
 
 

 

  
Abstract—Since the (23, 12, 7) binary Golay code is a perfect 

code, a weight-4 error occurred is always decoded as a weight-3 
error pattern by a hard decoding method. In this paper, an 
efficient soft-decision decoder of the (23, 12, 7) binary Golay code 
up to the four errors is proposed. All probable patterns of 
occurred weight-4 error, which are always decoded to the same 
weight-3 error pattern, are determined from the look-up table of 
weight-7 codewords. And the most possible error pattern of 
weight-4 or weight-3 will be obtained by estimating the 
emblematic probability values of all probable patterns. The 
simulation result of this decoder in additive white Gaussian noise 
(AWGN) shows that at least 93% and 99% of weight-4 error 
patterns occurred are corrected if a bit-energy to 
noise-spectral-density ratios (Eb/N0) are greater than 3 dB and 6 
dB, respectively, and at least 96% of weight-3 error patterns 
occurred are corrected for any dB. 

I. INTRODUCTION 

The (23, 12, 7) Golay code, which was found by Prange [1], 
is one of the most important binary quadratic residue (QR) 
codes. A t-error-correcting code can correct a maximum of t 
errors. A perfect t-error-correcting code has the property that 
every word lies within a distance of t to exactly one code word. 
The (23, 12, 7) binary Golay code is particular significance 
since it is a perfect 3-error-correcting code. That is, the (23, 12, 
7) Golay code allows for the correction of up to three errors 
and each four error pattern occurred is always decoded error 
as a three error pattern. There are some efficient hard decoding 
methods for the (23, 12, 7) binary Golay code: the algebraic 
decoding algorithm proposed by Elia [2], the reliability-search 
decoding algorithm proposed by Dubney et al. [3]. In this 
paper, a new efficient soft decoding technique is presented to 
correct the four errors.  

In [3], the reliability-search algorithm was developed to 
facilitate further decoding of the (23, 12, 7) Golay code. In 
that algorithm, using real channel data, the method developed 
by Reed [4] can be used to estimate the individual bit-error 
probabilities in a received word. In the soft decoding for more 
 

Manuscript received Jannuary 8, 2008. The work was supported by 
National Science Council, R.O.C., under Grants NSC95-2221-E-214-042.  

Wen-Ku Su is with the Department of Information Engineering, I-Shou 
University, Tahsu, 84001, Kaohshiung, Taiwan (886-939913808; fax: 
886-7-6577293; e-mail:  d9403003@stmail.isu.edu.tw). 

Pei-Yu Shih is with the Department of Information Engineering, I-Shou 
University, Tahsu, 84001, Kaohshiung, Taiwan (e-mail: 
d9203005@stmail.isu.edu.tw). 

Tsung-Ching Lin is with the Department of Information Engineering, 
I-Shou University, Tahsu, 84001, Kaohshiung, Taiwan (e-mail: 
joe@isu.edu.tw). 

Trieu-Kien Truong is with the Department of Information Engineering, 
I-Shou University, Tahsu, 84001, Kaohshiung, Taiwan (e-mail: 
truong@isu.edu.tw). 

than two errors occured, one utilizes the same method to 
estimate the individual bit-error probabilities in a received 
word. And the emblematic probability values of possible error 
patterns occurred of five weight-4 and one weight-3 are 
defined. Finally, according to the greatest embalming 
probability value, the most possible error pattern occurred is 
obtained. 

The structure of this paper is as follows: The background 
of the (23, 12, 7) binary Golay code is given in Section II. 
Section III presents the algebraic decoding algorithm for the 
binary Golay code. Section IV describes the soft decoding of 
the (23, 12, 7) binary Golay code for three or four errors 
occurred. A few short remarks and conclusions are given in 
the final section. 

II. (23, 12, 7) BINARY GOLAY CODE 

It is not difficult to show that g(x) = x11 + x9 + x7 + x6 + x5 + x + 

1 is an irreducible polynomial over GF(2). Thus there exists 
an element )2( 11GF∈α such that 0)( =αg . Hence the 
elements of GF(211) are found in the following set. 

 

GF(211) = { 2
210 αα aaa ++  

+K+ 10
10αa | a0, a1,K , a10∈GF(2)}. (1) 

 
Note also that α  is a primitive 23rd root of unity in 

GF(211).  
The codewords of Golay code over GF(2) are expressed 

first as the coefficients of a polynomial. In such a 
representation, a codeword is represented by 
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where ci ∈ GF(2) and x is an indeterminate. Written as a 
vector, the codeword is C = (c0, c1,…, c22). 

The generator polynomial of a Golay code as discussed 
above in an irreducible polynomial given by  

 g(x) = ∏
=

−
10

0

2 )(
i

i

x α  = x11 + x9 + x7 + x6 + x5 + x + 1. (3) 

Now let polynomials  
 

 I(x) = c22 x22 + c21 x21 + K+ c11 x11 (4) 
 
The codeword C(x) must also be a multiple of the generating 
polynomial g(x). That is 

 
 C(x) = I(x)g(x).    (5) 
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   To illustrate algebraic decoding algorithm, define 

 
 E(x) = e22 x22 + e21 x21 + K+ e1 x + e0 (6) 

 
to be the error polynomial. Written as a vector, the error 
vector is E = (e0, e1,…, e22). Then the received codeword has 
the form  

 
 R(x) = C(x) + E(x). (7) 

 
Suppose that e errors occur in the received codeword R(x), 
and assume that 2t ≤  d － 1. The decoder begins by dividing 
the received codeword R(x) by the generator polynomial g(x), 
i.e. 

 
 R(x) = q(x)g(x) + E(x). (8) 
 
Since α  and 3α  are both roots of g(x), one has  

 1S
Δ

= )(αE   

 3S
Δ

= )( 3αE   (9)  
                          
where S1 and S3 are called the syndromes of the code. 

The error-locator polynomial is defined by 
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Here, Zj for vj ≤≤1  are the locations of the v errors, i.e. Zj 
= jrα , where rj locates the position of the error to be corrected 
and tv < . 

III. ALGEBRAIC DECODING ALGORITHM 

       The (23, 12, 7) Golay code has a cyclotomic set Q = {1, 2, 3, 
4, 6, 8, 9, 12, 13, 16, 18}. Therefore g(x) has roots α1, α3, α9. 
Then the error-locator polynomial in (11) can be found from 
the Newton identities. Consider now the following equations 
from the Newton identities with Si

2 substituted for S2i: 
 

S1
 + σ1

 = 0 (11) 

S3 + σ1S1
2 + σ2S1

 + σ3 = 0 (12) 

S5
 + σ1S1

4
 + σ2S3 + σ3S1

2
 
 = 0                                             (13) 

 S7
 + σ1S3

2 + σ2S5
 + σ3S1

4
  = 0                                             (14) 

S9
 + σ1S1

8 + σ2S7
 + σ3S3

2
 
 = 0                                             (15) 

 

In these five equations, only the syndrome S1, S3, and S9 are 
known, since their subscripts belong to the cyclotomic set Q of 
the code. The unknown syndromes S5 and S7, which also occur 
in these equations, must be eliminated. 

First, it is clear that S1
 = σ1. Then S5 and S7 can be eliminated 

by substituting S5 from (14) into (15) and S7 from (15) to (16). 
These two substitutions yield the relation 

 
 S9

 + S1
9 + σ2[S1S3

2 + σ2(S1
5

 + σ2S3  

+ σ3S1
2) + σ3S1

4] + σ3S3
2 = 0.    (16)  

 
Simplifying this equation and substituting σ3 from (13) into  

 
(17), one finally obtains the result  
 

S9
 + S1

9 = (S3
 + S1

3)(σ2
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2S1
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2) 

= (S3
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2].                          (17) 
 

First, if S3
 = S1

3, then from (18) one has S9
 = S1

9. This 
happens only if there are one or no errors. Thus if S3

 + S1
3 ≠ 0, 

there is more than one error. In this case, the coefficient σ2 can 
be found from (18). Simultaneously, σ3 is found from (13) as 
follows: 

 
 σ2

 = S1
2 + D1/3 and σ3

 = S3
 + S1D1/3 (18) 

 
where  

 
 D = S1

6 + S3
2 + (S9

 + S1
9) / (S3

 + S1
3). (19) 

 
Since 01211 =−  modulo 23 and GCD(3, 1211 − ) = 1, the cube 
root is unique. 

When there are exactly two errors, σ3
 = Z1Z2Z3

 = 0, so that 
from (19) one has D1/3 = (S3/S1). Therefore one has the 
decoding scheme for the Golay code given below. This is the 
same result given by Elia [2]. 
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IV.  SOFT DECODING OF FOUR ERRORS FOR (23, 12, 7) GOLAY 
CODE 

It is convenient also to let the symbol P denote the decoding 
procedure of the (23, 12, 7) code. The look-up table of 
weight-7 codewords of the (23, 12, 7) QR codes is generated 
first. Let the set of the indices of nonzero components be 
denoted as Ind(．). Assume EP obtained from P, be the error 
vector.  If the weight of EP is less than three,  the error pattern 
can be corrected by the algebraic decoding algorithm. 
Otherwise, the weight of EP is 3 and let Ind(EP) = {i1, i2, i3}. 
One exactly determines five codewords C1, C2, C3, C4, and C5 
with three indices of nonzero components i1, i2, and i3 from the 
look-up table of weight-7 codewords. And let "

jC be as 
follows: 
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Consider the six vectors, i.e. "

1C , "
2C , "

3C , "
4C , "

5C , and "
6C , 

the “actually” occurred weight-4 or weight-3 error pattern is 
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one of them. In the following, the error pattern, which is the 
most possible one among them, will be obtained by estimating 
the emblematic probability values of the six vectors. 

In the soft decoding, one first estimates the individual 
bit-error probabilities p0, p1,…, p23 in a received word [3]. 
Then the emblematic probability values, denoted as p̂ , of the 
six possible patterns of occurred error are defined as follows: 

    

 .
6,   

5,4,3,2,1,
ˆ

)(

)( "

⎪
⎩

⎪
⎨

⎧

=

=

=
∏

∏

∈

∈

ip

ip
p

P

i

EIndj
j

CIndj
j

i  (22) 

 
Finally, the most possible error pattern, denoted as maxC ′′ ,  

corresponding to the maximal ip̂ , denoted as maxp̂ , is 
obtained. The simulation result in additive white Gaussian 
noise (AWGN) shows that at least 93% and 99% of weight-4 
error patterns occurred are corrected if a bit-energy to 
noise-spectral-density ratio Eb/N0 are greater than 3 dB and 6 
dB, respectively, and at least 96% and 99% of weight-3 error 
patterns occurred are corrected if a bit-energy to 
noise-spectral-density ratio Eb/N0 are greater than 0 dB and 3 
dB, respectively. 

V. CONCLUSION  

The proposed soft-decision decoder can be used to correct 
very large percent of patterns of quadruple errors, and almost 
all patterns of three errors, and all fewer random errors. Note 
also that as a bit-energy to noise-spectral-density ratio 
increases, the percentage of patterns of quadruple errors or 
three errors, which are decoded successfully, is improved. 
Furthermore, the method developed in this paper can be 
generalized to decode for more than four errors occurred. 
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Figure 1. Flowchart of the soft-decision decoder of (23, 12, 7) Golay code up 

to four errors.  
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