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       Abstract-- Increasing need for high data rate 
transmission and reliability of communication over 
fading channels using multiple transmit antennas has 
drawn attention to high spectral efficiency modulation 
schemes such as Quadrature Amplitude Modulation 
(QAM). With the aim of increasing the ‘Diversity 
Order’ of signal set we consider multidimensional 
rotated QAM constellation. Increasing diversity order 
‘L’ is not the only design parameter, there are some 
other important parameters like minimum product 
distance ‘dpmin’ and the product kissing number ‘τP’ 
which influence the system performance. In this paper, 
the suitable rotation has been worked out for 
Multidimensions using the 16QAM & 64QAM 
constellations and the corresponding kissing numbers 
have been checked. The combined architecture for 
MIMO (multiple- input multiple- ouput) Antenna 
system involving the concept of rotated constellation 
and concatenated with trellis coded modulation (TCM) 
is designed and simulated using the low complexity 
lattice decoder at the receiver. The performance of 
rotated and non-rotated constellation with Channel 
State Information (CSI) error has been evaluated.  
 

        Keywords -- CSI, Diversity, Multi Antenna, 
QAM, TCM. 
 

I. Introduction 
 

Recently, the field of multi-antenna processing has 
attracted large interest in the communication community 
due to the huge capacity of the multi-antenna environment 
[10]. Generally MIMO techniques / algorithms aim at 
data rate maximization or diversity maximization, looking 
for performance enhancement. There are also limits set for 
the trade off viz. DMG trade off (Diversity – Multiplexing 
Gain) [1], [9]. The technique used to get closer to these 
theoretical capacity limits fall under the realm of space 
time coding (STC) [8]. To mitigate fading many 
communications systems use a space diversity. 
  

The error probability of a multidimensional signal set is 
essentially dominated by four factors. To improve 
performance it is necessary to:  
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i) minimize the average energy per constellation 
point.  

ii) Maximize the diversity L 
iii) Maximize the minimum L-product distance.  

 

 
 
 

 

iv) Minimize the product kissing number ‘τp’ for 
the L-product distance i.e. the total number of 
points at the minimum L-Product distance. 

Boutros [3] have verified the diversity order ‘L’ & the 
minimum product distance, ‘dpmin’ and found that as 
diversity increases the bit error rate curves approach the 
one for the Gaussian channel. But doubling of the diversity 
and dp min are not the only important design parameters to 
increase the performance. In this paper, work has been 
carried for the third design parameter i.e. product kissing 
number. The product kissing number ‘τp’ is a critical 
design parameter to improve performance.  

 The primary contribution will be evaluation of 
new algorithm approach for signal set design that achieves 
high level of diversity. Utilization of error control coding at 
the signaling stage of the constellation is apparently an 
alternative to improve the performance[2][4].  

Lattices Code are used in digital transmission as high 
rate signal constellation. They are obtained by carving a 
finite number of points from an n-dimensional lattice in the 
eucilidean space. The lattice codes are effective because 
they present high modulation diversity L i.e. any two code 
vectors always differ in at least L coordinates[5][6][7]. The 
effort in this paper is to design a  lower complexity lattice 
decoding algorithm. A new combined architecture for two 
antennas system involving the concept of rotated 
constellation and concatenated with Trellis Coded 
Modulation (TCM) is designed using the low complexity 
lattice decoder at the receiver and the performance of 
rotated and non rotated constellations has been evaluated. 
The essential part of the most of the MIMO Space Time 
Architecture is the need for the CSI at the receiver, so is the 
case with the architecture that has been presented in this 
paper.  

 
 

II.  Diversity Multiplexing Tradeoff 
 The key point to increase the modulation diversity 
is to apply a certain rotation to a classical signal 
constellation in such a way that any two points achieve the 
maximum number of distinct components. In this paper, 
the rotated versions of a multi dimensional QAM 
constellation has been worked out and is as given below.   
A. Dimension 2 

All two dimensional orthogonal matrices have the 
following structure: 

xi and yi being constellation points 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



)3(
21

12
4 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−

−−
−−

=
MM
MM

abcd
badc
cdab
dcba

M

2
21

1
λ+

=
U

a
2
2

2

1 λ

λ

+
=

U
b

U
d

U
c λ

λ
λ

==
2

 
 
 

 
 
 
 
 
 
 
 
 
 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
ab
ba

M 2
with the constraint a2+b2=1 

 

Parametrizing this orthogonal matrix as a function of 
single variable λ gives  

21/1 λ+=a and b= λa.    (2) 
By varying the λ value in steps of 0.005 and for each 
value computing all the product distances and picking the 
least of it, the dpmin has been plotted as a function of λ (fig. 
1). From the graph in fig. 1, we pick the value of λ = 1.71 
(maximum case). This leads to the rotation matrix for the 
2 dimensional case as  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
50.086.0
86.050.0

2M , the subscript 2 indicating 

that it is the 2 dimensional case.  
 
 

B. Dimension 4 

The family of 4- dimensional orthogonal matrices 
considered here is  
 

 
 
 
 
 
 

where M2 (submatrix) is fixed as the optimal 2 
dimensional matrix and its parameter is used (renamed as 
λ2). The other 2x2 submatrix M1 is dependent on the 
parameter λ. The orthogonality constraint reduces to ad – 
bc =0. This gives rise to the following equations: 
 
 
 
 
 
 

Where 
2

2
2

222
2

λ
λλλλ ++

=U   

The minimum product distance variation and the kissing 
number plots are shown in fig. 2 and 3. From the plot, the 
value λ = 2.05 is the optimum parameter that gives dpmin = 
.0222. The four dimensional rotation matrix (M=2 
antennas & T=2 symbol periods and MT determines the 
dimension)  

 
 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. The Kissing number vs λ for 16-QAM 
 

may be constructed in a Hadamard way. The values of the 
rotation matrix have hence been computed as:- a = 0.2012,  
b= 0.33, c = 0.49,  d = 0.79 
 

Hence the rotation matrix become 
M4 =  0.2 0.33 - 0.49 - 0.79   

-0.33 0.2 0.79 -0.49  
0.49 0.79 0.2 0.33  (4) 
-0.79 0.49 -0.33 0.2 

 

This work involves the utilization of the 4 dimensional 
rotated constellation in a 2x2 antenna system. 
Results 
It has been verified that product kissing number ‘τP’ which 
is a critical design parameter is equal to 1 for relevant 
‘dpmin’ value. Simulation of multi dimensions were done to 
arrive at the optimum rotation to maximize the diversity 
base on the criteria of maximization of the minimum 
product distance and minimization of the kissing number.  
It has been verified that the variation of the minimum 
product distance are same for higher constellation though 
the graphs are not included here.  
 

III. Construction of the Rotated Constellation for 
2 antenna system 

 

System Model 
 

Consider a system of M transmit N receive antennas. 
An space time (ST) modulation associates with each q x 1 
information symbol vector s = (s1….,sq) from a q-
dimensional input constellation Sq, an M x T modulation 
matrix ∈)(sB ʗMxT, with ʗ the field of complex numbers, 

where M modulated symbols bmt, for m=1,….,M are 
transmitted simultaneously from all transmit antennas at 
time t for t = 1,….,T.  The modulation B has a 

Fig. 1. The minimum product distance vs λ for 16-QAM

Fig. 2. The minimum product distance vs λ for 16-QAM
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transmission rate of q/T symbols per channel use (PCU). 
Let X be the N x T be received signal matrix, H be the N x 
M channel matrix, and W the N x T noise matrix. The 
received signal in matrix form, is : 
 X = HB + W         (5) 
Under quasi-static fading, assuming perfect CSI at the 
receiver, the pairwise error probability (PEP) of the ML 
detection of the information vector s′ knowing that the 
information vector s ≠ s′ has been transmitted is upper 
bounded by  
 
 
 
 
Where Es is the average energy per symbol, n is the 
minimum rank of the set of matrices B (s-s′) for all pairs of 
information vectors s ≠ s, and λj, j = 1....r, are the non-zero 
eigenvalues of  
 
 

with the subscript H denoting the conjugate transpose. 
Then minimizing the PEP is equivalent to the following 
criteria  
• The Rank Criteria : the minimum rank r of  ( )ssB ′−  

taken over all distinct information vector pairs ( )ss ′, , 
is the diversity gain.  

• The Determinant Criterion : the minimum of 
geometric mean of the nonzero eigenvalues of  

( )ssA ′− , taken over all distinct pairs ( )ss ′,  is the 
coding gain and should be maximized.  

 
IV. Low complexity lattice decoder for rotated 

Constellation with 2 Antenna System 
 

Imposing of a lattice structure necessitates,  rewriting 
of the rotated constellation presented in (5). The equivalent 
uncoded system is given by 
 

      h11 h12      0      0 
Vec (XT) =  0 0        h11   h12 
      h21 h22      0      0  .    Mp4sT + Vec (WT)      

     0 0        h21     h22 
 

 = HPMp4sT + Vec (WT)        (7)        

where hij refers to the fading components between the ith 
receive and jth transmit antennas, Vec (XT) is the vector 
representation of the matrix XT  (superscript T refers to 
transpose) by putting all its columns one after another in 
one vector column. Mp4 is the rotation matrix M4 with the 
third line multiplied by – 1, the received signal could be 
written as  

 X' = Vec (XT) = H'sT + W'        (8) 
Where H' = HpMp4 of rank 4, since the rank of Hp is rank 
4. Finally the lattice representation of the resulted system 
is given by 
      

   

The dimension increase is from M = 2 → 2 x 2 x 2= 8 (2 
Time slots and 2 antennas) Fig. 4 presents the flowchart of 

low complexity lattice decoder algorithm. The Principle of 
the algorithm is to search the closest lattice point to the 
receive signal within a sphere of radius  C   centered at 
the receive signal. This guarantees that only the lattice 
points within the square distance C from the receive point 
are considered. This algorithm begins its search near the 
centre of the sphere. Each time a valid lattice point is 
found, the search is restricted further by reducing the radius 
of the sphere to be equal to the distance of the newly 
discovered lattice point from the sphere centre.  
The algorithm uses several specific functions and variable. 
The function Chol (GM) computes a normalized cholesky 
factorization of the Gram matrix of MH (i.e. the Gram 
Matrix is GM = MH′MT

H′). The decomposition is of the form 
GM = RRT with R an upper triangular matrix with entries rij. 
When a vector inside the sphere is found, the square 
distance between this vector and the receive vector (the 
centre) is given by : 

 
 
This value is compared to the minimum square 

distance d2 (initially d2 =C) found so far in the search. If 
2d̂ is smaller than d2 then we have a new candidate closest 

point and the search continues until all the vectors inside 
the sphere are tested. The variable d2 is the current squared 
radius of the sphere and û  is the newly found lattice point. 
Wherever a valid lattice point x is found within the sphere, 
in addiction to reducing the current squared radius d2 so 
that the newly discovered lattice point lies on the surface of 
the sphere, the algorithm recomputes all the lower and 
upper bounds according to the new d2 value. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
`` 
 

 
 

 
 
 
 
 
 
 

Fig. 4. Flow chart of the low complexity lattice decoder  
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V. Proposed System architecture 
The proposed architecture is given in fig. 5. The input 

is a binary source, which goes through a TCM stage. This 
output is fed to the constellation mapper in sets of 4 
symbols at a time. The constellation mapper (constellation 
rotation) provides a set of 4 symbols, which are 
transmitted through the two transmitters in two time slots. 
The channel is the Rayleigh fading channel and at the 
receiver there are two antennas which feed the received 
signals to the sphere decoder. The output of the sphere 
decoder is sent to the low complexity lattice decoder with 
trace back length of 3, whose output is the received bits.  
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

VI. Simulation Results and Performance 
Analysis 

 

The proposed architecture was simulated in MATLAB 
environment and the performance was studied. The 
channel matrix H is assumed to be available at the 
receiver. The fading components of the matrix are 
modeled as complex Gaussain noise with variance of 0.5 
per dimension; this gives rise to the Rayleigh fading 
channel. 10,00,000 input bits have been considered as 
input to the proposed architecture. Complex AWGN noise, 
i.e. the W matrix is added at the receiver so that the noise 
variance per dimension is given by 10-SNR/10. The choice of 
the radius for the sphere decoder, √C was varied as a 
function of SNR and the values were set by trail and error 
for the various SNR values. The curves in fig 6 represent 
the average bit error rate (BER) as a function of the SNR 
in dB at the receiver.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7.  Performance of architecture without Rotation with 

and without TCM stage 
 

The curves in fig 6 represent the average bit error rate 
as a function of the SNR in dB at the receiver. The two 
plots in the graph correspond to the performance when only 
the rotation is used and when the rotation is concatenated 
with the TCM stage. The corresponding data rates of the 
two cases are 4 bits PCU and 2 bits PCU (Per Channel Use) 
respectively (since it is rate half convolutional coder). It 
may be noted that there is a 1.5 to 2 dB improvement in the 
performance of the system when the TCM stage is 
introduced. Lowering of BER suitably compensates the 
loss in capacity.  

What has also been considered as a need for 
comparative study is to look at the performance of a similar 
architecture if no rotation is given. That is to have the rest 
of the architecture same and just replace the M4 matix 
unrotated. This can be done by the choice as  
 
 1 0 0 0 
 0 1 0 0 
M4  =  0 0 1 0 
 0 0 0 1 

 

With this choice, the system shown in fig. 5 becomes 
an unrotated system. The performance of this system was 
also carried out on the similar lines and is shown in fig. 7. 
It is interesting to note that the performance of the 
unrotated constellation is poorer as compared to the rotated 
constellation architecture.  

 
VII. Performance of the architecture with CSI 

errors 
There are estimation techniques [11] available to estimate 
the channel state at the receiver. However, it is always 
possible that the CSI estimates do have errors inherently 
and, this necessitates the study of any MIMO architecture 
under errors in CSI. In this paper the proposed system 
architecture is evaluated with errors in the estimated CSI. 
 

A Estimation Techniques 
Consider N transmit, M receive antenna set up. We can 
write the received signal samples for the l th symbol within 
the burst at the optimum sampling instant as  
 

Fig. 5.  The proposed system architecture  

Fig. 6 . Performance of architecture with 
Rotation TCM stage 
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where ( )sT ′δ  is the timing error after timing 

synchronization, ( )ljη  is the AWGN with zero mean and 

variance 2
oN per dimension, and ( )lv j  is the ISI due to 

the timing error which is modeled as uncorrelated 
Gaussian noise with zero mean and variance 2

vσ . ( )lijα~  

are the fading components to be estimated. ( )lp~  is the 

pulse used for shaping and ( )lci  are the transmitted 
symbols. This scheme works on pilot symbols being 
transmitted from the transmitter.  

Consider output samples corresponding to thenth pilot 
sequence within the burst 

( ) ( ) ( ).)1(,.......,2)1(,1)1( psjsjs LLnyLnyLny +−+−+−  The 
Channel is assumed to be constant over the duration of the 
pilot sequence and is equal to the value of the channel is 
the middle of the pilot sequence. Defining the overall 
noise term as: 

 ( ) ( ) ( ) )12(nvnnz jjj +=η  
We define Yj (n) as  

( ) ( ) ( ) ( )[ ]Tpsjsjsjj LLnyLnyLnynY +−+−+−= )1(.....2)1(1)1(  
 

 
 
where  ( )sss TpEA ′= δ~ . Using the fact that the 

pilot pulses P1, P2, …, PN are orthogonal, and each of 
length LP, we can immediately see that the minimum mean 
square error (MMSE) estimate of ( )lijα~  is given by: 

 
 
 
 

Where .  denotes matrix norm. Hence, the 

estimation of the various fading components is done. It can 
also be noted that  

 

 
 

 
where eij )(n  is the estimation error due to the noise 

and ISI given by  
 
 

 
 
 
Since zj )(n  is assumed to be zero mean Gaussian 

random vector we have that eij (n) is also Gaussian with 
zero mean and variance  

 
 
 
 
B Performance of the system with no CSI 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Performance of proposed architecture with no CSI at receiver 
 
When the CSI is not known at the receiver the channel 

matrix becomes ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

11
11

H  at the receiver. Though, the 

fading does take place, since the receiver is not aware of 
the fading component it is safe to assume as above. 
However, the problem faced with such a choice of H at the 
receiver is that this choice is not an orthogonal choice, 
because of which the Cholesky factorization of the 
corresponding Gram matrix cannot be performed. The 
lattice decoding algorithm requires that a Cholesky 
factorization be performed on the Gram matrix. A matrix 
has to be positive definite in order that a Cholesky 
factorization be done on it. In order to make this possible, 
we force a value other than 1 (but close to it) in one of the 
components of the H matrix. With this we have the matrix 
at the receiver as : 

 
 
 
 
This ensures that the corresponding Gram matrix is 

positive definite and hence Cholesky factorisable. The 
performance of such a system has been simulated and 
studied. The performance plot is shown in fig. 8. The 
performance plot of the nonrotated constellation without 
CSI is not attached because of its very poor performance. 
This performance can be compared with the case with 
perfect CSI to see the degradation in performance; however 
the TCM stage does come to the rescue of this case and 
keeps the BER under check at reasonably high SNR atleast.  

 

C.   CSI with errors  
When looking at the proposed system with CSI errors, 

we can model the errors in various ways, either as the 
errors dependent on the SNR or independent of the SNR. 
We have adopted the way of introducing errors in CSI 
independent of SNR. The errors in the 2x2 channel CSI,  

⎟⎟
⎠

⎞
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⎝

⎛
∈∈
∈∈

2221

1211  are modeled here as zero mean complex 

Gaussian variables with variance of 0.01. Hence the overall 

CSI available at the receiver is ⎟⎟
⎠
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That is, errors have been  
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Fig. 9 Performance of proposed architecture with CSI errors 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
incorporated in all the 4 channels. Incorporating this error 
model in the receiver part of the system and carrying out 
the rest of the simulation as before, the performance plots 
were obtained. This was done for both the cases of rotated 
constellation as well as unrotated constellation. The results 
are in fig. 9 and fig. 10 respectively 
 

VII. CONCLUSION 
 

A new combined architecture for two antenna system 
involving the concept of rotated constellation and 
concatenated with TCM using the low complexity lattice 
decoder at the receiver has shown an improvement of 1 to 
1.5 dB in the performance of the rotated constellation as 
compared to the unrotated constellation. The simulation 
studies have revealed that this architecture does provide a 
good performance improvement and better Bandwidth 
efficiency (2 symbol PCU) as well. Also suitable changes 
have been incorporated in the existing sphere decoder 
algorithm by way of adding a feedback mechanism in such 
a way that provides a huge decrease in complexity and 
gives rise to systems with high spectral efficiency. To 
realize the advantage of the proposed system, it was 
intuitively felt that the system should be evaluated under 
CSI estimation errors. The architecture was studied under 
CSI errors as well as the case when no CSI is available at 

the receiver, which could happen in case of sudden burst 
errors wherein the receiver could make a decision that it 
will assume lack of CSI. This study has shown results 
wherein the new architecture provides much better 
performance to that of the nonrotated architecture. The 
TCM stage comes to show its usefulness in the case of 
absence of CSI at the receiver. This has justified the use of 
rotated constellation as well as the use of TCM stage 
adequately. Intuitively, one can suggest that the TCM stage 
will find its use in a much more pronounced manner in case 
of higher (denser) QAM constellation with more number of 
antennas.  
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