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Continuous-time Hybrid Markov/semi-Markov
Model with Sojourn Time Approach in the Spread
of Infectious Diseases
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Abstract—The semi-Markov model is another name for
the continuous-time Markov model. This model exponentially
disperses the amount of time spent on each sojourn. This work
aims to develop a model of infectious disease transmission using
a continuous-time hybrid Markov/semi-Markov model. The
model will combine assumptions from the Markov and semi-
Markov models. The sojourn time in the semi-Markov model
may have an exponential or a Weibull distribution, depending
on the circumstances. A hybrid Markov/semi-Markov model
can consist of both types of sojourn time distributions. In
general, there are two parameterizations in the semi-Markov
model: the transition intensity function and the sojourn time
distribution, each of which has a different probabilistic and
inferential perspective. This paper uses data on COVID-19 cases
in DIY, Indonesia, from March 15, 2020, to July 31, 2020.
This research uses four states: susceptible, infected, recovered,
and deceased, where the sojourn time in the susceptible state
is in the Weibull distribution while the sojourn time in other
states has an Exponential distribution. This is because, at the
beginning of the spread of COVID-19, few cases were found,
so the distribution of sojourn time in each state tends to be
constant except for the sojourn time in susceptible states. Under
the semi-Markov model, the Weibull distribution leads to a
dynamic probability with a higher degree of decline and a
slight difference. In the final section, a comparison is made
of the Markov, semi-Markov, and hybrid Markov/semi-Markov
models. The hybrid Markov/semi-Markov model shows the best
results with the smallest AIC value. Next, make a prediction
equation for the SIRD model assuming a hybrid Markov/semi-
Markov, which gives a MAPE < 20%. This means that the
model’s ability to predict COVID-19 cases is good.

Index Terms—hybrid Markov/semi-Markov, sojourn time,
transition intensity, continuous-time, epidemic model.

I. INTRODUCTION

N epidemiology, the transmission of infectious diseases

can be modelled using deterministic and stochastic mod-
els. The multi-state Markov model helps describe how an
individual can move between states in continuous-time. The
primary objective of modeling infectious diseases is to ana-
lyze the spread and provide the government with solutions for
controlling the spread. As happened at the end of 2019, the
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coronavirus outbreak spread worldwide to cause a pandemic.
Infected people reach hundreds of millions of people and
cause the death of around six million people worldwide.

The multi-state model has been applied to various
health conditions, including screening for abdominal aortic
aneurysms [1], problems after lung transplantation [2], heart
transplant problems [3], [4], liver cancer [5], infeksi HIV
infection and AIDS [6], [7], complications of diabetes [8],
[9], and breast cancer screening [10].

The duration of time spent in state k before transitioning to
state [ is entirely dependent on state k, which is a property of
the Markov model. In addition, the sojourn time distribution
is memoryless, which means that it does not take into account
the length of conceivable lengths in a given state. The
distribution of sojourn time is Exponential distribution. How-
ever, such assumptions may result in arbitrary constraints
in practice. The semi-Markov model, which can be viewed
as an extension of the Markov model is an alternate model
capable of addressing this issue. Markov and semi-Markov
models have both benefits and drawbacks. The primary
advantage of the Markov model is its apparent simplicity.
This makes interpreting and comprehending Markov models
more accessible when simulating the spread of infectious
diseases. In comparison, the semi-Markov model allows the
length of time to be in a specific state due to a broader
distribution of sojourn times. This justifies developing a
hybrid model that combines both assumptions.

The contribution of this study is the combination of
semi-Markov and Markov models that are applied to the
continuous-time infectious disease epidemic model with four
states, namely susceptible, infected, recovered, and deceased.
In this study, vaccinated states were not included due to lim-
ited research data, where COVID-19 data in several countries
did not include individuals infected with COVID-19 who had
been vaccinated. This study employs the Exponential and
Weibull distributions to model sojourn time. Then a theorem
is formulated to predict the number of COVID-19 cases in
the SIRD epidemic model under the continuous-time hybrid
Markov/semi-Markov assumption.

Previous work of ours on COVID-19 has covered topics
such as the use of transition intensity for the determination
of reproduction numbers [11], [12], the implementation of
a discrete-time Markov model for the spread of the virus
[13]-[15], and the prediction of the COVID-19 space using
a Richards curve model for the single-wave [16], [17]. The
extension of the Richards curve model for the multi-wave
[18] case. In addition, insight into the discrete time Markov
chain model contributes to the use of the [19] continuous
time Markov chain model.
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The remaining parts of the manuscript are laid out in
the following order. Section II discusses the sojourn time
approach, the sojourn time distribution consisting of Expo-
nential and Weibull distributions. Section III discusses the
hybrid Markov/semi-Markov model and several advantages
model, including the ability to capture a fixed effect duration,
which is advantageous when minimizing the number of
parameters to be estimated. In addition, we also develop
theorems based on the hybrid Markov/semi-Markov model.
Section IV applies the SIRD epidemic model with four states:
susceptible, infected, recovered, and deceased. COVID-19
case data from the DIY Special Region in Indonesia is
analyzed to see if the model strictly adheres to Markov
assumptions. If not, then the semi-Markov assumption will
be used for each transition using test statistics to produce
transition probabilities. Lastly, section V contains the con-
clusion.

II. SOJOURN TIME APPROACH

As already established in the semi-Markov process, a
Y., can be formed from the state and the respective jump
durations using the pair {Z,,, W,,},>0. The parameters sup-
porting this formation consist of the transition probabilities
of the embedded chain, py; = Pr(Z, =1|Z,_1 = k), and its
distribution from the sojourn time for each transition k — [,
provided in Fy(w) = Pr(H, < w|Z,—1 =k, Z, =1),w >
0.

Embedded chain transition probabilities are frequently
represented as a stochastic matrix, P = [pg;] (where pgr = 0
is set). Moreover, given that the distribution of sojourn time
is continuous, this distribution is frequently represented in
several ways, such as survival and density functions.

The survival function is

Skl(w) = Pr(Hn > w|Zn—1 = k7 Ly = l)
= 1= Fu(w) ()

(Ski(w) is a descending function, where Si;(0) = 1 and
lim Sk (w) = 0). The density function of the sojourn
w——400
time is
Pr(H, € (w,w+ Aw)|Zp,_1 =k, Z, =1)
Aw

fri(w) = lim

Aw—0

2

The density function of each distribution used for
continuous-time is presented as follows [20].

1) Weibull distribution (Y ~ WEI(y; A, 7))
r—1 r
I (g) e_(%) , y>0

fly) =9 A\A
0, 1y otherwise

3)

If » < 1 the monotonic hazard level goes down;
if » = 1 the hazard level is constant (Exponential
distribution), and if » > 1 the monotonic hazard level
increases [21].

2) Exponential distribution (Y ~ EXP(y; \))

Le-tv y>o0

€ ) y

fly) =4 A “4)

0, y otherwise

The continuous sojourn time distribution uses two distri-
butions: the Exponential distribution and the Weibull distri-
bution. If there are two states, namely k and [, the hazard
function which is often considered as the probability of a
transition occurring at a specific interval ¢ = (w, w + Aw)
without any transition before the time w, is written as

. Pr(H,€9|Zp1=k,Z,=1,H, >w)
lim

pi(t) =

Aw—0 Aw

_ 1 Pr(Hn S g|Zn—1 = k,Zn = l)

T Aws0 AwPL(H, > w|Zn_1 = k, Zn = 1)

_ Julw) o
Ski(w)

The duration spent in state k before changing to state [ is
represented by a survival function, denoted as
Ski(t) = Pr(H, > w|Zn,1 =k Z, = l)

So to show the survival function of the sojourn time in state
k at the time, w can be written as

Sk(w) = Pr(H, >w|Z,_1=k)
B B _\Pr(Hy, > w|Z, 1 = k)
= PI'(Zn—”Zn,l—k) PI‘(Zn:”Zn_l :k)
= prSk(w)
= > puSu(w) (6)
k#l

The relationship between the sojourn time approach and
the transition intensity function approach according to [21]
can be obtained using conditional probabilities. The relation-
ship is described as follows

)  Pr(Hy € g, 20 = U|Znr =k, Hy > w)
i (w) = Aligo Aw
. - PI‘(H S g, = Z‘Zn 1= ki)
Aw=0  Aw Pr(Hn > w|Z, = k)
_ prfr(w)
 Sk(w)
 prSk(w) fru(w)
N Sk(w) Skl(w)
Pr1Sk1(w)

A. The Sojourn time is Exponential distributed

Equation (4) can be used to determine the survival function
and the hazard function of the Exponential distribution as
follows.

Skl(w) = 1—Fk1 )

= 1—/ fr(y

= 1—/ Zem Y dw
O A
1
1 (e hg)

— e @)
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So we can also get the hazard function from the following
Exponential distribution.

R
Lot
ot
N e‘%w D\ ©)

The following transition intensity function can be obtained
using the relationship in the Equation (7).

1

1 —x;w
~ a6 H
firt(w) = pry — (10)
Dkme km
m#k

B. The Sojourn time is Weibull distributed

Equation (3) can be used to determine the survival and
hazard functions of the Weibull distribution where the scale
and shape parameters for the transition from & to [ are Ay
and 7y, is obtained as follows.

Skl(w) = l—Fkl(w)
= 1- fr(y) dy
0
w 77 y ,'771 (y n
= 1—/ —<7) e(k) dy
0 A\A
w -1 ,(g)"
n(3)" e B
= 1- d
A e
w n—1lg (%)n
_ 1—/ ny X dy (11)
0
n—1,—(%)" n
to do Ow %dy, for example u = 7 then
d n—1 Nigyl=n
c_ or dy = — Y du so that the following
dy AN
results are obtained.
-1
w gy w -1 -
_(x Afgyl—n
/ B 2 VR / L (_ y du)
0 0 n

P\

w
= —/ e “du
0

Equation (12) can be substituted for the survival function in
Equation (11) to obtain the following form.

@ pyn—te=(X)"
1— [ "7y
/0 oY

1—/ e “du
0

= ey

- 14 (e(%" - 1)

= (3 (13)
So that the hazard function can also be obtained from the
following Weibull distribution.

pri(w) = gkl(

12)

Skl(w) =

g

(14)

The following transition intensity function can be obtained
using the relationship in the Equation (7).

p e—(w//\kl)"kl w E N —1
; Dk Preme™ (W Amm) T Xy \ A
K (w)w™ 1 (15)

fort (w)

III. HYBRID MARKOV/SEMI-MARKOV EPIDEMIC MODEL

Both the semi-Markov and the Markov models have their
positive and negative aspects to consider, primarily because
the Markov model is more superficial. This makes it easier
to interpret and comprehend conventional Markov models
when simulating the spread of infectious diseases. Due to a
broader distribution of sojourn times, the semi-Markov model
simultaneously permits quantification of the time spent in
a given state. This provides the context for the authors’
development of a hybrid model that incorporates Markov
and semi-Markov assumptions into a multistate model. In
addition, the estimations contain a limited number of factors
and are not too demanding in terms of the availability of
data.

The steps for implementing the continuous time hybrid
Markov/semi-Markov epidemic model are described as fol-
lows.

1) Use the chi-square test described by [22] to determine
whether or not the transition from state k to state [
can be considered a Markov transition. A Markov test
must determine if the transition probability from the
current state to the subsequent state is independent
of the previous state. Written as Pr(ml|l, k), which is
the probability of transitioning from state k to state
(k <1< m), this is the probability of transitioning to
state k. If the Markov property is satisfied, pgim = Dim.

A test to determine whether a Markov chain is second
order or not is defined as follows by [22]:

Hy DPlim = P2lm = " = Pkim = Pims
Im=1,2,....,d.
H, is a second-order Markov chain

The following is the value of the chi-square test
statistic for the null hypothesis:

- A2
2 (pklm - plm)
=3 gy Rm ZPim) (16)
klm DPim
where
d
Z Nklm
~ _ Nkim and B — =1
Pkim = d Pim = d d
> Nklo > 2 Mklo
=1 k=1 o0=1

d is the number of states used. The degree of freedom
used is d(d — 1) If x? > x?,, then H is rejected. It
may be seen from this that the multi-state model does
not conform to the Markov model. Hypothesis testing
can also use the p-value. If p-value is less than the
given significance level, then Hj is rejected.

Examining whether or not the semi-Markov model
holds true at the level of the distribution of sojourn

2)
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times hy;. In continuous-time, utilizing the Equation
(15), where Kj;(w) represents all components of
fut (w) omitting w)!, — 1. The form K, (w) can be used
to determine if the approximation of the transition in-
tensity function is of the Weibull type. A Weibull-type
representation will follow if Kj;(w) is independent of
w.

3) The transition from state k to [ can be considered a
Markov chain if the sojourn time of hg; is exponen-
tially distributed for continuous-time.

4) Finds the transition probability of each transition be-
tween states.

Theorem 1: If there is a susceptible vector at time w
(S(w)), an infected vector at time w (I(w)), a cured vector at
time w (R(w)) and vectors that die at time w (D(w)), The
following is how the prediction equation for an individual
who has been infected with an infectious disease at time
w + 1 for a semi-Markov system can be generated.

§ nzI

nn(w + 1)pu)

L(w+1) pk1+z (nu(w + 1)pr—
=1

a7

Proof: The SIRD epidemic model includes four states.
Therefore, it can be expressed as follows.

S(w) + I(w) + R(w) + D(w) =N

A change from a susceptible condition will increase in the
infected state. In the meantime, it will reduce if a shift to a
condition of recuperation or death occurs. Both claims can
be expressed as

Ilw+1) = S(w+1)

D(w + 1)

—S(w) + I(w) + R(w + 1) +

Suppose we are aware of how many people were present
in each state at time w. In that situation, the value of
the Binomial random variable ny;(w) is determined by the
parameters ny(w) and py;, which leads to the predicted value
presented in the next paragraph.

g (w) = ng(w — 1)pr

Similarly, the expected value of n;,,+1(w) reflects the
number of people who make their way out of the diseased
state, either by recovering or passing away.

3

l)vkl
D) (rgr + drr)

g(w —

g(w —

Nk m—+1 (w)

3

In the meantime, ng;(w + 1) reflects the number of persons
from vulnerable states who have recently become infected,
and has a value of S(w + 1)s; as its predicted value. The
resulting equation for making predictions looks like this.

§ nkl

Given R(w+1), D(w+1),no;(w+1) with expected values
R(w 4+ 1)r; and D(w + 1)d;. The expected value from the

’LU+1 +n01w+1)—vkl(w+1) (18)

equation (18) is obtained.

d
n(w + 1) Z w)prr + S(w +1)s; —
Rlw-+ D - Dlw+d (19
So that the SIRD epidemic model is obtained
d
(w+1) Z ngx(w)prr + Z (nu(w + 1)pr—

nIl('LU + 1)pu) -

|

IV. APPLICATION OF THE CONTINUOUS-TIME SIRD
EPIDEMIC MODEL

Fig. 1. SIRD epidemic model.

The first step, use the following hypothesis in conjunction
with Equation (16) to determine whether or not the SIRD
epidemic model satisfies Markov characteristics.

Hy
H,y

P1im = P2lm = P3lm = Pdlm, lam: 1727374‘
is a second-order Markov chain

Hyj states that the Markov property is satisfied. Under the
null hypothesis, the test statistic x? in this model with four
states is distributed x? with degrees of freedom 4(3)? with
o = 0.05 significance level. The formula for calculating the
value of x? is as follows.

X2 _ Z gy tm — Pim) pklm plm)
klm plm
B e — D ~ =~ 2
= ng (P123A p23) + o (P124A P24)
P23 P24
= 102.48
with x2 , = X(o 05:36) = ©0-998. Because the value of X% >

Xtab then Hj is rejected. The conclusion that can be drawn
from this is that the SIRD epidemic model does not meet
the conditions set forth by Markov.
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Fig. 2. Goodness-of-fit plots for fitted distributions of probability of

transition from a susceptible to infected state.

Second step, test every transition that occurs using the
help of Software R, namely package “fitdistplus”. The fitdis-
trplus package is a generic package that aims to help fit uni-
variate parametric distributions with censored or uncensored
data. The method used is the maximum likelihood estimation.
Each transition is made a histogram plot, and then the suit-
ability of the distribution used is seen and tested for the two
distributions used in this study, the Exponential and Weibull
distributions. Regarding the transition from susceptible to
infected, the results in Figure 2 are obtained where the most
suitable distribution is the Weibull distribution. As for the
other transitions after testing, they all meet the Exponential
distribution assumption.

Histogram and theoretical densities
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Fig. 3.  Goodness-of-fit plots for fitted distributions of probability of

transition from infected to recovered state.

TABLE I

ESTIMATION OF THE TRANSITION PROBABILITY OF EACH MODEL

Model Transition || Distribution Dij
1—2 Exponential 1.00
Markov 2—3 Exponential 0.96
24 Exponential 0.04
1—2 Weibull 1.00
semi-Markov 2—=3 Weibull 0.95
2—4 Weibull 0.05
1—2 Weibull 1.00
hybrid Markov/semi-Markov 2—3 Exponential 0.96
2—=4 Exponential 0.04

After getting the results of the distribution of each transi-
tion between states, the next step is to compare the Akaike
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Fig. 4. Goodness-of-fit plots for fitted distributions of probability of

transition from infected to deceased state.

Information Criterion (AIC) values of each model used.
Table II shows that the best model used to make short-
term predictions is the hybrid Markov/semi-Markov model,
which shows the smallest AIC value, where the sojourn
time distribution used is the Weibull distribution and the
Exponential distribution.

TABLE II
CONTINUOUS-TIME MODEL AIC VALUES
Model Distribution AIC
Markov Exponential 13521.47
semi-Markov Weibull 12703.31
Markov/semi-Markov hybrid Exponential-Weibull 12475.31

d d
Lw+1) = Y ma(wpsr+ Y (nu(w +1)pri—
k=1 1=1
ny(w + 1)pn)
I(140) = n12(139)p12 + n23(140)paz — n23(140)pas
+124(140)p22 — n24(140)p2s
= 27(1.00) + 11(0.32) — 11(0.65) +
0(0.32) — 0(0.03)
= 23
and
d d
I(w+1) = Z ngx(w)prr + Z (nu(w + 1)pr—
k=1 1=1
nu(w + 1)pu)
1(141) = n12(140)p12 + ’I’L23(141)p22 - 7123(141)])23

+n24(141)pos — n24a(141)pay
24(1.00) 4+ 13(0.32) — 13(0.65) +
0(0.32) — 0(0.03)
= 20
Thus, for a continuous time, the following predictions are
obtained for ¢ = 140, which corresponds to August 1, 2020,
and ¢ = 141, which corresponds to August 2, 2020. The

forecast results for the next ten days are displayed in Table
III.

TABLE III
PREDICTION RESULTS OF THE SIRD EPIDEMIC MODEL

Date Actual Prediction MAPE (%)

2020/08/01 24 23

2020/08/02 19 20

2020/08/03 12 14

2020/08/04 12 10

2020/08/05 17 10 19.73
2020/08/06 18 15

2020/08/07 19 16

2020/08/08 16 17

2020/08/09 8 12

2020/08/10 9 7

V. CONCLUSION

In this work, continuous time is incorporated into the
SIRD epidemic model to predict the behavior of individuals
who have a positive COVID-19 test. The semi-Markov and
Markov assumptions are combined into a multi-state model
to create the hybrid Markov/semi-Markov model. In order
to get the correct inference for a multi-state model, we first
need to do a chi-square test to determine whether or not
the model fulfills the Markov assumptions. If it does, we
may move on to the following processing step. If this is not
the case, further assumptions in the form of a semi-Markov
model are necessary.

In addition, tests are conducted to determine if each transi-
tion satisfies the Markov or semi-Markov assumptions, where
it is determined that the sojourn time for the p;5 transition
follows a Weibull distribution. In contrast, the distribution
of sojourn time for other transitions is Exponential. In the
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final section, COVID-19 case predictions are made using a
theorem based on the assumptions of a hybrid Markov/semi-
Markov model, yielding a MAPE of < 20%. The hybrid
Markov/semi-Markov model simulates the transmission of
infectious diseases more accurately than the Markov and
semi-Markov models.
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