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Abstract—Three-way decision models have received substan-
tial interest grounded in decision-theoretic rough sets and
Bayesian decision theory. Single-valued neutrosophic sets are
extremely useful for handling uncertain and inconsistent infor-
mation, making them a valuable tool that is commonly applied
in decision-making. In a three-way decision problem involving
a piece of single-value neutrosophic information, the losses of
each equivalence class under different actions can usually be
identified with some accuracy. A critical aspect of the three-way
decision problem centers around appropriate handling of the
loss function. This paper proposes a novel approach to rank
loss functions in each equivalence class of three-way decisions,
based on the TODIM method and operates within a single-
valued neutrosophic environment. Furthermore, a numerical
experiment on the location of a breakfast restaurant is used to
to assess the model compared to some existing related models,
with the aim of demonstrating its validity and soundness.

Index Terms—Three-way decision, single-valued neutro-
sophic sets, decision-theoretic rough sets, TODIM method.

I. INTRODUCTION

ROUGH set theory is a theory proposed by the Polish
scientist Z. Pawlak[1], which has gained wide atten-

tion because it can effectively analyze various kinds of
incomplete information such as imprecision, inconsistency
and incompleteness. However, the limited applicability in
classical rough set theory is attributed to be deficiency in
consideration for fault tolerance in dealing with uncertainty.
To perfect this classical theory, Yao et al.[2] combined
it with the Bayesian decision process and introduced the
decision-theoretic rough sets (DTRSs). Afterward, Yao[3]
introduced three-way decision making (3WD) using DTRSs,
which focuses on decision-making process of individuals. In
Yao’s view, the 3WD divides a feasible domain into positive,
negative, and boundary regions, each of which is pairwise
disjoint. Then the decision rules can be generated for each
of these regions, that are acceptance, rejection and non-
commitment decisions.

Up until now, the 3WD has been developed with the
contribution of numerous researchers. They have focused
their research on 3WD with respect to conditional proba-
bility and loss function. Research on conditional probability
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is mainly to find new approaches for estimating condi-
tional probability. Among these studies, Yao and Zhou[4]
developed the model of Naive Bayesian decision-theoretic
rough sets (NBRS), which combines the concepts of Naive
Bayesian classification and DTRSs, and can be estimated
in accordance with Bayesian theory and the assumption
of naive probability independence. In a similar vein, Liu
et al.[5] suggested a novel discriminant analysis method
that computes the DTRSs’ conditional probability through
logistic regression, with thresholds calculated using DTRSs
and a Bayesian decision procedure. The new method also
provides a suitable mechanism for the interpretation of
the thresholds. In the study of the 3WD’s loss function,
Herbert and Yao ([6],[7],[8]) incorporated the game theory
of classification metric into the loss function of DTRSs to
identify the equilibrium point of the game and optimize
the size objective of the decision domain. Deng and Yao[9]
suggested an information-theoretic method that employs un-
certainty as the objective function to explain and determine
the threshold value. This approach introduced information
theory into probabilistic rough sets. Liang et al.[10] and Liu
([11],[12],[13]) introduced an uncertainty assessment form
into the loss function. They considered different forms of
uncertainty for each loss value in the DTRSs and proposed
new DTRSs models that broaden the range of possible loss
values.

In uncertain problems, there are some biases in using
exact numerical sets to describe uncertain phenomena. The
American scholar Professor Zadeh[14] established fuzzy sets
theory (Fuzzy Sets), considering the degree of membership.
After that, some scholars refined the membership degree.
Among them, Smarandache([15],[16]) proposed the neutro-
sophic sets. The elements in the neutrosophic sets can be real
numbers, interval values or some mergers and intersections
of both, so that the neutrosophic sets can be generalized to
single-valued neutrosophic sets (SVNSs)[17]. Fewer studies
have been conducted on 3WD in single-valued neutrosophic
environments. By utilizing an evaluation function, Abdel
Basset et al.[18] conducted research on 3WD that was
based on SVNSs. Furthermore, Singh ([19],[20]) succeeded
in establishing a correlation between 3WD, SVNSs, and
conceptual lattice in his research. The handling of loss
is a critical aspect when dealing with the 3WD problem
that involves SVNSs information. Using cosine similarity
measures and Euclidean distances, Jiao et al. ([21],[22])
developed a 3WD model with SVNSs information. By
utilizing these measures, the 3WD model can calculate
the metric between the loss functions of different actions
and the ideal loss. This enables the determination of the
expected behavior for each equivalence class. However, in
Jiao et al’s model, the risk preferences of decision-makers
are somewhat overlooked, while this method also has the
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drawback of relying on pre-defined identification of the ideal
solution. The TODIM(TOmada de Decisão Iterativa Mul-
ticritério) method[23] is a multi-attribute decision-making
method informed by prospect theory, in which the relative
dominance degree is obtained by the comparison of the
relative dominance of two solutions, which can avoid the
artificial prior confirmation of the reference point and adapt
to the risk appetite of decision-makers to a certain degree.
Xu[24] incorporated the cumulative prospect theory into the
TODIM method, and took full advantage of the TODIM
method to contemplate decision-makers’ psychological state.
Gong[25] used the TODIM to solve the decision-making
problem of interval type II fuzzy sets considering decision-
makers’ psychological behavioral state. It’s clear that the
TODIM method has a greater advantage in solving decision-
making problem.

Therefore, in this paper, we apply the relative dominance
degree in the TODIM method to rank the losses of per-
forming different actions of the 3WD and propose a 3WD
model based on the TODIM method with single-valued
neutrosophic information.

II. PRELIMINARIES

A. SVNS

Definition 1: Assuming X is a given domain, x is in
the domain, the SVNS defined on X is composed of the
truth subordinate function TZ (x), the uncertainty subordi-
nate function IZ (x) and the distortion subordinate function
FZ (x).

Z = {(x, TZ (x) , IZ (x) , FZ (x)) |x ∈ X} ,

and all three membership functions of A have values
between 0 and 1, 0 ≤ TZ (x) + IZ (x) + FZ (x) ≤ 3. To
facilitate writing, Z can be simply expressed as (TZ , IZ , FZ).

Definition 2: Suppose Z is a SVNN on X , and Zc be
complement of Z. Zc satisfies:

TZc = FZ , IZc = 1− IZ , FZc = TZ . (1)

Definition 3: On X, Let Z1 and Z2 be two SVNNs, the
SVNN’s calculation rules for addition, number multiplication
and the normalized Hamming distance are as follows:

1)

Z1 ⊕ Z2 =(TZ1 + TZ2 − TZ1 · TZ2 , IZ1 · IZ2 , FZ1 · FZ2).

2)
µZ1 =

(
1− (1− TZ1

)
µ
, IµZ1

, Fµ
Z1

)
.

3)

d (Z1, Z2) =
1

3
(|TZ1 − TZ2 |+ |IZ1 − IZ2 |+ |FZ1 − FZ2 |).

(2)

Definition 4: [26] Assuming Z is a SVNN, whose score
function S(Z) and accuracy function H(Z) are:

S (Z) =
(2 + TZ − IZ − FZ)

3
,

H (Z) = TZ − FZ ,

where S (Z) ∈ (0, 1) and H (Z) ∈ (−1, 1).
Definition 5: Let Z1 and Z2 be two SVNNs,

1) If the score function value of Z1 is less than Z2, then
Z1 < Z2.

2) When the score function value of Z1 is equal to that of
Z2, then:

if the accuracy function value of Z1 is less than Z2, then
Z1 < Z2;

if the accuracy function value of Z1 is equal to Z2, then
Z1 = Z2;

Definition 6: [27] Suppose Z1 = (TZ1 , IZ1 , FZ1) and
Z2 = (TZ2 , IZ2 , FZ2) are SVNNs, if satisfying the following
four axiomatization conditions:

1) E (Z1) = 0 ⇔ TZ1
, IZ1

, FZ1
= 0 or TZ1

, IZ1
, FZ1

= 1;
2) E (Z1) = 1 ⇔ (TZ1 , IZ1 , FZ1) = (0.5, 0.5, 0.5);
3) E (Z1) = E (Z1

c);
4) If Z2 is more uncertain than Z1, then for TZ2

−TZ2
c ≤

0, IZ2 − IZ2
c ≤ 0,FZ2 − FZ2

c ≤ 0, there is TZ1 − TZ2 ≤ 0,
IZ1 − IZ2 ≤ 0, FZ1 − FZ2 ≤ 0; or when TZ2 − T c

Z2
≥ 0,

IZ2
− IcZ2

≥ 0, FZ2
− FZ2

c ≥ 0, have TZ1
− TZ2

≥ 0,
IZ1

− IZ2
(x) ≥ 0, FZ1

− FZ2
≥ 0, E (Z1) ≤ E (Z2),

the E is called SVNN’s entropy.

B. The TODIM Method

Here, we consider such a multi-attribute decision problem.
In this problem, Ai(i ∈ [1,m]) is option. Gj(j ∈ [1, n]) is

the attribute, whose weight is ωj , ωj ∈ [0, 1] and
n∑

j=1

ωj = 1.

zij is the evaluation value of Ai under the Gj , then we can
obtain an evaluation matrix Z = (zij)m×n. The TODIM
method entails the following steps.

Step 1: Normalize Z into U = (uij)m×n.
Step 2: In accordance with the weights of the attributes,

calculate the relative weight of Gj with respect to Gr:

ωjr =
ωj

ωr
.

The ωr is the maximum value of ωj .
Step 3: In accordance with normalisation results and

relative weights, compute the dominance of Ai over every
alternative Ak under attribute Gj :

ϕj (Ai, Ak) =



√√√√√ωjr (uij − ukj)
n∑

j=1

ωjr

, uij − ukj > 0,

0, uij − ukj = 0,

− 1

θ

√√√√√ n∑
j=1

ωjr (uij − ukj)

ωjr
, uij − ukj < 0,

where i, k = 1, 2, · · · ,m.
Step 4: Determine the extent to which alternative Ai is

dominant over all other alternatives.

δ (Ai, Ak) =
∑
j

ϕj (Ai, Ak).

Step 5: In accordance with the results of the previous step,
compute the overall dominance degree of each alternative
Ai.

ϕ (Ai) =

∑
k

δ (Ai, Ak)−min
i

{∑
k

δ (Ai, Ak)

}
max

i

{∑
k

δ (Ai, Ak)

}
−min

i

{∑
k

δ (Ai, Ak)

} .
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TABLE I
LOSS FUNCTIONS IN THE FORM OF SVNSS

X

aP (Accept) λPP =
(
TλPP

, IλPP
, FλPP

)
aB(Accept) λPB =

(
TλPB

, IλPB
, FλPB

)
aN (Accept) λPN =

(
TλPN

, IλPN
, FλPN

)
¬X

aP (Accept) λPN =
(
TλPN

, IλPN
, FλPN

)
aB(Accept) λBN =

(
TλBN

, IλBN
, FλBN

)
aN (Accept) λNN =

(
TλNN

, IλNN
, FλNN

)

Step 6: Rank these solutions based on the magnitude of their
corresponding ϕ(Ai) values. The solution with the largest
ϕ(Ai) is considered the best.

C. 3WD and DTRS model

The 3WD approach divides a universe into three parts:
the ”positive”, ”negative”, and ”boundary” regions, which
represent the decision rules of acceptance, noncommitment,
and rejection in sequence. These three parts are pairwise
disjoint and are represented by Pos, Neg, and Bnd.[21]

The state sets Ω = {X,¬X} and action sets A =
{aP , aB , aN} together form the DTRS model. When x
belong to X , which can be expressed as x ∈ X , it
can be accompanied by three actions in the action sets:
Pos (X) , Bnd (X) , Neg (X), resulting in respective losses
denoted as λPP , λBP , λNP . Similarly, when x is not in X ,
denoted as x ∈ ¬X , it can also face three actions, whose
loss is denoted as λPN , λBN , λNN , respectively. The losses
for each action are summarized in Table 1.

The expected loss resulting from performing three differ-
ent behaviors ( · = P, B, N) is determined by:

E (a·|[x]R) =λ·P Pr (X|[x]R) + λ·N Pr (¬X|[x]R) ,

where Pr (∗|[x]R) =
|∗∩[x]R|

|∗| is conditional probability.
Obviously Pr (∗|[x]R) ∈ [0, 1], (∗ ∈ Ω). And U represent
a set of all solutions, [x]R is a set in U which has the
equivalence relation R with x.

The decision rules of the DTRS, in accordance with
Bayesian decision theory, are outlined as follows:

For the expected loss of actions taken on equivalence class
[x]R, if aP < min(aB , aN ), it indicates that x ∈ Pos (X);

For the expected loss of actions taken on equivalence class
[x]R, if aB < min(aP , aN ), it indicates that x ∈ Bnd (X);

For the expected loss of actions taken on equivalence class
[x]R, if aN < min(aP , aB), it indicates that x ∈ Neg (X).

III. THREE-WAY DECISION BASED ON TODIM METHOD
WITH SINGLE-VALUED NEUTROSOPHIC SETS

JIAO et al.[21] utilized the Bayesian decision procedure
in the development of a single-valued neutrosophic decision-
theoretic rough set (SVN-DTRS) method. In the SVN-
DTRS model, all loss functions are expressed using SVNN,
distinguishing it from the original DTRS model. Then based
on the above discussion, we can calculate the average loss
of SVN-DTRS under different actions(· = P,B,N):

ε (a·|[x]R) =λ·P Pr (X|[x]R)⊕ λ·N Pr (¬X|[x]R) ,

TABLE II
LOSSES OF EACH SOLUTION UNDER DIFFERENT ACTIONS

A1 · · · An

aP ε (aP |A1) · · · ε (aP |An)

aB ε (aB |A1) · · · ε (aB |An)

aP ε (aN |A1) · · · ε (aN |An)

TABLE III
BENEFITS OF EACH SOLUTION UNDER DIFFERENT ACTIONS

A1 · · · An

aP E (aP |A1) · · · E (aP |An)

aB E (aB |A1) · · · E (aB |An)

aP E (aN |A1) · · · E (aN |An)

λ·P denotes the evaluation value of performing the cor-
responding action when x ∈ X , and λ·N represents the
evaluation value of performing the corresponding action
when x ∈ ¬X .

According to Definition 3, the average loss can be calcu-
lated as:

ε
(
a·|[x]R

)
=


1−

(
1− Tλ·P

)Pr(X|[x]R)(1− Tλ·N

)Pr(¬X|[x]R),(
Iλ·P

)Pr(X|[x]R) ·
(
Iλ·N

)Pr(¬X|[x]R),(
Fλ·P

)Pr(X|[x]R) ·
(
Fλ·N

)Pr(¬X|[x]R)


(3)

Through the SVN-DTRS process, we can get the average
loss, as shown in Table II.

In the TODIM method, losses are typically converted into
gains. In our case, we normalise losses to gains for each
equivalence class under different actions. The normalisa-
tion of decision data with SVN information is commonly
achieved by finding its complement, so we use Equation 1
for each loss function to obtain Table III.

Here we use the relative advantage degree calculation
in the TODIM method to measure the relative advantages
of three different actions in the case of the same project.
This approach avoids the need for artificial determination of
the ideal solution in advance. The TODIM method captures
decision-makers’ risk attitudes , making it a more practical
approach compared to other multi-attribute decision-making
methods. Below are specific steps involved in the 3WD based
on the TODIM method:

Step 1: In the 3WD problem, the weights of each equiv-
alence class are usually unknown. However, the classical
TODIM method requires the weight of Ai. To solve this
problem, Majumdar and Samanta[27] proposed a method for
calculating the entropy of a SVNS. Furthermore, Biswas et
al.[28] introduced an entropy weighting method to ascertain
attribute weights, where the entropy of Ai (i = 1, 2, · · · , n)
is: (here we consider the solution as the attribute and the
individual action as the solution)

EN i = 1− 1

n

∑
j=P,B,N

(Tji) + Fji)) |Iji) + Icji)| , (4)

where EN i ≥ 0, and Tji, Iji, Fji respectively represent the
different degrees of membership of the Ai adopting the j-
th behavior. Then based on the information entropy of each
solution, the weight of each solution Ai can be calculated:

wi =
1− EN i∑

i

(1− EN i)
. (5)
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Step 2: Compute the relative weight of Ai:

ωir =
ωi

ωr
, (6)

where the ωr is the maximum value of ωi.
Step 3: According to the classical TODIM method, calcu-

late Ai in the execution aP , aB , aN relative to the execution
(aB , aN ) , (aP , aN ) , (aP , aB), whose calculation formula is:

ϕi (aj , ak) =

√√√√√ωjrd (E (aj |Ai) , E (ak|Ai))
n∑

i=1
ωir

, E (aj |Ai) > E (ak|Ai) ,

0, E (aj |Ai) = E (ak|Ai) ,

−
1

θ

√√√√√
(

n∑
i=1

ωir

)
d (E (aj |Ai) , E (ak|Ai))

ωir
,E (aj |Ai)<E (ak|Ai),

(7)

the θ is the attenuation coefficient, the j, k = P,B,N .
Ai comparison of the expected benefits from the imple-
mentation of aj and ak is in accordance with definition 5.
If E (aj |Ai) > E (ak|Ai), then ϕi (aj , ak) means that it
is more beneficial to perform action aj than action ak. If
E (aj |Ai) < E (ak|Ai), it means that it is more beneficial
to perform action ak than action aj .

Step 4: Utilizing the results of the calculations from step 3
and referring to the classic TODIM method, we can calculate
the overall advantage of performing different actions under
the solution Ai.

ϕ (a·|Ai) =

ϕi (a·, ak)−min
j

{∑
k

ϕi (aj , ak)

}
max

j

{∑
k

ϕi (aj , ak)

}
−min

j

{∑
k

ϕi (aj , ak)

} ,
(8)

where the ·, k = P,B,N .
Step 5: Repeat steps 3-4 to calculate the overall advantage

of performing different actions for all solutions.
Step 6: Make decisions for the different actions of each

solution. The decision rule becomes:
If the overall dominance of the equivalence class [x]R to

perform aP is greater than that of performing aB and aN ,
then [x]R will perform aP , namely x ∈ Pos (X).

If the overall dominance of the equivalence class [x]R to
perform aB is greater than that of performing aP and aN ,
then [x]R will perform aB , namely x ∈ Bnd (X).

If the overall dominance of the equivalence class [x]R to
perform aN is greater than that of performing aP and aB ,
then [x]R will perform aN , namely x ∈ Neg (X).

IV. NUMERICAL EXAMPLE AND ANALYSIS

80% of catering industry operators are small-scale en-
trepreneurs who may not have established social networks
or possess significant economic resources. These operators
are often faced with the embarrassing fact that they cannot
afford to pay rent when choosing locations. Therefore, it is
essential for the store to choose the right location. Table IV
displays the values of the loss functions corresponding to the
four equivalence classes in the 20 recommended locations,
where some basic conditions have already been examined.

TABLE IV
VALUES OF LOSS FUNCTION

[x1]R [x2]R
λPY (0.79,0.69,0.11) (0.65,0.95,0.95)

λBY (0.03,0.03,0.34) (0.93,0.38,0.22)

λNY (0.67,0.76,0.25) (0.93,0.48,0.69)

λPN (0.95,0.31,0.49) (0.65,0.44,0.89)

λBN (0.84,0.43,0.58) (0.03,0.76,0.13)

λNN (0.74,0.18,0.50) (0.04,0.67,0.25)

[x3]R [x4]R
λPY (0.27,027,0.14) (0.54,0.96,0.97)

λBY (0.17,0.64,0.95) (0.95,0.80,0.42)

λNY (0.09,0.65,0.84) (0.27,0.96,0.97)

λPN (0.75,0.79,0.22) (0.95,0.03,0.93)

λBN (0.70,0.70,0.54) (0.79,0.65,0.84)

λNN (0.82,0.16,0.25) (0.48,0.14,0.91)

TABLE V
THE CONDITIONAL PROBABILITY

[x1]R [x2]R [x3]R [x4]R
Pr

(
Y

∣∣[x]R )
0.75 0.43 0.50 0.60

Pr
(
N

∣∣[x]R )
0.25 0.57 0.50 0.40

TABLE VI
LOSS FUNCTION UNDER DIFFERENT ACTIONS

[x1]R [x2]R
aP (0.85,0.57,0.16) (0.65,0.61,0.92)

aB (0.38,0.06,0.39) (0.69,0.56,0.16)

aN (0.69,0.53,0.30) (0.69,0.58,0.39)

[x3]R [x4]R
aP (0.57,0.46,0.18) (0.81,0.24,0.95)

aB (0.50,0.67,0.72) (0.91,0.74,0.55)

aN (0.60,0.32,0.46) (0.36,0.44,0.95)

TABLE VII
GAIN FUNCTIONS UNDER DIFFERENT ACTIONS

[x1]R [x2]R
aP (0.16,0.44,0.85) (0.92,0.39,0.65)

aB (0.39,0.94,0.38) (0.16,0.44,0.69)

aN (0.30,0.47,0.69) (0.39,0.42,0.69)

[x3]R [x4]R
aP (0.18,0.54,0.57) (0.95,0.76,0.81)

aB (0.72,0.33,0.50) (0.55,0.26,0.91)

aN (0.46,0.68,0.60) (0.95,0.56,0.36)

These loss functions are represented in the form of SVNN.
Meanwhile, Table V illustrates the probabilities obtained for
these four equivalence classes. [21]

Then we can calculate the loss function of each solution
under different actions using Equations 3, as presented in
Table VI.

According to Equation 1, we can transform the loss
function into a gain function, as shown in Table VII.

A. Using the 3WD based on the score function of the SVNSs

For the loss ranking in the 3WD problem, we can compare
the losses from different actions in the 3WD problem for
ranking purposes by employing SVNSs’ score and accuracy
function, with a focus on the membership aspect of the
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TABLE VIII
SCORE FUNCTIONS FOR EACH EQUIVALENCE CLASS

S (aP ) S (aB) S (aN )

[x1]R 0.2905 0.3550 0.3795

[x2]R 0.6260 0.3454 0.4262

[x3]R 0.3548 0.6282 0.3952

[x4]R 0.4610 0.4697 0.6758

TABLE IX
COSINE SIMILARITY MEASURE FOR EACH EQUIVALENCE CLASSES

s (aP ) s (aB) s (aN )

[x1]R 0.4978 0.5765 0.6451

[x2]R 0.8449 0.5673 0.6896

[x3]R 0.5708 0.8899 0.6751

[x4]R 0.6535 0.0704 0.8887

TABLE X
EUCLIDEAN DISTANCE FOR EACH EQUIVALENCE CLASSES

ε (aP ) ε (aB) ε (aN )

[x1]R 1.2690 1.1860 1.0908

[x2]R 0.7612 1.1688 1.0242

[x3]R 1.1639 0.6642 1.0521

[x4]R 1.1124 1.0481 0.6657

SVNSs. Here we use this method to obtain the score function
for each item in Table VII.

Table VIII shows the scores of the benefit function for each
equivalence class under different actions. In Table V, [x1]R
performs each action in the following order of score: aN ≻
aB ≻ aP ; [x2]R performs each act in the following order of
score: aP ≻ aN ≻ aB ; [x3]R performs each action in the
following order of score: aB ≻ aN ≻ aP ; [x4]R performs
each action in the following order of score: aN ≻ aB ≻ aP .
Obviously, the higher the scores to the benefit function for
each equivalence class under different actions, the greater the
degree to which the action is performed. So [x2]R is more
suitable to choose as the location of the store.

B. Using the 3WD based on Cosine Similarity and Eu-
clidean Distance

Jiao et al.[22] used cosine similarity and Euclidean dis-
tance to measure the metric between the loss function and the
ideal loss in the 3WD for ranking purposes, and the results
using these two methods applied to this data are shown in
Tables IX and X, when the ideal loss is chosen as (0,1,1).

From Table IX, [x1]R performs each action in the follow-
ing order of similarity: aN ≻ aB ≻ aP ; [x2]R performs each
action in the following order of similarity: aP ≻ aN ≻ aB ;
[x3]R performs each action in the following order of simi-
larity: aB ≻ aN ≻ aP ; [x4]R performs each action in the
following order of similarity: aN ≻ aP ≻ aB . Obviously, the
higher the similarity to the ideal loss, the higher the degree to
which the behaviour is performed. So [x2]R is more suitable
to choose as the location of the store.

From Table X, [x1]R performs each action in the following
order of distance: aN ≻ aB ≻ aP ; [x2]R performs each
action in the following order of distance: aP ≻ aN ≻ aB ;
[x3]R performs each action in the following order of distance:
aB ≻ aN ≻ aP ; [x4]R performs each action in the following

TABLE XI
WEIGHTS DERIVED BY ENTROPY WEIGHTING METHOD

[x1]R [x2]R [x3]R [x4]R
w 0.2127 0.1531 0.2058 0.4284

TABLE XII
RELATIVE WEIGHTS BETWEEN EQUIVALENCE CLASSES

[x1]R [x2]R [x3]R [x4]R
w 0.4965 0.3575 0.4805 1

TABLE XIII
ADVANTAGES OF EACH SOLUTION EQUIVALENCE CLASS UNDER

DIFFERENT ACTIONS

aP aB aN

[x1]R 0 0.4351 1

[x2]R 1 0 0.4439

[x3]R 0 1 0.4542

[x4]R 0.631 0 1

order of distance: aN ≻ aP ≻ aB . Obviously, the smaller
the Euclidean distance from the ideal loss, the greater the
degree to which the action is performed. So [x2]R is more
suitable to choose as the location of the store.

C. Using the 3WD based on the TODIM method

Step 1: According to Equations 4-5, the weights in differ-
ent actions are computed, as shown in Table XI.

Step 2: In accordance with Equation 6, calculate the
relative weights under different actions, as shown in Table
XII.

Step 3: As per Equation 7, calculate the relative advantage
of each solution under different actions, and the results are
shown in ϕ1 − ϕ4.

ϕ1 (aj , ak) =

 0 −0.5501 −0.2905
0.2482 0 −0.5506
0.1519 0.2444 0



ϕ2 (aj , ak) =

 0 0.2443 0.2061
−0.5415 0 −0.2929
−0.3941 0.1300 0



ϕ3 (aj , ak) =

 0 −0.4535 −0.3394
0.2046 0 0.1889
0.1746 −0.4256 0



ϕ4 (aj , ak) =

 0 0.2658 −0.4070
−0.5891 0 −0.6550
0.2129 0.2907 0


Step 4: In accordance with Equation 8, calculate the

combined dominance of each action relative to the others,
as shown in Table XIII.

From Table XIII, [x1]R performs each action in the follow-
ing order of advantage: aN ≻ aB ≻ aP ; [x2]R performs each
action in the following order of advantage: aP ≻ aN ≻ aB ;
[x3]R performs each act in the following order of advantage:
aB ≻ aN ≻ aP ; [x4]R performs each action in the following
order of advantage: aN ≻ aB ≻ aP . so [x2]R is more
suitable to choose as the location of the store.
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TABLE XIV
THE RESULTS OF BOTH METHODS

[x1]R [x2]R [x3]R [x4]R
By the TODIM method aN aP aB aN

By the score function aN aP aB aN

By the cosine similarity aN aP aB aN

By the euclidean distance aN aP aB aN

P B N
0

0.2

0.4

0.6

0.8

1

1.2

Score function

Cosine similarity

Euclidean distance

TODIM method

Fig. 1. Comparison of Results from Four Methods Using [x2]R as an
example

D. Comparative Analysis

From the findings in Table XIV, the model ranking results
in this paper are consistent with the other three results. Ob-
viously, [x2]R is the most suitable for the decision-makers’
interest. From Fig.1, it can be observed that all four methods
are acceptable when executing P in [x2]R. However, the
acceptance level is lower for executing B and N compared to
P. Among them, the judgment methods based on cosine sim-
ilarity and score function show relatively small differences
for the three behaviors. Although it can be seen that P is the
optimal decision, the intuitive perception for decision-makers
is not strong. This finding successfully proves the rationality
and effectiveness of the 3WD based on the TODIM method.
Therefore, our method is effective in helping decision-makers
make decisions in complex environments.

Compared with the other three methods, our approach
enables a more precise capture of the distinct psychological
states experienced by decision-makers, when confronted by
gains and losses and make the decision more realistic. At the
same time, the TODIM method can avoid the prior selection
of reference points compared to Jiao’s methods. In summary,
our model has wider applicability and implementability.

E. Sensitivity analysis

At the same time, we perform a sensitivity analysis of
the parameter θ of this algorithm for [x2]R, and the result
is shown in Fig.2, which shows that as the θ changes, the
result does not change. It verifies the stability of the result
in terms of the decision-makers’ preferences.

V. CONCLUSIONS

3WD uses a pair of state and a trio of behavior for
characterizing the decision process by finding the expected
loss of different behavior sets under the equivalence class
and then making decisions in accordance with the Bayesian
minimization risk-cost decision principle. In this paper, we
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Fig. 2. Sensitivity analysis with [x2]R as an example

extend the 3WD idea and the classical TODIM method to
propose a three-way decision model based on the TODIM
method. This method factors in the different performances
of decision-makers facing losses and gains, and reflects
the objective psychological state of decision-makers. Then,
we apply our method along with some other validated
effective 3WD methods to the 3WD problem with single-
value neutrosophic information. Through the results, it is
demonstrated that our method is practical and objective.
By way of contrast, although the outcomes of our method
and other methods are consistent, the three-way decision
model based on the TODIM method increases the spacing of
the overall degree of dominance of each action, which can
help decision-makers make better judgments. Moreover, our
method takes into account the reality that decision-makers
have different investment intentions when facing different
risks. This is reflected in the introduction of the TODIM
method relative advantage degree function based on prospect
theory. Our method differs from using score functions and
accuracy functions in that it considers not only the data, but
also the risk preferences of decision-makers. Unlike using the
Euclidean distance and similarity function to find measures
of expected and ideal losses, our method can take decision-
makers’ risk preferences into consideration as well as avoid
the idea of identifying reference points in advance. At the
same time, the sensitivity analysis shows that the parameters
have minimal impact on the results, demonstrating the robust-
ness of our proposed method. Overall, our method focuses on
decision-makers’ risk preferences while considering on the
data itself, which for a three-way decision problem can result
in a decision that better caters to the preferences of decision-
makers. However, despite our approach having some advan-
tages in the site selection problem discussed in this paper,
it still has the shortcoming of ignoring the psychological
characteristics of decision-makers. In subsequent endeavors,
we will be devoted to examining the psychological factors
of decision-makers in fuzzy three-way decision problems.
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