

balancing strategies. This study has the potential to 

boost the general effectiveness and responsiveness 

of cloud-based services. 

3. Exploration of alternatives to REST APIs: Research 

may also investigate the viability of alternatives to 

REST APIs as a replacement or addition in cloud 

systems. Emerging technologies like gRPC, which 

offer better performance and effective data 

transmission, might be assessed as part of this 

exploration. Comparing the functionality and 

efficiency of various API solutions might shed light 

on how well-suited they are to various cloud use 

cases. 

4. Addressing orchestration performance: The 

evaluation points out a research hole about 

improving orchestration performance, particularly 

about cutting down on orchestration time. Future 

research can concentrate on creating tactics and 

algorithms to streamline the orchestration 

procedure, cutting down on the amount of time 

needed for service creation and deployment. This 

study can help increase cloud orchestration 

performance overall and resource management 

efficiency. 

 

The capabilities, performance, and scalability of REST APIs 

and OVS in the OpenStack ecosystem can be improved by 

filling in these research gaps. In the end, this will help meet 

the changing demands of cloud computing by improving 

administration and orchestration of cloud infrastructure. 

III. DESIGN AND IMPLEMENTATION 

A. Overview 

Utilizing the gRPC API and a P4-based software switch, 

the architecture depicted in Fig. 1 shows a high-level design 

for implementing orchestration operations in the OpenStack 

cloud computing platform. 

 

 
Fig. 1. SFC Orchestration in SDN and NFV Platform 

 

The OpenStack cloud computing platform serves as the 

cornerstone of this architecture, offering the required 

services and infrastructure for managing and running cloud 

environments. Two essential elements, the gRPC API and a 

P4-based software switch are integrated into this platform to 

enable orchestration operations. As the communication 

interface that allows for interaction and data exchange 

between various system components, the gRPC API plays a 

crucial role. It makes RPC between the various orchestration 

entities effective and high performing. Another crucial 

component of this architecture is the P4-based software 

switch, which controls the virtualized networking features in 

the OpenStack environment. To enable advanced 

networking, it makes use of the adaptability and 

programmability provided by P4, a domain-specific 

language for packet processing. 

 

By enhancing the orchestration processes within the 

OpenStack cloud computing platform, the gRPC API and 

the P4-based software switch enable greater performance, 

flexibility, and programmability in managing virtualized 

networks. To improve the orchestration capabilities in the 

cloud environment, this architecture offers a combination of 

the advantages of gRPC and P4 technologies. 

 

When a cloud customer uploads their VM requirements via 

the OpenStack dashboard, the process of deploying VMs in 

an OpenStack environment gets started. The orchestrator 

component, which oversees the deployment process, then 

receives these requirements. The compute, network, image, 

and identity services, as well as other services offered by the 

OpenStack platform, are all in communication with the 
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orchestrator. Nova is the name of the main part of the 

compute service. The orchestrator uses APIs made available 

by Nova to get the data it needs from other services and 

install the virtual machines on the cloud. To obtain network 

information, the Nova component communicates with the 

neutron-server component of the networking service. 

Similarly, it retrieves image information from the glance-

repository component of the image service. The orchestrator 

also requires authorization from the identity service 

component called Keystone to access and authenticate each 

service. Each of these services within OpenStack has its 

own set of existing REST APIs and gRPC APIs, which are 

used for inter-service communication. These APIs enable 

seamless communication between the services and facilitate 

the deployment of the virtual infrastructure within the cloud 

platform. Once all the requirements are met and the 

necessary information is obtained, OpenStack proceeds to 

deploy the virtual infrastructure in the cloud platform based 

on the user's specifications.  

 

Fig. 2 illustrates a simple scenario depicting a deployed 

single tenant virtual infrastructure with three VM Hosts. In 

this scenario, two of the Hosts are implemented as VM 

Hosts within the OpenStack cloud environment and are 

interconnected. The third Host, referred to as the External 

Host, is implemented as another VM located outside the 

OpenStack cloud and is connected to the rest of the 

infrastructure via a local area network (LAN). 

 

 
Fig. 2. Single Tenet Virtual Infrastructure Connected using Virtual Switch 

 

B. Virtual Network Infrastructure in OpenStack 

OpenStack provides physical nodes and network nodes to 

manage computing and networking resources. These can be 

achieved by either web-based user interface or flexible API 

designed based REST architecture.  Fig. 3 illustrates a 

typical deployment of nodes in OpenStack cloud. The 

components are as follows: 

 

i. Controller node: It is responsible for managing the 

OpenStack components in the cloud platform. 

ii. Network node: It is used to host networking services such 

as internal connectivity for VM and external 

connectivity for connecting to external network. 

iii. Compute nodes: One of the core components of 

OpenStack to execute the VMs. 

iv. Storage nodes: It is used to store VM images and their 

related data. 

v. Management network: Controller nodes manage 

OpenStack cloud services running in different nodes. 

vi. Instance/Data network: It is used for connecting the 

network and the computer nodes for deploying virtual 

tenant networks with internal traffic and VM 

connectivity to the cloud networking services running in 

the network node. 

vii. External network: It is used for enabling connectivity 

outside the internal network. 

 
Fig. 3. Deployment of Nodes in OpenStack 

 

The Neutron component is essential to network management 

in the OpenStack context. Neutron is made to provide users 

and administrators with a versatile interface for managing 

virtual networks. The hub of the Neutron component is the 

Neutron server, which is installed on the controller node. It 

supports the deployment of virtual network infrastructure in 

a dispersed environment and maintains network information. 

The management of multi-tenant networks across numerous 

compute nodes is made possible by Neutron, enabling 

seamless communication between VMs inside the 

architecture. Neutron integrates with SDN technologies to 

efficiently deliver and control network services. By offering 

cutting-edge networking services and features, SDN 

expands Neutron's capabilities. In the OpenStack 

environment, Neutron and SDN allow effective and scalable 

networking services. 

C. Modification to Neutron using P4 Switch 

The cloud user uses the OpenStack dashboard to create 

VMs, networks, and subnetworks in the OpenStack 

environment. The user can define the desired network and 

subnet settings, choose from the available images 

(Operating Systems), and describe the desired VM setup 

using the dashboard. The OpenStack component Neutron 
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oversees conducting network-related operations. Neutron 

generates a port on the designated subnet when constructing 

a VM and connects the VM to that port. The network's 

DHCP service then gives the VM a fixed IP address. Some 

VM instances require external users to be able to access 

them. This is accomplished by giving the VM a floating IP 

address that permits external access. The network node is set 

up with VM-specific forwarding rules to facilitate this. The 

OpenFlow protocol is then used to push these rules to the 

software switch, in this case the OVS.  

  

 
Fig. 4. OpenFlow based Switch and Modified P4 Switch. 

 

Fig. 4 shows how OpenFlow and a modified P4 method can 

be combined in an SDN context. Although OpenFlow 

allows for the dynamic addition of flow rules for network 

traffic, its data plane capabilities are fixed. In contrast, the 

P4 language allows for programmability of the SDN's data 

plane, enabling customization of data plane protocols.  

 

The proposed framework leverages a P4-enabled SDN 

switch, which offers programmability to the data plane. It 

exposes this programmability to the application plane 

through gRPC APIs. This allows external applications to 

interact with the dedicated data plane module via the gRPC 

API provided by the SDN controller. It's worth mentioning 

that the existing OVS, which is an OpenFlow-based switch, 

has an API based on the REST architecture.  

 

However, the proposed modification involves integrating P4 

switches with external applications, enabling them to 

interact with the data plane module using the gRPC API 

provided by the SDN controller. 

 

D. Integration and Implementation 

To enable SFC orchestration using gRPC API and P4 

switch in the OpenStack cloud computing platform, the 

following algorithm outlines the necessary configuration 

steps and workarounds for successful integration: 

 

Step 1: Deploy the OpenStack infrastructure and its 

components (Nova, Neutron, Keystone, Glance) in a virtual 

environment. 

 

Step 2: Configure the P4 switch by mapping IP addresses, 

subnet masks, and default gateway settings to establish 

connectivity with the deployed OpenStack servers. 

 

Step 3: Install and configure the OVS with the appropriate 

IP address and port settings to connect to the P4 switch. 

 

Step 4: Install the gRPC library on the OpenStack server to 

enable gRPC communication. 

 

Step 5: Create gRPC services and configure the gRPC server 

by defining the service address, service port, and gRPC 

service proto file. This file generates the necessary support 

files for the gRPC server and gRPC client. 

 

Step 6: Create a gRPC client that can utilize the gRPC 

services to create service functions with the required 

parameters. Import the gRPC client library generated in step 

5 for this purpose. 

 

Step 7: Create a REST client that uses the existing 

OpenStack native REST APIs to create service functions 

with the necessary parameters. 

 

Step 8: Create VMs using both the gRPC client (step 6) and 

the REST client (step 7) on the OpenStack environment. 

Test the connectivity between the VMs to ensure proper 

integration. 

 

Step 9: Deploy the SFC with the desired virtual network 

topologies and configurations, leveraging the integrated 

gRPC API and P4 switch. 

 

Step 10: Monitor the performance of the P4 switch with 

OVS and compare it with the performance of the gRPC-

based orchestration services and the REST-based 

orchestration services in OpenStack. 

 

By following these steps, the gRPC API and P4 switch can 

be effectively integrated into the OpenStack environment, 

providing enhanced functionality and performance for SFC 

orchestration. It is crucial to carefully configure the 

integration, considering compatibility and ensuring that the 

right settings are applied to achieve optimal results within 

the OpenStack cloud computing platform. 

IV. PERFORMANCE EVALUATION 

The performance evaluation of the implemented SFC 
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orchestration was conducted to assess two key aspects: 

overall service orchestration time and network performance 

with respect to the P4 switch. Additionally, a comparison 

was made between the performance of the existing system 

and the proposed solution. 

 

1. Overall Service Orchestration Time: The length of 

time required for the service functions to be 

orchestrated within the SFC was measured and 

contrasted between the current system and the 

suggested solution. This comprises the time needed 

for service function configuration, deployment, and 

activation. Using the gRPC API and P4 switch, the 

suggested method seeks to optimize and shorten the 

total orchestration time. 

 

2. Network Performance: Throughput, latency, and 

packet loss were some of the metrics used to assess 

the network's performance. To ascertain whether 

the integration of the gRPC API and P4 switch had 

any effect on network performance, the 

performance of the proposed solution was 

contrasted with that of the old system. This 

assessment aids in determining how well the 

suggested solution manages network traffic and 

provides dependable connectivity. 

 

3. Comparison of Performance: The effectiveness of 

the current system and the suggested solution were 

thoroughly compared. Analysis of variables such 

overall service orchestration time, network 

performance measurements. Comparing these 

elements makes it feasible to spot any performance 

enhancements or downsides made by the suggested 

solution. 

 

The performance evaluation sheds light on the advantages 

and disadvantages of the suggested solution in comparison 

to the current system. It helps assess whether faster service 

orchestration and better network performance will result 

from the combination of the gRPC API and P4 switch in the 

OpenStack system. These findings aid in evaluating the 

viability and efficacy of the suggested approach for SFC 

orchestration on the OpenStack cloud computing platform. 

 

A. Test Bed: Prerequisites and Simulation Parameters 

The proposed orchestration model for the OpenStack 

cloud computing server is tested using the following 

parameters: 

 

• Server image: Ubuntu 20 server 

• Server image size: 1.45 GB 

• RAM: 512 MB allocated per each server image 

• Number of Virtual CPU (VCPU): 4 

• OpenStack version: Wallaby 

• OpenFlow enabled switch: OVS 

• P4 software switch model: BMv2 

• Network performance tool: iperf2 

 

The system is deployed on a virtual machine (VM) with 

Ubuntu 20 operating system, which has 12 GB RAM and 

100 GB storage. The server image used is Ubuntu 20 server 

with a size of 1.45 GB. Each server image is allocated 512 

MB of RAM and has 4 virtual CPUs (VCPU) available. 

 

The OpenStack version used for the deployment and testing 

is Wallaby. The P4 software switch model chosen is BMv2, 

which provides programmability to the SDN's data plane 

and enables customization of data plane protocols. 

 

For analyzing the network performance, the iperf2 tool is 

utilized. This tool allows measuring the throughput and 

performance of the network. 

 

By conducting the testing and analysis with these 

parameters, the proposed orchestration model can be 

evaluated for its performance and functionality in the 

OpenStack cloud computing environment. 

 

B. Results: OVS and P4 Switch 

The network performance of the OVS and P4 switch was 

assessed by conducting experiments using the iperf2 tool. 

The experiments focused on sending UDP packets and 

evaluating the results for different scenarios involving 

varying bandwidth allocation and session time. The findings 

from these experiments are presented in Table I to Table IV. 

 

The findings of the network performance analysis performed 

on the OVS switch are presented in Table I: Network 

Performance on OVS (UDP Packets, Varying Bandwidth 

Allocation). The studies comprised delivering UDP packets 

with changing bandwidth allotments while maintaining a 

consistent session length.  

 

The outcomes of the network performance assessment on 

the P4 switch are shown in Table II: Network Performance 

on P4 Switch (UDP Packets, Varying Bandwidth 

Allocation). Similar to Table I, UDP packets were 

transmitted with varied amounts of bandwidth while keeping 

the session time constant.  

 

The results of the network performance evaluation carried 

out on the OVS switch are presented in Table III: Network 

Performance on OVS (UDP Packets, Varying Session 

Time). This time, the studies centered on transmitting UDP 

packets while maintaining a steady bandwidth allotment.  

 

The outcomes of the network performance analysis on the 

P4 switch are shown in Table IV: Network Performance on 

P4 Switch (UDP Packets, Varying Session Time). The tests 

entailed delivering UDP packets with various session 

lengths while keeping the given bandwidth constant. 

 

These tables present valuable insights into the network 

performance of both the OVS and P4 switch under different 

scenarios, allowing for a comparison between the existing 

system and the proposed solution. 
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Based on the results provided in the tables, here are some 

insights: 

Table I: Network Performance of OVS with Varying 

Bandwidth 

 

 

 

• As the allotted bandwidth increases from 10 Mbps to 

100 Mbps, the achieved bandwidth (Bandwidth 

Mbps) also increases accordingly. 

• The amount of data transferred (Transfer Data GB) 

increases with higher bandwidth allocations. 

• Jitter remains relatively low across different 

bandwidth allocations, indicating stable latency. 

TABLE I 

NETWORK PERFORMANCE OF OVS WITH VARYING BANDWIDTH 

Time 
Allotted 

(Seconds) 

Allotted 
Bandwidth 

(Mbps) 

Bandwidth 
(Mbps) 

Transfer Data 
(GB) 

Jitter 
(ms) 

Datagrams 
Sent (bytes) 

Datagrams 
Lost (bytes) 

Packet Loss 
(Percentage) 

PDR (Packet 
Delivery Ratio) 

300 10 9.87 0.346 0.08 255102 2214 0.867888139 0.991321119 

300 20 19.5 0.681 0.114 510206 12415 2.433330851 0.975666691 

300 30 28.4 0.991 0.04 765307 41298 5.396265812 0.946037342 

300 40 37.4 1.309 0.05 1020408 67017 6.567667051 0.934323329 

300 50 46.5 1.62 0.037 1275511 89398 7.008798827 0.929912012 

300 60 55.68 1.941 0.09 1530612 111159 7.262415295 0.927375847 

300 70 64.79 2.259 0.08 1785714 134056 7.507159601 0.924928404 

300 80 73.91 2.576 0.022 2040816 156953 7.690717831 0.923092822 

300 90 83.03 2.894 0.106 2295918 179850 7.833485342 0.921665147 

300 100 92.15 3.211 0.086 2551020 202747 7.947699352 0.920523006 

TABLE II 

NETWORK PERFORMANCE OF P4 ENABLED SWITCH WITH VARYING BANDWIDTH 

Time 

Allotted 

(Seconds) 

Allotted 

Bandwidth 

(Mbps) 

Bandwidth 

(Mbps) 

Transfer Data 

(GB) 

Jitter 

(ms) 

Datagrams 

Sent (bytes) 

Datagrams 

Lost (bytes) 

Packet Loss 

(Percentage) 

PDR (Packet 

Delivery Ratio) 

300 10 9.89 0.345 0.088 255103 2720 1.066235991 0.98933764 

300 20 19.7 0.688 0.097 510205 7037 1.379249517 0.986207505 

300 30 29.7 1.04 0.083 765294 7050 0.921214592 0.990787854 

300 40 40 1.4 0.082 1020409 961 0.094177923 0.999058221 

300 50 50 1.75 0.036 1275511 247 0.019364788 0.999806352 

300 60 60 2.101 0.041 1530610.4 232 0.015157352 0.999848426 

300 70 70 2.453 0.029 1785712.4 198 0.011088012 0.99988912 

300 80 80 2.805 0.017 2040814.4 151 0.007399007 0.99992601 

300 90 90 3.157 0.005 2295916.4 136 0.005923561 0.999940764 

300 100 100 3.51 0.03 2551018.4 120 0.004704004 0.99995296 

TABLE III 

NETWORK PERFORMANCE OF OVS WITH VARYING TIME 

Time 

Allotted 

(Seconds) 

Bandwidth 

Allotted 

(Mbps) 

Bandwidth 

Utilized 

(Mbps) 

Transfer Data 

(GB) 

Jitter 

(ms) 

Datagrams 

Sent(bytes) 

Datagrams 

Lost(bytes) 

Packet Loss 

(Percentage) 

PDR (Packet 

Delivery Ratio) 

300 100 95.7 3.34 0.0585 2550797 107679 4.221386492 0.957786 

600 100 96.5 6.48 0.067 4908267 174957 3.564537137 0.964355 

900 100 95.3 9.62 0.0755 7265737 242235 3.333935704 0.966661 

1200 100 96.1 12.76 0.084 9623207 309513 3.216318635 0.967837 

1500 100 95.9 15.9 0.0925 11980677 376791 3.144989219 0.96855 

TABLE IV 
NETWORK PERFORMANCE OF P4 ENABLED SWITCH WITH VARYING TIME 

Time 

Allotted 

(Seconds) 

Bandwidth 

Allotted 

(Mbps) 

Bandwidth 

Utilized 

(Mbps) 

Transfer Data 

(GB) 

Jitter 

(ms) 

Datagrams 

Sent(bytes) 

Datagrams 

Lost(bytes) 

Packet Loss 

(Percentage) 

PDR (Packet 

Delivery Ratio) 

300 100 100 3.49 0.082 2551030 123 0.004821582 0.999952 

600 100 100 6.73 0.036 3762446 238 0.006325672 0.999937 

900 100 100 9.97 0.107 4973862 353 0.007097101 0.999929 
1200 100 100 13.21 0.095 6185278 468 0.007566354 0.999924 

1500 100 100 16.45 0.113 7396694 583 0.0078819 0.999921 

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

 
______________________________________________________________________________________ 



 

• The packet loss percentage (Packet Loss Percentage) 

increases slightly with higher bandwidth 

allocations. 

• The packet delivery ratio (PDR) decreases slightly as 

the bandwidth allocation increases. 

 

Table II: Network Performance of P4 Enabled Switch with 

Varying Bandwidth 

• Like Table I, increasing the allocated bandwidth 

results in a higher achieved bandwidth. 

• The amount of data transferred increases with higher 

bandwidth allocations. 

• Jitter values remain relatively low across different 

bandwidth allocations. 

• The packet loss percentage is extremely low for the 

P4 enabled switch, indicating excellent packet 

delivery. 

• The packet delivery ratio remains consistently high 

across different bandwidth allocations. 

 

Table III: Network Performance of OVS with Varying Time 

• As the allotted time increases, the bandwidth utilized 

(Bandwidth Utilized Mbps) remains relatively 

stable. 

• The amount of data transferred increases with longer 

time allocations. 

• Jitter values remain relatively low for different time 

allotments. 

• The packet loss percentage is relatively low across 

different time allotments. 

• The packet delivery ratio remains consistently high 

for OVS. 

 

Table IV: Network Performance of P4 Enabled Switch with 

Varying Time 

• Like Table III, the bandwidth utilized remains 

consistently high for different time allotments. 

• The amount of data transferred increases with longer 

time allocations. 

• Jitter values remain relatively low for different time 

allotments. 

• The packet loss percentage is extremely low for the 

P4 enabled switch, indicating excellent packet 

delivery. 

• The packet delivery ratio remains consistently high 

across different time allotments. 

 

Overall, the results indicate that both OVS and the P4 

enabled switch to perform well in terms of network 

performance. The P4 enabled switch demonstrates lower 

packet loss and higher packet delivery ratios compared to 

OVS, showcasing its superior performance. Additionally, 

increasing the allocated bandwidth or time generally leads to 

higher achieved bandwidth and data transfer, while 

maintaining low jitter and packet loss. 

C. Results: SFC Orchestration Time 

The SFC orchestration time was measured for both the 

existing and proposed solutions, considering different use 

cases in the OpenStack cloud platform. The use cases 

represent various scenarios of SFC deployments, and the 

service functions were implemented accordingly. The use 

cases are as follows: 

• Use Case 1: Multiple Ubuntu servers in the same 

network. 

 

• Use Case 2: Ubuntu servers and Load balancer in the 

same network. 

 

• Use Case 3: Ubuntu servers, Load balancer, and Firewall 

function in the same network. 

 

• Use Case 4: Ubuntu servers, Load balancer, Firewall, and 

DNS function in the same network. 

 

• Use Case 5: Two Ubuntu servers, one Load balancer, two 

private networks, two subnet allocations, and one 

router. 

 

• Use Case 6 and Use Case 7: Increased number of users 

simultaneously requesting SFC request for Use Case 5. 

 

Table V presents the results of the orchestration 

performance for the developed use cases. The overall 

orchestration time is calculated by noting the start time 

when the client sends the request and the stop time when the 

SFC request is successfully deployed, along with verifying 

that all the instances have reached the 'ACTIVE' status. The 

SFC orchestration time is determined by calculating the time 

difference between the stop time and the start time. Table V 

provides the gRPC and REST-based SFC orchestration time 

for both the OVS and P4 platforms. 

TABLE V 

SFC ORCHESTRATION TIME 

 OVS P4 Switch 

Use Case 
Number 

REST-SFC 
(seconds) 

gRPC-
SFC 

(seconds) 

REST-SFC 
(seconds) 

gRPC-SFC 

(seconds) 

1 9.88 8.33 8.4 6.88 

2 15.65 11.82 13.49 8.66 
3 21.32 14.31 18.58 10.44 

4 28.43 17.8 23.67 12.22 

5 27.43 13.49 23.61 12.62 
6 58.67 28.22 50.87 26.84 

7 120.81 58.71 104.26 54.06 

 

Based on the results provided in Table V, we can derive the 

following insights: 

 

1. Comparison between OVS and P4 Switch: Overall, the 

P4 Switch platform shows better SFC orchestration 

times compared to OVS. Across all use cases and 

communication protocols (REST-SFC and gRPC-SFC), 

the P4 Switch consistently demonstrates lower 

orchestration times. This suggests that the P4 Switch 

platform offers better performance and efficiency in 

SFC orchestration compared to OVS. 

 

2. Impact of Use Case Complexity: The SFC 

orchestration time rises along with the use case 

complexity. The orchestration times for various use 
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cases within each platform and communication 

protocol can be compared to see this. The orchestration 

time for Use Case 1 is the shortest and Use Case 7 is 

the longest. This demonstrates that the quantity, 

complexity, and configuration of service functions 

affect the orchestration time. 

 

3. Comparison between REST-SFC and gRPC-SFC: In 

comparison to REST-SFC, the gRPC-SFC 

communication protocol often shows faster 

orchestration times. Comparing the orchestration 

timings for the same use case and platform using 

various communication protocols will show this. 

According to the difference in orchestration times, 

gRPC-SFC appears to provide a more effective and 

quick communication method for SFC orchestration. 

 

4. Scalability Considerations: Use Cases 6 and 7, where 

there are more simultaneous SFC requests, have much 

longer orchestration durations than the previous use 

cases. This emphasizes how crucial it is for SFC 

orchestration systems to take scalability and resource 

allocation into account. The orchestration time may be 

impacted when the number of requests and concurrent 

users rise, which could result in performance issues. 

 

To develop and execute SFC orchestration systems with the 

best performance and efficiency, it is important to carefully 

consider the platform, communication protocol, and use case 

complexity. The results show SFC orchestration time for 

different combinations of platforms. The primary results 

show that proposed solution (gRPC based orchestration on 

P4 switch) is better than existing solution (REST based 

orchestration using OVS). 

 

D. Network Performance Analysis: OVS and P4 Switch 

The network performance is compared in terms of 

bandwidth utilized, transfer data, and packet delivery ratio 

(PDR). The performance analysis is generated using results 

obtained from Table I-IV. 

 

Fig. 5 depicts the bandwidth utilization in both the OVS and 

P4 platforms when sending UDP packets for a duration of 

300 seconds with varying allocated bandwidth. The analysis 

reveals that the P4 switch outperforms OVS in terms of 

bandwidth utilization. Particularly, as the allocated 

bandwidth size increases, the P4 switch demonstrates the 

highest utilization. Similarly, Fig. 6 illustrates the bandwidth 

utilization with a fixed allocation of 100 Mbps and varying 

time. The results demonstrate that the performance of the P4 

switch surpasses that of OVS significantly in terms of 

bandwidth utilization.   

 

Fig. 7 and Fig. 8 display the transfer data for varying 

bandwidth and time in both the OVS and P4 platforms. 

Initially, the bandwidth was kept constant at 300 Mbps, and 

by varying the time, it was observed that the P4 switch 

provided marginally higher transfer data compared to OVS. 

On the other hand, when the bandwidth allocation size was 

varied while keeping the time constant, it was evident that 

the P4 switch consistently outperformed OVS as the 

bandwidth increased. 

Fig. 5. Bandwidth Utilization with Varying Bandwidth Allotted 

Fig. 6. Bandwidth Utilization with Varying Time 

Fig 7. Transfer Data with Varying Bandwidth Allotted 

Fig. 8. Transfer Data with Varying Time 
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PDR measures the percentage of successfully delivered 

packets to their intended destination. A higher PDR 

indicates better network performance and effective data 

transmission. Fig. 9 and Fig. 10 illustrate the PDR for 

sending UDP packets in the OVS and P4 platforms. 

Whether it is in varying time or varying allocated 

bandwidth, the P4 switch demonstrates a superior PDR 

compared to OVS, indicating improved network 

performance and reliable packet delivery. 

 

E. SFC Orchestration Performance Analysis 

SFC orchestration systems play a crucial role in rapidly 

creating and managing services in an efficient manner. The 

time required for creating a service in systems is known as 

 

Fig. 9. Packet Delivery Ratio with Varying Bandwidth Allotted 

 

Fig. 10. Packet Delivery Ratio with Varying Time 
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service creation time. In Fig. 11, the service creation time is 

depicted for each of the developed SFC use cases, utilizing 

four different platforms. These platforms are categorized as 

follows:  

• Platform 1: REST-based SFC Orchestration using OVS 

(Existing Solution). 

• Platform 2: gRPC-based SFC Orchestration using OVS. 

 
Fig. 11. Performance of Service Creation Time in SFC Orchestration for Developed Use Cases 

 

 

Fig. 12. Performance of Service Creation Time with SFC Orchestration Platforms 
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• Platform 3: REST-based SFC Orchestration using P4 

switch. 

• Platform 4: gRPC-based SFC Orchestration using P4 

switch. 

 

The results presented in Fig. 11 indicate that the gRPC-

based SFC orchestration (platform 4) exhibits superior 

service creation time compared to platforms 1, 2, and 3 (as 

mentioned in Table V). To gain a better understanding of the 

extent of improvement offered by the proposed solution, the 

percentage improvement in service creation time is 

calculated using the provided equation. 

 

% Improvement = ((OT-NT)/OT) *100       (1) 

 

By using equation (1) and the results from Table V, the 

percentage of improvement in service creation time can be 

calculated by comparing the old time (OT) and new time 

(NT). The calculations yield the following results: 

 

• In the OVS platform, gRPC-based SFC orchestration is 

45.89% faster than REST-based SFC orchestration. 

 

• In the P4 platform, gRPC-based SFC orchestration is 

45.76% faster than REST-based SFC orchestration. 

 

• REST-based SFC orchestration in the P4 platform is 

13.93% faster than in the OVS platform. 

 

• gRPC-based SFC orchestration in the P4 platform is 

13.72% faster than in the OVS platform. 

 

These percentages demonstrate the improvement in service 

creation time achieved by the different orchestration 

methods and platforms. 

 

The results for the developed use cases are categorized 

based on the number of services communicated in the SFC 

request. They are divided into two groups: use case 1 to 4, 

which represent SFC requests excluding network services, 

and use case 5 to 7, which represent SFC requests including 

network services. The classification of the results is shown 

in Table VI. 

 
TABLE VI 

ORCHESTRATION TIME FOR SFC USE CASES 

 OVS PLATFORM P4 Switch Platform 

Use Case 
Number 

OVS- 

REST 

(seconds) 

OVS-
gRPC 

(seconds) 

P4-REST 
(seconds) 

P4- gRPC 

(seconds) 

1 to 7 40.31 21.81 34.69 18.81 

1 to 4 18.82 13.06 16.03 9.55 

5 to 7 68.97 33.47 59.58 31.17 

 

In summary, Table VI showcases the orchestration time for 

different SFC use cases using both the OVS platform and 

the P4 Switch platform. 

1. Use Cases 1 to 7: 

o In the OVS platform, the REST-based 

SFC orchestration takes 40.31 seconds, 

while the gRPC-based orchestration is 

faster at 21.81 seconds. 

o In the P4 Switch platform, the REST-

based SFC orchestration takes 34.69 

seconds, while the gRPC-based 

orchestration is even faster at 18.81 

seconds. 

2. Use Cases 1 to 4: 

o When considering only the first four use 

cases, the OVS platform with REST-based 

orchestration takes 18.82 seconds, 

whereas the gRPC-based orchestration 

reduces the time to 13.06 seconds. 

o Similarly, in the P4 Switch platform, the 

REST-based orchestration takes 16.03 

seconds, while the gRPC-based 

orchestration achieves a faster time of 

9.55 seconds. 

3. Use Cases 5 to 7: 

o Focusing on the last three use cases, the 

OVS platform with REST-based 

orchestration requires 68.97 seconds, 

while the gRPC-based orchestration 

decreases the time to 33.47 seconds. 

o In the P4 Switch platform, the REST-

based orchestration takes 59.58 seconds, 

and the gRPC-based orchestration further 

improves the time to 31.17 seconds. 

These results highlight that the gRPC-based SFC 

orchestration performs better than the REST-based 

orchestration for both OVS and P4 Switch platforms. The 

P4 Switch platform shows improved orchestration times 

compared to the OVS platform, regardless of the 

orchestration method used. 

 

Based on the provided information, the average 

orchestration time for grouped SFC use cases is shown in 

Fig. 12. Using equation (1), the average percentage 

improvement in service creation time can be calculated. The 

results are as follows: 

• Excluding network services (Use Case 1-4): 

o In the OVS platform, gRPC-based SFC 

orchestration is 30.60% faster than REST-

based SFC orchestration. 

o In the P4 platform, gRPC-based SFC 

orchestration is 40.42% faster than REST-

based SFC orchestration. 

o REST-based SFC orchestration in the P4 

platform is 14.82% faster than the OVS 

platform. 

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

 
______________________________________________________________________________________ 



 

o gRPC-based SFC orchestration in the P4 

platform is 26.87% faster than the OVS 

platform. 

• Including network services (Use Case 5-7): 

o In the OVS platform, gRPC-based SFC 

orchestration is 51.47% faster than REST-

based SFC orchestration. 

o In the P4 platform, gRPC-based SFC 

orchestration is 47.68% faster than REST-

based SFC orchestration. 

o REST-based SFC orchestration in the P4 

platform is 13.61% faster than the OVS 

platform. 

o gRPC-based SFC orchestration in the P4 

platform is 6.87% faster than the OVS 

platform. 

The analysis concludes by highlighting the main findings of 

the paper: 

• Using the P4 switch, the network performance of 

the data plane in the OpenStack network has 

improved compared to OVS in terms of higher 

bandwidth utilization, transfer data, and packet 

delivery ratio. 

• By utilizing P4 and gRPC API, the service creation 

time is approximately 50% faster compared to 

traditional orchestration using OVS and REST API 

on the OpenStack platform. 

• For SFC use cases: 

o With P4 and gRPC API, SFC 

orchestration including network 

components is approximately 54.80% 

faster than traditional orchestration using 

OVS and REST API on the OpenStack 

platform. 

o Similarly, using P4 and gRPC API in SFC 

orchestration excluding network 

components is approximately 49.25% 

faster than traditional orchestration using 

OVS and REST API on the OpenStack 

platform. 

Considering all SFC use cases, the overall performance 

indicates that gRPC-based SFC orchestration using the P4 

switch is approximately 53.32% faster than REST-based 

SFC orchestration using OVS. 

 

V. CONCLUSION AND FUTURE WORK 

This research paper introduced and evaluated the 

utilization of gRPC API and P4 switch in SFC orchestration 

within OpenStack. The findings demonstrate significant 

enhancements in network performance and service creation 

time. Specifically, the utilization of P4 switch resulted in a 

notable 7% improvement in bandwidth utilization and a 

corresponding 6% enhancement in packet delivery ratio 

compared to OVS. Furthermore, the orchestration services 

on the P4 platform exhibited a 13% improvement in creation 

time for scenarios involving network services. The 

combination of gRPC API and P4 switch outperformed the 

REST API and OVS in terms of service creation time, 

showcasing a remarkable 50% improvement. The study 

concludes that both gRPC API and P4 switch offer superior 

options for SFC orchestration in OpenStack. The gRPC API 

enables faster and more efficient communication, while the 

P4 switch enhances packet delivery. Incorporating the P4 

switch with gRPC API into the orchestration strategy can 

enhance communication in OpenStack, with a specific focus 

on improving energy efficiency. The measures employed in 

the SFC orchestration design using gRPC API with P4 can 

also be adopted in other cloud orchestration systems to 

enhance energy efficiency. 
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