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Abstract—Deep sub-micron technology enables a high inte- and use Newton-Raphson iteration to compute transients. As
gration of (non-linear) circuit systems for electronic products. n g result, accuracy has been sacrificed. Furthermore, such
order to design non-linear circuits with guaranteed reliability, computation always requires numerous data transfers be-
a sophisticated simulation procedure is required. However,
in existing GPU-enhanced circuit simulation methodologies, tween CPU processqrs gnd GPU processors through the rel-
numerous data transfers between cores hamper the benefits atively slow communication channel. Furthermore, theéssu
of GPU computations. In this project, we focus on the par- of high power dissipation becomes apparent, especially for
allelization of computations for nonlinear analog/mixed-signal systems with a high integration of processors. These bottle
circuit transient simulation. By applying multi-dimensional necks hamper the benefits of GPU computations. Therefore
inverse Laplace Transform, each time-sampled points of the . . . . . .
transient response can be computed independently on the it remains being a hot area for electronic design automation
GPU architecture. Power-efficient hardware architecture is also (EDA) researchers to develop a GPU-based solver for AMS
explored for a further speedup. With the developed platform, circuit simulation.
circuit designers can verify circuit's dynamic properties quickly In this project, we aim to develop a frequency domain non-
in order to meet the need of time-critical and high-yield designs. linear transient simulator for AMS circuits. In particylave

will develop highly parallelized frequency domain compu-

Index Terms—Graphic processing unit, circuit simulation, tation algorithms for time domain transient simulations, a
computer-aided design (CAD) well as to develop hardware architectures for large scal@d GP
computations. With the developed simulator, we can verify
the circuit’'s dynamic properties quickly in order to meet th

. o requirement of time-critical and high-yield designs.
Eep sub-micron technology enables a high integra-

tion of circuit systems for very-large-scale integration Il. PROPOSEDSOLUTIONS
(VLSI) electronic products. These systems contain high- g e the schematic or model of a circuit, time-domain
performance gnd sensitive e}nqlog/mixed—signal (AMS) Cifr'ansient responses of the circuit will be computed. An
c_uns with nc_)nll_near_characterlstlcs. Moreover., due tocibe- . overview of the proposed simulation flow is shown in Fig. 1.
tinuous shrinking size of process technologies, unraligbi We will develop algorithms as well as micro-architectures t
effects affect performance and production yield of Cim”tspeed up the simulation.
In order to develop circuits with guaranteed reliabiligrde-
scale circuit-level reliability analysis is required. Inder A
to meet the time-critical design requirement, the design%ir
circuit should be verified within a reasonable time. Therefo . o )
transient simulation of circuits is one of the key comporient _ e Wwill apply multi-dimensional (MD) Inverse Laplace
VLSI circuit design process [1]-[4]. The key challenge facelransform (ILT) and Laguerre Functions for time-domain

by simulator designers is how to accelerate the simulatidi@nSient response computations. MD ILT is a generalized
while taking modeling applicability into account. 2D ILT [7] which effectively constructs time-sampled re-

Emerging simulation techniques have been proposed fPOnses from its frequency-sampled responses [8]. The MD
cently. Among those techniques, computation using graphﬂcaplace Transform of a generalized time-domain function
processing unit (GPU) architectures is one of the promisig(!1+t2: - - tn) can be represented as
candidate; [5], [6].. It is becayse GPU is good 'at. handlir]g(sl’SZ,,,,,Sn) =
computation-intensive operations. However, existingetim oo oo
domain solvers approximate AMS circuits by linear models//m/f (t1,ta, tn) e~ St S2temSuba gy g, dt,

0 0

I. INTRODUCTION

Parallelized Multi-dimensional Inverse Laplace Trans-
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Fig. 1. Overview of an AMS circuit simulation flow.
Fig. 2. Data flow and operations in the GPU-CPU architecture.
wheret; = t, = -+ = t, = t, t is the sam-

to find out the power-performance tradeoff for an improved
hardware configuration. We will analyze the power through-

%ut ratio ("é“;%) and energy throughput ratig; rffgﬁrutﬁ)

pling time, {¢n, ns....ny t and {l,, (¢;)} are functions of
F (s1,82,...,8,), and can be determined by computin

Laguerre Functions. . . .
Comparing to the matrix-valued computation in existin f single GPU systems, mUIt_"GPU sy_stems and (hybrid)
PU-GPU systems. Meanwhile, we will also analyze the

algorithms, computing MD ILT on a GPU architecture is A

efficient because MD ILT can be converted into CompLp_ower dissipation of the data movement and control flow
tationally favorable Fast Fourier Transform (FFT) easil r.nqvement.._Based on the analysis, we can <.jevelo.p a compu-
Furthermore, MD ILT for each time-sampled point can b tion partition strategy for power-efficient simulations
determined independently. Therefore, all sampling paiats
be computed simultaneously on a multi-processor system.

Currently, prellmmary frequency-domaln simulation ha?o accelerate the circuit simulation process. A prototype h
been developed in the Matlab environment, and has b

verified by a non-linear CMOS circuit and a non-linea €en developed, and will be used for power-performance

RC ladder. In order to leverage fast computation usi 5naly3|s. By developing parallelized algorithms and dedi-

lelized th Kwill b ded b dntgated micro-architectures, we aim to obtain a “10X speed-
paralielized processors, the Work Will be proceeded byeedy, . o 1ation and make large-scale AMS circuit simulasion

Ny the cor_nputapon Igad, dgvelopmg an adaptive tIme'Stf)Eemtical. Results of this study can be extended to several
transient simulation with arbitrary input responses. interesting directions for future research, namely:

1) development of algorithms and data structures for

[1l. CONCLUSION
In this paper, we have proposed a GPU-CPU architecture

B. Architecture for Parallelized Multi-Processor GPU Com-
putations

thread scheduling, memory allocation and pointer op-
eration for the architecture;

Data transfer between CPU and GPU is one of the bot-2) development of a GPU-FPGA-CPU architecture for a

tlenecks in GPU computations. Therefore, we will develop

low-overhead computation;

a CPU-GPU architecture with a low-overhead data flow, as3) development of a real-time circuit simulation method-
shown in Fig. 2. At the beginning of every iteration, all ology for seamless circuit design.
frequency-sampled data is computed by CPU, and then is
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