

Abstract—We focus in this paper on the specification and the

execution of behavioral concepts for Open Distributed
Processing (ODP) Enterprise Language. The behavior of an
ODP system is determined by the collection of all the possible
actions in which the system (acting as an object), or any of its
constituent objects, might take part, together with a set of
constraints on when these actions can occur. In order to specify
the executable behavior of a system and to make the processes
of the enterprise executable and controllable, the Reference
Model for ODP RM-ODP can be used as a meta-model for
behavioral specifications. In the enterprise language the
behavior is specified in terms of roles, processes, policies, and
the relationships between these concepts. Firstly, we give the
description and specification of the behavior by the activity
diagrams. Secondly, we define the mapping from the concepts
of behavior enterprise language to BPEL concepts and we
present the syntax and the structure of a BPEL Behavior
process. Then we generate the corresponding BPEL and
computational files to implement the specified process.

Index Terms—RM-ODP, Enterprise Language, Behavior
Business Process Model, BPEL

I. INTRODUCTION
The rapid growth of distributed processing has led to a

need for coordinating framework for the standardization of
Open Distributed Processing (ODP). The Reference Model
for Open Distributed Processing (RM-ODP) [1-4] provides
a framework within which support of distribution,
networking and portability can be integrated. The
foundations part [2] contains the definition of the concepts
and analytical framework for normalized description of
(arbitrary) distributed processing systems. These concepts
are grouped in several categories. The architecture part [3]
contains the specifications of the required characteristics
that qualify distributed processing as open. It defines a
framework comprising five viewpoints, viewpoint language,
ODP functions and ODP transparencies. The five
viewpoints, called enterprise, information, computational,
engineering and technology provide a basis for the
specification of ODP systems.

Each viewpoint language defines concepts and rules for
specifying ODP systems from the corresponding viewpoint.
The ODP functions are required to support ODP systems.

Youssef Balouki, Department of Mathematics & Computer Science,
University Mohammed V Morocco, email: balouki@cmr.gov.ma

Mohamed Bouhdadi, Department of Mathematics & Computer Science,
University Mohammed V Rabat, Morocco, email: bouhdadi@ fsr.ac.ma).
The transparency prescriptions show how to use the ODP

functions to achieve distribution transparency. The first
three viewpoints do not take into account the distribution
and heterogeneity inherent problems. This corresponds
closely to the concepts of PIM (Plat-form Independent
Model) and PSM (Plat-form Independent Model) models in
the OMG MDA architecture.

However, RM-ODP can not be directly applicable [5]. In
fact RM-ODP only provides a framework for the definition
of new ODP standards. These standards include standards
for ODP functions [6-7]; standards for modelling and
specifying ODP systems; standards for programming,
implementing, and testing ODP systems.

We treated the need of formal notation for behavioural
concepts in the enterprise language [8]. Indeed, the
viewpoint languages are abstract in the sense that they
define what concepts should be supported, not how these
concepts should be represented. It is important to note that,
RM-ODP uses the term language in its broadest sense:" a set
of terms and rules for the construction of statements from
the terms;” it does not propose any notation for supporting
the viewpoint languages. Using the Unified Modelling
Language (UML)/OCL (Object Constraints Language) [9,
10] we defined a formal semantics for a fragment of ODP
behaviour concepts defined in the RM-ODP foundations
part and in the enterprise language [11]. These concepts
(time, action, behaviour constraints and policies) are
suitable for describing and constraining the behaviour of
ODP enterprise viewpoint specifications.

A part of UML meta-model itself has a precise semantics
[12, 13] defined using denotational meta-modelling
approach. A denotational approach [14] is realized by a
definition of the form of an instance of every language
element and a set of rules which determine which instances
are and are not denoted by a particular language element.

For testing ODP systems [2-3], the current testing
techniques [15], [16] are not widely accepted. A new
approach for testing, namely agile programming [17], [17]
or test first approach [19] is being increasingly adopted. The
principle is the integration of the system model and the
testing model using UML meta-modelling approach [20,
21]. This approach is based on the executable UML [22].

In this context OCL is used to specify the properties to be
tested. The UML meta-models provide a precise core of
any ODP testers.

 In this context we use in this paper the BPEL (Business
Process Execution Language for Web Services) (BPEL4WS
or BPEL for short) for specifying process behaviour based
on actions and policies in the context of ODP systems. The
Business Process Execution Language for Web Services
(BPEL4WS or BPEL for short) is an XML-based standard

A UML Profile for Automated Behavior
Processes in ODP Enterprise Language

Youssef Balouki, Mohamed Bouhdadi, El maati Chabbar

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

for de fining how you can combine Web services to
implement business processes. It builds upon the Web
Services Definition Language (WSDL) and XML Schema
Definition (XSD). This article specifies the behavior
processes by the activity diagrams, and generates the
corresponding BPEL and computational files to implement
that process. This capability is used to highlight some of the
benefits of the Object Management Groups (OMG) Model
Driven Architecture (MDA) initiative: raising the level of
abstraction at which development occurs, which, in turn,
will deliver greater productivity, better quality, and
insulation from underlying changes in technology.

The paper is organized as follows. Section 2 introduces,
both BPEL and the core behaviour concepts (time, action,
behaviour, role, process). Section 3 describes and specifies
the behaviour by the activity diagrams. In Section 4 we
define the mapping from the concepts of behavior enterprise
language to BPEL concepts and we present the syntax and
the structure of a BPEL Behaviour process. We focus on
behavioural policies. A conclusion ends the paper.

II. PRELIMINARIES

A. BPEL

BPEL, also known as BPEL4WS, build on IBM's WSFL
(Web Services Flow Language) and Microsoft's XLANG
(Web Services for Business Process Design). It combines
the features of a block structured process language
(XLANG) with those of a graph-based process language
(WSFL). BPEL is intended to describe a business process in
two different ways: executable and abstract processes. An
abstract process is a business protocol specifying the
message exchange behavior between different parties
without revealing the internal behaviour of any of them. An
executable process specifies the execution order between a
number of constituent activities, the partners involved, the
message exchanged between these partners, and the fault
and exception handling mechanisms.

A composite service in BPEL is described in terms of a
process. Each element in the process is called an activity.
BPEL provides two kinds of activities: primitive activities
and structured activities. Primitive activities perform simple
operations such as receive (waiting for a message from an
external partner), reply (reply a message to a partner),
invoke (invoke a partner), assign (copying a value from one
place to another), throw (generating a fault), terminate
(stopping the entire process instance), wait (wait for a
certain time), empty (do nothing),.

To en able the representation of complex structures, a
structured activity is used to define the order on the
primitive activities. It can be nested with other structured
activities. The set of structured activities includes: sequence
(collection of activities to be performed sequentially), flow
(specifying one or more activities to be performed
concurrently), while (while loop), switch (selects one
control path from a set of choices), pick (blocking and
waiting for a suitable message). The most important
structured activity is a scope. A scope is a means of
explicitly packaging activities together such that they can
share common fault handling and compensation routines. It
consists of a set of option al fault handlers (exceptions can

be handled during the execution of its enclosing scope), a
single optional compensation handler (inverse some effects
which happened during the execution of activities), and the
primary activity of the scope which defines its behavior .

The sequence, flow, switch, pick and whi1e constructs
provide a means of expressing structured flow
dependencies. In addition to these constructs, BPEL
provides another construct known as control links which,
together with the associated notions of join condition and
transition condition, support the definition of precedence,
synchronization and conditional dependencies on top of
those captured by the structured activity constructs. A
control link between activities A and B indicates that B
cannot start before A has either completed or has been
skipped. Moreover, B can only be executed if its associated
join condition evaluates to true, otherwise B is skipped. An
activity X propagates a positive value along an outgoing
link L if and only if X was executed (as opposed to being
skipped) and the transition condition associated to L
evaluates to true. Transition conditions are Boolean
expressions over the process variables. The process by
which positive and negative values are propagated along
control links, causing activities to be executed or skipped, is
called dead path elimination.

Figure 1 defines the BPEL core concepts [23]

Fig. 1 Model of BPEL Core Concepts

B. The Core behavioral Concepts in RM-ODP
Foundations Part

We consider the minimum set of modelling concepts

necessary for behavior specification. There are a number of
approaches for specifying the behavior of distributed
systems coming from people with different background and
considering different aspects of behavior. We use the
formalism of the RM-ODP model, written in UML/OCL.
We mainly use concepts taken from the clause 6 “Enterprise
Language” of the RM-ODP . The behaviour of a community
is a collective behaviour consisting of the actions in which
the objects of the community participate in fulfilling the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

roles of the community, together with a set of constraints on
when these actions may occur, It may be of interest to
specify which actor (enterprise object) initiates that action.

There are many specification styles for expressing when
actions may occur (e.g. sequencing, pre-conditions, partial
ordering, etc.).The actions and their ordering can be defined
in terms of processes.

A process identifies an abstraction of the community
behaviour that includes only those actions that are related to
achieving some particular sub-objective within the
community. Each abstraction is labelled with a process
name. The emphasis is on what the behaviour achieves.
Processes decompose the behaviour of the community into
steps. Its specification shall include specification of how it
is initiated and how it terminates.

We represent a concurrent system as a triple consisting of
a set of behavior, a set of process and a set of action. Each
behavior is modeled as a finite or infinite sequence of
interchangeable behavior and actions. To describe this
sequence there are mainly two approaches [24].

 1. “Modeling systems by describing their set of actions
and their behaviors”.

 2. “Modeling systems by describing their action spaces
and their possible sequences of action changes”.

These views are dual in the sense that an behavior can be
understood to define action changes, and action occurring in
action sequences can be understood as abstract
representations of process. We consider both of these
approaches as abstraction of the more general approach
based on RMODP. We provide the formal definition of this
approach that expresses the business process models.

Fig. 2 Core Behavior Concepts

III. UML PROFILE FOR AUTOMATED BEHAVIOR PROCESSES
 The ability to extend or customize UML is essential to

MDA; UML can be customized to support the modelling of
the systems behavior. The scope of this article is mainly
centred on stereotypes. Stereotypes are a way of
categorizing elements of a model. We can combine a set of
these stereotypes in a Profile. A UML Profile is used to
define a specific set of extensions to the base UML in order
to represent a particular domain of interest. For instance

there are Profiles defined for CORBA and Data Modelling.
A profile defines what elements of UML are to be used,
how they may be extended, and any well-formedness rules
to constrain the assembly of the elements.

 This section introduces a UML Profile which supports
modelling with a set of semantic constructs that correspond
to those in the Business Process Execution Language for
behavior in enterprise language (see table 1).

Table 1 Behavior concepts to UML mapping overview

We represent a subset of the UML profile through an

example that defines a simple behavior process. It may be
summarized as follows:

"On receiving the action request, the condition of action
is checked. If it is true, then the actor3 action is invoked. If
the Actor2 deems the action constraint is not checked , it is
also passed to the Actor3. When either the Actor3 has
completed or the Actor2 has accepted, the objective
information is returned.''

BPEL processes are stateful and have instances, so in
BPEL this scenario is implemented as a behavior process
which would have an instance for each actual behavior
application being processed. Each instance has its own state
which is captured in BPEL variables. In the UML profile, a
process is represented as a class with the stereotype
<<Process>>. The attributes of the class correspond to the
state of the process (variables in BPEL 1.1). The UML class
representing the behaviourl process is shown in Figure 3.

Fig. 3 A UML class used to model a Behavior BPEL
Process

The behavior of the class is described using an activity

graph. The activity graph for the behavior process is shown
in figure 4. The activities, such as invokeAactor2, are
shown as the rectangles with rounded corners. The actions
to be performed are shown as Entry conditions to the
activity. For example, action constraint (a variable) is set to

Behavior Concepts Profile Construct
Process_El << process>> class
Action Activity graph on a

<<process>> class
Actor <<partner>> class
Policy <<process>> class attributes
Objective Hierarchical structure and

control flow
<<receive>>,

<<reply>>,
<<invoke>> actions

<<receive>>, <<reply>>,
 <<invoke>> activities

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

the result of the check service. The actors with which the
process communicates are represented by the UML
partitions (also known as swimlanes): Actor1, Actor2, and
Actor3. Activities that involve a message send or receive
operation to an actor appear in the corresponding partition.
The arrows indicate the order in which the process performs
the activities. Note that the assignment activity is not in a
swimlane; it depicts an action that takes place within the
process itself.

Fig. 4 An Activity Diagram for the Behavior Process

The reply activity returns a response back to the actor1,

completing the execution of the process. Each activity has a
descriptive name and an entry action detailing the work
performed by the activity.

IV. MAPPING TO BPEL

A. From UML to BPEL

The UML profile for automated behavior processes
expresses that complete executable BPEL artifacts can be
generated from UML models. Table 2 shows an overview of
the mapping from the profile to BPEL covering the subset
of the profile introduced in this article.

B. Execution of the Behavior processes

BPEL is representation XML of an executable process,
which can be deployed on any process motor.

Table 2. UML to BPEL mapping overview

 The atomic element of a process BPEL is a " activity ",
which can be the sending of a message, the reception of a
message, the call of an operation (sending of a message,
makes an attempt of an answer), or a transformation of data

A process BPEL defines, in XML, the activities realized
within the framework of the execution of the behavior
process .In the following we describe his structure and his
syntax .

< el_behavior >
 < actors /> definition of the actors (roles)
 <containers/> definition of the containers of the data

 <transitioncondition>
 <policies /> A set of rules related to a behavior.
 </transitioncondition>

 <sequence/>
 <receive /> reception of a request of process
 <assign /> transformation of the data
 <invoke /> call of an process
 <assign /> transformation of the data
 <reply /> sending of an answer to the process
 </sequence>
 </el_behavior >

 <process >
 < partners /> definition of the partners (actions)
 <containers/> definition of the containers of the data
 <sequence />
 <receive /> reception of a request
 <assign /> transformation of the data
 <invoke /> call of an action
 <assign /> transformation of the data
 <reply /> sending of an answer
 </sequence>
</process>

<policies> name = "namepolicy"
 <process name ="process"/>
 < actors name = "actor"/>
 <choice >
 <policy type ="obligations"/>
 <policy type ="permissions"/>
 <policy type ="prohibitions"/>
 <policy type ="authorizations"/>
 </choice >
</policies>

A cutdown version of the BPEL document that would be
generated from the behavior process example in this paper

Profile Construct BPEL Concept

<< process>> class BPEL process definition
Activity graph on a
<<process>> class

BPEL activity hierarchy

<<process>> class attributes BPEL variables
Hierarchical structure and
control flow

BPEL sequence and flow
activities

<<receive>>, <<reply>>,
<<invoke>>activities

BPEL activities

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

is shown in Listing 1 (much of the detail is omitted here due
to space constraints).

Listing 1. Excerpt of the BPEL listing

<process name="behaviorProcess" ...>
 <variables>
 <variable name="request"

messageType="objectivedef:actionInformationMessage"/
>
 <variable name="action_constraint"
 messageType="asns: action_constraintMessage"/>
 ...
 </variables>
 ...
 <flow>
 <receive name="receive1" partner="actor1"
 portType="apns:behaviorprocessPT"
 operation="objective" variable="request"
 createInstance="yes">
 <source linkName="receive-to-action2"
 transitionCondition=
 "bpws:getVariableData('request', 'condition') = true"/>
 <source linkName="receive-to-action3"
 transitionCondition=
 "bpws:getVariableData('request', 'condition)=false"/>
 </receive>
 <invoke name="invokeactor2" partner="actor2"
 portType="asns:actionconstraint"
 operation="check"
 inputVariable="request"
 outputVariable="action_constraint">
 <target linkName="receive-to-action3"/>
 <source linkName="action3-to-setMessage"
 transitionCondition=
 "bpws:getVariableData('action_constraint ', 'check')='true'"/>
 <source linkName="action3-to-action2"
 transitionCondition=
 "bpws:getVariableData('action_constraint ', 'check')!='true'"/>
 </invoke>

 <assign name="assign">
 <target linkName="action2-to-setMessage"/>
 <source linkName="setMessage-to-reply"/>
 <copy>
 <from expression="'yes'"/>
 <to variable="objectiveInfo" part="accept"/>
 </copy>
 </assign>
 ...
 <reply name="reply" partner="actor1" portType="apns:behaviorprocessPT"
 operation="approve" variable="objectiveInfo">
 <target linkName="setMessage-to-reply"/>
 <target linkName="objective-to-reply"/>
 </reply>
 </flow>
</process>

C. The UML to BPEL Mapping Transformation t

The approach comes with a set of sample files for different
scenarios [25]. The sample files are of two main types:
UML model files which can be opened and modified with
tools, and XML files containing the XMI version of the
UML models, which are exported by theme. In figure 5 you

can see that this corresponds to the UML models, or the
XMI output of these tools.
Figure 5 uses a UML Activity Diagram to show the overall
process of transforming the files; isn't UML useful? The
boxes represent artifacts (usually files) while the ellipses
represent an action or activity. The main stages are:

• Building and exporting the UML model to XMI
(tools)

• Generating the BPEL, Actions, and behavior files

• Deploying these on the BPEL motor.

Fig. 5 : developing a process

V. CONCLUSION
This article has introduced a UML profile for automated

behavior processes with a UML to BPEL translator. The
profile allows developers to use normal UML skills and
tools to develop behavior processes using BPEL. This
approach enables service-oriented BPEL components to be
incorporated into an overall system design utilizing existing
software engineering practices. Additionally, the mapping
from UML to BPEL permits a model-driven development
approach in which BPEL executable processes can be
automatically generated from UML models. This approach
highlights how the notion of MDA can be applied to other
areas and at higher levels of abstraction.

REFERENCES
[1] ISO/IEC, ‘’Basic Reference Model of Open Distributed Processing-

Part1: Overview and Guide to Use, ‘’ISO/IEC CD 10746-1, 1994
[2] ISO/IEC, ‘’RM-ODP-Part2: Descriptive Model, ‘’ ISO/IEC DIS

10746-2, 1994.
[3] ISO/IEC, ‘’RM-ODP-Part3: Prescriptive Model, ‘’ ISO/IEC DIS 10746-

3, 1994.
[4] ISO/IEC, ‘’RM-ODP-Part4: Architectural Semantics, ‘’ ISO/IEC DIS

10746-4, July 1994.
[5] M. Bouhdadi, et al. ‘’ An UML-based Meta-language for the QoS-aware

Enterprise Specification of Open Distributed Systems, ‘’
Collaborative Business Ecosystems & Virtual Enterprises, IFIP
Series, Vol. 85, Springer Boston, pp.255-264, 2002.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

[6] ISO/IEC, ‘’ODP Type Repository Function, ‘’ ISO/IEC JTC1/SC7
N2057, 1999.

[7] ISO/IEC, The ODP Trading Function, ISO/IEC JTC1/SC21 1995.
[8] ISO/IEC, ‘’RM-ODP Enterprise Langauge,’’ ISO/IEC 15414, July 2006.
[9] . J. Rumbaugh, G. Booch, J. E. Jacobson, The Unified Modeling

Language, Addison Wesley, 1999.
[10] J. Warner and A. Kleppe, The Object Constraint Language: Precise

Modeling with UML, Addison Wesley, 1998.
[11] M. Bouhdadi, Y. Balouki, ‘’Meta-modelling Semantics of Behavioral

Concepts for Open Virtual Enterprises,’’ ECC 2007, Athens 25-27
Sep, Springer Verlag (to appear

[12] S. Kent, S. Gaito, N. Ross, ‘’A meta-model semantics for structural
constraints in UML, ‘, In H. Kilov, B. Rumpe, and I. Simmonds,
editors, Behavioral specifications for businesses and systems, Kluwer
Academic Publishers, Norwell, MA, September 1999. chapter 9.

[13] E. Evans, R. France, K. lano, B. Rumpe, ‘’Meta-Modeling Semantics
of UML, ‘’ In H. Kilov, B. Rumpe, and I. Simmonds, editors,
Behavioral specifications for businesses and systems, Kluwer
Academic Publishers, Norwell, MA, September 1999. chapter 4

[14] D.A. Schmidt, ‘’Denotational semantics: A Methodology for
Language Development, ‘’ Allyn and Bacon, Massachusetts, 1986.

[15] G. Myers, ‘’The art of Software Testing, ‘’, John Wiley &Sons, 1979
[16] R. Binder, ‘’ Testing Object Oriented Systems. Models. Patterns, and

Tools, ‘’ Addison-Wesley, 1999
[17] A. Cockburn, ‘’Agile Software Development. ‘’Addison-Wesley,

2002.
[18] B. Rumpe, ‘’ Agile Modeling with UML, ‘’ LNCS vol. 2941,

Springer, 2004, pp. 297-309.
[19] K. Beck. Column on Test-First Approach. IEEE Software, vol. 18,

no. 5, pp.87-89, 2001
[20] L. Briand , ‘’A UML-based Approach to System testing, ‘’ LNCS

vol. 2185. Springer, 2001, pp. 194-208,
[21] B. Rumpe, ‘’ Model-Based Testing of Object-Oriented Systems; ‘’

LNCS vol.. 2852, Springer; 2003; pp. 380-402.
[22] B. Rumpe, Executable Modeling UML. A Vision or a Nightmare?,

In: Issues and Trends of Information technology management in
Contemporary Associations, Seattle, Idea Group, London, pp. 697-
701.

[23] Dimitris Karagiannis et al. Business-oriented IT management
developing e-business applications with E-BPMS,’’ ICEC 2007, 97-
100

[24] M. Broy, ‘’Formal treatment of concurrency and time,’’ Software
Engineers’s Reference Book, Oxford Butterworth-Henenmann (1991).

[25] keith_mantell,” From UML to BPEL Model Driven Architecture in a
Web services world” ,Report IT Architect, IBM 2003

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

