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Abstract—In the area of network coding, linear code
can achieve the maximum capacity of multicast net-
works by a large enough alphabet. And it is insuf-
ficient for non-multicast networks. Meanwhile non-
linear code is of interest for its possibility to achieve
the network coding capacity by small alphabet, or its
possibility to deal with other networks. In this paper,
a novel polynomial code is proposed. We show that
a kind of polynomial code can be induced from linear
code, and it has the same coding ability with linear
code. We also show the existence of another kind of
polynomial code.
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1 Introduction

A multicast network is a directed acyclic graph containing
a source node, some interior nodes, and a collection of
destination nodes. The source node generates messages
and transmits them to each destination. A message is a
symbol drawn from a fixed alphabet, which is typically
a finite field. Each edge of the graph cantransmit one
symbol at a time.

In the paradigm of network coding, nodes are allowed to
perform both routing and coding operations on the infor-
mation that they received. A feasible code for a network
is the set of operations performed by all nodes that collec-
tively allow destination nodes to receive all messages that
their require. Figure. 1 shows such a scheme. The node
3 performs the coding operation and forwards the result
along the middle edge. Then, each destination node can
compute x and y from symbols they received.

The network coding technique was introduced by
Ahlswede et al. [1]. It was proved that a source can mul-
ticast k messages to a set of destinations if nodes are
allowed to perform coding operations, provided that the
min-cut between the source and each destination has ca-
pacity k. Li et al. [11] proved that linear network code
can achieve the maximum achievable rate for the multi-
cast network, if the alphabet is large enough. Algorithms
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Figure 1: Example of a multicast network with source
message x, y, source node s, destination nodes t1, t2 and
interior nodes 1, 2, 3, 4. x and y are drawn from binary
field, + denotes modulo 2 addition .

for constructing linear codes have been studied in [2,7–9].
However, small alphabet was preferred for transmission,
since large alphabet cause worse transmission delay and
more bandwidth consumption. This motivates the re-
search of decreasing alphabet size. For some networks
with special topology, Feder et al. [5] and Rasala Lehman
et al. [10] gave the same lower bound of alphabet size,
which equal to the square root of the number of desti-
nation nodes. It was additionally shown in [10] that the
problem of finding the minimum alphabet size for general
networks is NP-Hard. Dougherty et al. [3] proved that
linear code is no longer sufficient to achieve the maxi-
mum capacity of all multicast networks, if the alphabet
size is fixed. Meanwhile, nonlinear code may deal with
more networks than linear code with the same alphabet
resource. For non-multicast network, [4] and [10] showed
that linear code is not sufficient, even if the alphabet is
allowed to be large enough. Therefore, exploring nonlin-
ear codes was suggested [10] to be a fruitful direction for
future works.

To our best knowledge, there are no prior results about
constructing a nonlinear code. In this paper, we pro-
pose a new schema of nonlinear code, called polynomial
code(Section 2). We compare polynomial code with lin-
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ear code (Section 3.1). The result implies that linear code
outperforms polynomial code in a special configuration.
While in more general case (Section 3.2), polynomial code
is proved to have at least the same coding ability as lin-
ear code. We also show how to construct polynomial code
from existing linear code. Finally, we show that (Section
3.3) more complex polynomial code exists. Our proof em-
ploys an interesting connection between coding function
and Latin squares.

2 The Model

We first introduce the necessary concepts and notations.
For additional details and definitions, see the references,
in particular [1, 9, 11].

A multicast problem is a quintuple (G,C,M,s,D):

• A directed acyclic graph G := (V, E).

• Capacities of edges, C := {c(e)|e ∈ E, c(e) ∈ Z}.

• A message of dimension n, M = (m1, ..., mn).

• A single source s ∈ V .

• A set of destinations D ⊆ V .

The graph G models the network with routers or com-
puters, represented by nodes in V , and communication
channels between them, represented by edges in E. The
message M was generated at source s, and must be trans-
mitted to all nodes in D. mi ∈ M is drawn from an al-
phabet Σ of size q. The size q is usually assumed to be a
power of prime then the alphabet can be a finite field [3].
Without loss of generality, the capacity of edges are usu-
ally assumed to be 1 [1]. Thus, each edge can transmit
one symbol of the alphabet at a time.

In model of network coding, each edge is associated with
an encoding function. It determines the content to be
transmitted on the edge when the input message is M .
Formally, for edge e from node v to node v′, the encoding
function φe can be specified as:

φe =
{

Σ|M | → Σ, if v = s
Σ|EI(v)| → Σ, if v 6= s

, (1)

where |EI(v)| is the set of input edges of node v.

A network code is defined as the set of encoding function
associated with each edge. It characterizes the transmis-
sion in the network. A network code is linear, if all the
encoding functions are linear functions. Otherwise, it is
a nonlinear. A code is feasible if all destination nodes
can recover the message M using the information they
received. Or else, it is infeasible.

Most previous works are focused on linear encoding func-
tion (linear network code), because of its implement sim-
plicity. While in this work, we proposed a more general
form of encoding function.

Lemma 2.1. [6] If Σ is a finite field of size q , then
any function f : Σk → Σ can be uniquely represented by
a polynomial with coefficients in the field and with degree
in each variable at most q − 1.

For example, all functions of f : Σ2 → Σ (q=2) are
{0, x, y, x+y, xy, x+xy, y+xy, x+y+xy, 0, x+1, y+1, x+
y +1, xy +1, x+xy +1, y +xy +1, x+ y +xy +1}. Since
each nonlinear encoding function can be represented by
a polynomial with degree greater than one, We denote
nonlinear network code as polynomial code.

Two functions f, f ′ : Σ2 → Σ are independent, if
and only if there exists a function mapping Σ2 to
Σ2 such that g(f(α, β), f ′(α, β)) = (α, β) for every
(α, β) ∈ Σ2. Or equivalently, if and only if for dis-
tinct points (α, β), (α′, β′) ∈ Σ2, (f(α, β), f ′(α, β)) 6=
(f(α′, β′), f ′(α′, β′)). In short, the input of two indepen-
dent functions can be recovered from their outputs.

A set of functions f1, ..., fn of the form fi : Σ2 → Σ is
called an independent set, if they are pairwise indepen-
dent. A set is called a maximal independent set(MIS), if
n is maximal. For a MIS, we have n = q+1(by combina-
torics). If without further specify, the functions appear
in what follows are in the form of f : Σ2 → Σ.

3 Main Results

In this section, we focus on transmitting messages of di-
mension two. Firstly, we show that polynomial code is
not as powerful as linear code in binary alphabet. Then,
it is proved that polynomial code with the same coding
ability can be induced from linear code in large alphabet.
More complex polynomial code, where interior nodes per-
form nonlinear operations, is discussed lastly.

3.1 Binary alphabet ( q = 2 )

In this part, we give the comparison of polynomial code
and linear code in binary alphabet. Two propositions are
given as follows.

Proposition 3.1. If functions f, f ′ : Σ2 → Σ are inde-
pendent, then they are q−to−1 mappings.

Proposition 3.2. Every linear function f = ax + by + c
is a q−to−1 mapping, where (a, b, c) ∈ Σ3,(a, b) 6= (0, 0),
and 0 denotes the zero of the field.

Next,by Proposition 3.1 and Proposition 3.2, we have the
following lemma:

Lemma 3.1. When q = 2, if two functions f, f ′ are
independent, then they are both linear functions.
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The proof is trivial and omitted.

Theorem 3.1. There exists multicast network that has
feasible linear code, but does not have feasible polynomial
code.

Proof. Denote the multicast network in Fig.1 by G. Ob-
viously, G has a feasible linear code. We will show that
there is no feasible polynomial code for G. It’s suffice to
prove that every feasible code is linear. A code is feasible
implies that the source message must be recovered from
the symbols carried on edges of every cut. Moreover,
there are exactly two edges in each cut of G. Thus, if a
code of G is feasible, then the functions associated with
every cut must be independent. By Lemma 3.1, we con-
clude that all functions must be linear. Therefore, every
feasible code of G is linear.

3.2 Large alphabet ( q ≥ 3)

The previous part focuses on the binary alphabet. While
in large alphabet, codes have a good structure (Lemma
3.2). Although nonlinear code is often considered to be
difficult to buildTheorem 3.2 shows that a kind of poly-
nomial code can be easily constructed from linear code.

We introduce the following two propositions:

Proposition 3.3. Two functions f, f ′ are independent,
if and only if af + b, f ′ are independent, where a, b ∈ Σ,
and a 6= 0.

We define the equivalence set [f ] as [f ] = {af + b, a, b ∈
Σ, a 6= 0}.
Proposition 3.4. If functions f, f ′ are independent,
then f, g are independent, where g = af + bf ′ + c, a 6=
0, b 6= 0, a, b, c ∈ Σ.

By Proposition 3.3 and Proposition 3.4, we obtain:

Lemma 3.2. If functions f, f ′ are independent, then se-
lecting a function from the set [f ], [f ′], [f + f ′], ..., [f +
(q − 1)f ′] will form a MIS, where 1 is the identity of
the field.

Let πi(x1, ..., xn) = xi, fx = π1(x, y), fy = π2(x, y). Se-
lecting a function from each of the set [fx], [fy], [fx +
fy], ..., [fx + (q − 1)fy] can form a MIS. Let L =
[fx] ∪ [fy] ∪ [fx + fy], ...,∪[fx + (q − 1)fy]. Note that
|L| = (q +1)q(q− 1), thus L contains all linear functions.
Specially, we have:

Lemma 3.3. If f, f ′ : Σ2 → Σ are linear functions, then
they are independent or f ′ ∈ [f ].

Next, we get the following result:

Theorem 3.2. When q ≥ 3, polynomial code can be con-
structed from linear code

Proof. Let f be a polynomial function independent of fx,
then replace fy by f for all functions of L, we obtain a
set L′ = [fx]∪ [f ]∪ [fx +f ], ...,∪[fx +(q−1)f ]. Similarly,
by replacing fy by f for all functions of a linear code C,
we can obtain a polynomial code C ′. If two functions in
C are independent, then their counterparts in C ′ must
belong to different equivalence sets of L′. As a result
their counterparts in L′ are also independent. Therefore,
if C is feasible, then C ′ is feasible too.

Moreover, f does exist: there are (q!)q functions indepen-
dent of fx, while q2(q − 1) linear functions independent
of fx. When q ≥ 3, we have (q!)q > q2(q − 1)

For example, Fig. 2 shows the polynomial code corre-
sponding to Fig. 1.
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Figure 2: An feasible polynomial code for q ≥ 3. Source
node performs nonlinear operation.

Furthermore, a function f independent of fx can be easily
obtained:

Theorem 3.3. If function f is in the form of f =
yf1(x) + f2(x), where f1(x), f2(x) are polynomials of x
with degree less than q, and for any x ∈ Σ, f1(x) 6= 0,
then f is independent of fx. Especially, the converse
holds when q = 3.

Proof. For distinct points (α, β), (α′, β′) ∈ Σ2, if α =
α′, then f(α, β) = βf1(α) + f2(α) and f(α, β′) =
β′f1(α) + f2(α). since f1(α) 6= 0, we have f(α, β) 6=
f(α, β′). Otherwise we have fx(α, β) 6= fx(α′, β′). Thus,
(fx(α, β), f(α, β)) 6= (fx(α′, β′), f(α′, β′)). Therefore,
they are independent.
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For the converse: there are (q−1)qqq functions in the form
of f . While there are exactly (q!)q functions independent
of fx. Two quantities coincide when q = 3, thus the
converse holds.

3.3 More complex polynomial code exists

The previous part shows one kind of polynomial code
exist, where only the source node performs nonlinear op-
erations. Does the other kind of polynomial code exist,
where interior nodes perform nonlinear operations? An
positive example is given in this part.

We introduce some definitions first. A latin square [12] of
order q is an q×q square matrix, each row and column of
which is a permutation of q different symbols. A function
f : Σ2 → Σ can be reformed into a matrix {axy} with its
element axy takes the value of f(x, y). In this way, fx (fy)
can be written as a matrix with element axy = x (axy =
y). Therefore, a latin square can uniquely represent a
function f that independent of both fx and fy.

We denote the total number of different latin squares of
order q by LS(q). The value of LS(q) satisfies [12]:

LS(q) ≥ (q!)2q

qq2 . (2)

There are q(q − 1)2 linear functions independent of both
fx and fy. We can prove the following.

(q!)2q

qq2 > q(q − 1)2, when q ≥ 5 . (3)

The detail of proof is omitted to keep concise. Thus,
we conclude that there exist polynomial functions that
independent of both fx and fy. For example, when q = 5,
x3+y3 is such a function. We can construct a polynomial
code as shown in Fig. 3.

4 Conclusion

In this work, a novel schema of nonlinear code (called
polynomial code)is proposed. One kind of polynomial
code has the same structure with linear code and can be
constructed from them. The other kind of polynomial
code is more difficult to construct. The result would be
generalized to the configuration of more messages. Our
work reveals that the possibility for nonlinear code to out-
perform linear code lies in the second kind of polynomial
code.
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