

Abstract- The World Wide Web is a rapidly growing and
changing information source. Due to the dynamic nature of
the Web, it becomes harder to find relevant and recent
information.. We present a new model and architecture of the
Web Crawler using multiple HTTP connections to WWW.
The multiple HTTP connection is implemented using
multiple threads and asynchronous downloader module so
that the overall downloading process is optimized.
 The user specifies the start URL from the GUI provided. It
starts with a URL to visit. As the crawler visits the URL, it
identifies all the hyperlinks in the web page and adds them to
the list of URLs to visit, called the crawl frontier. URLs from
the frontier are recursively visited and it stops when it reaches
more than five level from every home pages of the websites
visited and it is concluded that it is not necessary to go deeper
than five levels from the home page to capture most of the
pages actually visited by the people while trying to retrieve
information from the internet.
The web crawler system is designed to be deployed on a
client computer, rather than on mainframe servers which
require a complex management of resources, still providing
the same information data to a search engine as other
crawlers do.

Keywords: HTML parser, URL, multiple HTTP
connections, multi-threading, asynchronous downloader.

I. INTRODUCTION

1.1 Working of a general Web crawler

A web crawler is a program or an automated script which
browses the World Wide Web in a methodical automated
manner. A Web crawler also known as a web spiders, web
robots, worms, walkers and wanderers are almost as old as
the web itself [1]. The first crawler, Matthew Gray’s
wanderer, was written in spring of 1993, roughly coinciding
with the first release of NCSA Mosaic [5]. Due to the
explosion of the web, web crawlers are an essential
component of all search engines and are increasingly
becoming important in data mining and other indexing
applications. Many legitimate sites, in particular search
engines, use crawling as a means of providing up-to-date
data. Web crawlers are mainly used to index the links of all
the visited pages for later processing by a search engine.

Manuscript received January 25, 2008.
 Rajashree Shettar is working as Asst. Professor in the Department of

Computer-Science at R.V. College of Engineering, Mysore Road,
Bangalore-560059, Karnataka, India. Phone: +91-080-28601874; fax:
+91-080-28601874; e-mail: (rajshri99@ yahoo.co.in).

Dr. Shobha. G is working as Professor in the Department of
Computer-Science at R.V. College of Engineering, Mysore Road,
Bangalore-560059, Karnataka, India. Phone: +91-080-28601874; fax:
+91-080-28601874; e-mail: (shobhatilak@ rediffmail.com).

Such search engines rely on massive collections of web pages
that are acquired with the help of web crawlers, which
traverse the web by following hyperlinks and storing
downloaded pages in a large database that is later indexed for
efficient execution of user queries. Despite the numerous
applications for Web crawlers, at the core they are all
fundamentally the same. Following is the process by which
Web crawlers work [6]:

1. Download the Web page.
2. Parse through the downloaded page and retrieve all the
links.
3. For each link retrieved, repeat the process.

The Web crawler can be used for crawling through a
whole site on the Inter/Intranet. You specify a start-URL and
the Crawler follows all links found in that HTML page. This
usually leads to more links, which will be followed again, and
so on. A site can be seen as a tree-structure, the root is the
start-URL; all links in that root-HTML-page are direct sons
of the root. Subsequent links are then sons of the previous
sons. A single URL Server serves lists of URLs to a number
of crawlers. Web crawler starts by parsing a specified web
page, noting any hypertext links on that page that point to
other web pages. They then parse those pages for new links,
and so on, recursively. Web-crawler software doesn't actually
move around to different computers on the Internet, as
viruses or intelligent agents do. Each crawler keeps roughly
300 connections open at once. This is necessary to retrieve
web pages at a fast enough pace. A crawler resides on a single
machine. The crawler simply sends HTTP requests for
documents to other machines on the Internet, just as a web
browser does when the user clicks on links. All the crawler
really does is to automate the process of following links. Web
crawling can be regarded as processing items in a queue.
When the crawler visits a web page, it extracts links to other
web pages. So the crawler puts these URLs at the end of a
queue, and continues crawling to a URL that it removes from
the front of the queue. (Garcia-Molina 2001).

1.2 Resource Constraints

Crawlers consume resources: network bandwidth to
download pages, memory to maintain private data structures
in support of their algorithms, CPU to evaluate and select
URLs, and disk storage to store the text and links of fetched
pages as well as other persistent data.

II. DESIGN DETAILS

A crawler for a large search engine has to address two issues
[2]. First, it has to have a good crawling strategy i.e. a

Web Crawler On Client Machine

Rajashree Shettar, Dr. Shobha G

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

strategy to decide which pages to download next. Second, it
needs to have a highly optimized system architecture that can
download a large number of pages per second while being
robust against crashes, manageable, and considerate of
resources and web servers. In this paper we present a model
of a crawler on the client side with a simple PC, which
provides data to any search engines as other crawler provide.
To retrieve all webpage contents, the HREF links from every
page will result in retrieval of the entire web’s content

• Start from a set of URLs
• Scan these URLs for links
• Retrieve found links
• Index content of pages
• Iterate

The crawler designed has the capability of recursively
visiting the pages. The web pages retrieved is checked for
duplication i.e. a check is made to see if the web page is
already indexed if so the duplicate copy is eliminated. This is
done by creating a data digest of a page (a short, unique
signature), then compared to the original signature for each
successive visit as given in figure 3. From the root URL not
more than five links are visited and multiple seed URLs are
allowed. The indexer has been designed to support HTML
and plain text formats only. It takes not more than three
seconds to index a page. Unusable filename characters such
as “?” and “&” are mapped to readable ASCII strings. The
WWW being huge, the crawler retrieves only a small
percentage of the web.
We have considered two major components of a crawler -
collecting agent, and searching agent [3]. The collecting
agent downloads web pages from the WWW and indexes the
HTML documents and storing the information to a database,
which can be used for later search. Collecting agent includes
a simple HTML parser, which can read any HTML file and
fetch useful information, such as title, pure text contents
without HTML tag, and sub-link.

Figure 1: High-level architecture of a standard Web
crawler.

The searching agent - searching agent is responsible for
accepting the search request from user, searching the
database and presenting the search results to user. When the
user initiates a new search, database will be searched for any
matching results, and the result is displayed to the user, it
never searches over WWW but it searches the database only.
A high level architecture of a web crawler [4] has been
analyzed as in figure 1 for building web crawler system on
the client machine.Here, the multi-threaded downloader
downloads the web pages from the WWW, and using some
parsers the web pages are decomposed into URLs, contents,
title etc. The URLs are queued and sent to the downloader
using some scheduling algorithm. The downloaded data are
stored in a database.

III. SOFTWARE ARCHITECTURE

The architecture and model of our web crawling system is
broadly decomposed into five stages.
The figure 2 depicts the flow of data from the World Wide
Web to the crawler system. The user gives a URL or set of
URL to the scheduler, which requests the downloader to
download the page of the particular URL. The downloader,
having downloaded the page, sends the page contents to the
HTML parser, which filters the contents and feeds the output
to the scheduler. The scheduler stores the metadata in the
database. The database maintains the list of URLs from the
particular page in the queue. When the user request for
search, by providing a keyword, it’s fed to the searching
agent, which uses the information in the storage to give the
final output.

1. HTML parser

We have designed a HTML parser that will scan
the web pages and fetch interesting items such as title,
content and link. Other functionalities such as
discarding unnecessary items and restoring relative
hyperlink (part name link) to absolute hyperlink (full
path link) are also to be taken care of by the HTML
parser. During parsing, URLs are detected and added
to a list passed to the downloader program. At this
point exact duplicates are detected based on page
contents and links from pages found to be duplicates
are ignored to preserve bandwidth. The parser does
not remove all HTML tags. It cleans superfluous tags
and leaves only document structure. Information
about colors, backgrounds, fonts are discarded. The
resulting file sizes are typically 30% of the original
size and retain most of the information needed for
indexing.

2. Creating an efficient multiple HTTP connection

Multiple concurrent HTTP connection is
considered to improve crawler performance. Each
HTTP connection is independent of the other so that
the connection can be used to download a page. A
downloader is a high performance asynchronous
HTTP client capable of downloading hundreds of
web pages in parallel. We use multi-thread and

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

asynchronous downloader. We use the asynchronous
downloader when there is no congestion in the traffic
and is used mainly in the Internet-enabled application
and activeX controls to provide a responsive
user-interface during file transfers. We have created
multiple asynchronous downloaders, wherein each
downloader works in parallel and downloads a page.
The scheduler has been programmed to use multiple
threads when the number of downloader object
exceeds a count of 20 (in our experiment).

3. Scheduling algorithm

 As we are using multiple downloaders, we propose
a scheduling algorithm to use them in an efficient way.
The design of the downloader scheduler algorithm is
crucial as too many objects will exhaust many
resources and make the system slow, too small number
of downloader will degrade the system performance.
The scheduler algorithm is as follows:

1. System allocates a pre-defined number of

downloader objects (20 in our experiment).
2. User input a new URL to start crawler.
3. If any downloader is busy and there are new URLs

to be processed, then a check is made to see if any
downloader object is free. If true assign new URL to
it and set its status as busy; else go to 6.

4. After the downloader object downloads the contents
of web pages set its status as free.

5. If any downloader object runs longer than an upper
time limit, abort it. Set its status as free.

6. If there are more than predefined number of
downloader (20 in our experiment) or if all the
downloader objects are busy then allocate new
threads and distribute the downloader to them.

7. Continue allocating the new threads and free threads
to the downloader until the number of downloader
becomes less than the threshold value, provided the
number of threads being used be kept under a limit.

8. Goto 3.

4. Storing the web page information in a database

 After the downloader retrieves the web page
information from the internet, the information is stored
in a database. The database is used to maintain web page
information to index the web pages so that this database
can be searched, for any search keyword, as in a search
engine.

5. Keyword search

 A search keyword is taken from the user as input
and the keyword search module searches the keyword
from the database and gives the indexing result to the
user. A simple browser is designed to allow user to
browse the pages directly from the application,
instead of using a browser outside of the system.

Figure 2: Software Architecture

Input: Start URL. ; say u.
1. Q = {u}. { assign the start URL to visit}
2. while not empty Q do
3. Dequeue u ∈ Q
4. Fetch the contents of the URL asynchronously.
5. I = I ∪ {u } {Assign an index to the page visited and

pages indexed are considered as visited}
6. Parse the HTML web page downloaded for text and

other links present. {u1, u2, u3, ...}
7. for each {u1, u2, u3, …} є u do
8. if u1 ∉ I and u1 ∉ Q then
9. Q = Q ∪ {u1}
10. end if
11. end for
12. end while

Figure 3: Web crawler algorithm.

 IV. IMPLEMENTATION

This Web crawler application builds on the above mentioned
modules and uses ideas from previous crawlers. This is
developed in C++ works on Windows XP operating system.
It makes use of Windows API, Graphics Device Interface,
ActiveX controls. For database connectivity we use ODBC
interface. The currently proposed web crawler uses breadth
first search crawling to search the links. The proposed web
crawler is deployed on a client machine. User enters the URL
for example http:// rediffmail.com in the browser created.
Once the start button is pressed, an automated browsing
process is initiated. The HTML page contents of
rediffmail.com homepage are given to the parser. The parser
puts it in a suitable format as described above and the list of
URLs in the HTML page are listed and stored in the frontier.
The URLs are picked up from the frontier and each URL is
assigned to a downloader. The status of downloader whether
busy or free can be known. After the page is downloaded it is

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

added to the database and then the particular downloader is
set as free (i.e. released). We have considered 20 downloader
objects, at any point of time if all downloader objects are
busy threads are initiated to take up the task of the
downloader. The user has a choice to stop the search process
at any time if the desired results are found. The
implementation details are given in table 1.

Table 1: Functionality of the web crawler application on
client machine.

V. CONCLUSION

Web Crawler forms the back-bone of applications that
facilitate Web Information Retrieval. In this paper we have
presented the architecture and implementation details of our
crawling system which can be deployed on the client machine
to browse the web concurrently and autonomously. It
combines the simplicity of asynchronous downloader and the
advantage of using multiple threads. It reduces the
consumption of resources as it is not implemented on the
mainframe servers as other crawlers also reducing server
management. The proposed architecture uses the available
resources efficiently to make up the task done by high cost
mainframe servers.

A major open issue for future work is a detailed
study of how the system could become even more distributed,
retaining though quality of the content of the crawled pages.
Due to dynamic nature of the Web, the average freshness or
quality of the page downloaded need to be checked, the
crawler can be enhanced to check this and also detect links
written in JAVA scripts or VB scripts and also provision to
support file formats like XML, RTF, PDF, Microsoft word
and Microsoft PPT can be done.

VI. REFERENCES

[1] The Web Robots Pages.
 http://info.webcrawler.com/mak/projects/robots/robots.html.

[2] “Effective Web Crawling” by Carlos Castillo,
Department of Computer Science, University of Chile.
Nov 2004.

[3] “A web crawler” by Xiaoming Liu & Dun Tan, 2000.

[4] “Web Crawling” by Baden Hughes, Department of
Computer Science and Software Engineering,
UniversityofMelbourne. (www.csse.unumelb.edu.au).

[5] Internet Growth and Staticstics: Credits and Background.
http://www.mit.edu/people/mkgray/net/background.html.

[6] “How search engines work and a web crawler
application” by Monica Peshave, Department of
Computer Science ,University of Illinois at Springfield
and Advisor: Kamyar Dezhgosha, University of Illinois
at Springfield.

[7] Myspiders: Evolve Your Own Intelligent Web Crawlers
Gautam Pant and Filippo Menczer, The university of
Iowa City.

[8] Mercator: A scalable, Extensible Web Crawler, Allan

Heydon and Marc Najork.

Feature Support

Search for a search string
Help manual
Integration with other applications
Specifying case sensitivity for a search string
Specifying start URL
Support for Breadth First crawling
Support for Depth First crawling Support for
Broken link crawling Support for Archive
crawling
Check for Validity of URL specified

Yes
No
No
Yes
Yes
Yes
No
No
No
Yes

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

