
 
 

 

  
Abstract—In this paper, a decoding method is proposed for 

the (41, 21, 9) quadratic residue code. The method is acquired 
through applying the condition of the modified Gao’s algorithm 
that is similar to fast transform decoding developed by Shiozaki 
[8]. The property of the syndrome polynomial is used in our 
decoding method. The new algorithm for has been verified by a 
software simulation using C++ language running through all 
error patterns. 
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unknown syndrome, error-locator polynomial, decoding 
algorithm.  
 

I. INTRODUCTION 
The class of quadratic residue (QR) codes was introduced 

by Prange in 1958 [1]. It is a nice family of cyclic codes and 
has approximately 1/2 code rates. Most of the binary QR 
codes are the best known codes, such as Hamming code [2] 
and Golay code [3, 4]. 

The QR code with code length 41has the 4-error capacity 
since its minimum distance is nine. The procedure used most 
often to decoding the binary (41, 21, 9) QR code is the 
algebra decoding developed by Reed [5]. This scheme was 
used to solve the Newton identities that are non-linear, 
multivariate equations of quite high degree.  

In this paper, to have the unknown syndrome S3 is a 
necessary condition for decoding the (41, 21, 9) QR code. In 
2001, a new technique to express the unknown syndromes as 
functions of known syndromes was developed by He et al [6]. 
We use the technique to determine the unknown syndrome S3. 
Then the syndrome polynomial is obtained. Further, the 
determined syndrome polynomial is applied in the key 
equation of the Gao’s algorithm given in [7-9]. The Gao’s 
algorithm proposes an efficient condition that is suitable for 
the (41, 21, 9) QR code. Then we solve the key equation 
using the extended Euclidean algorithm (EEA) to obtain the 
error-locator polynomial. After Chain search, the error 
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locations are confirmed. 
This paper is organized as follows: Section 2 describes the 

(41, 21, 9) QR code. Our decoding algorithm of the (41, 21, 9) 
QR code and an example are offered in section 3. Finally, this 
paper concludes with a brief summary in section 4.  

II. THE (41, 21, 9) QR CODE  

Letα be a root of the primitive polynomial 1320 ++ xx  and 
let 2557541/)12( 20

ααβ == −  be a primitive 41st root of unity in 
)2( 20GF . The set of quadratic residue modulo 41, called Q41, 

is equal to {1, 2, 4, 5, 8, 9, 10, 16, 18, 20, 21, 23, 25, 31, 32, 
33, 36, 37, 39, 40}. The generator polynomial of binary (41, 
21, 9) QR code can be written as 
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The received word r(x) is represented as a polynomial is 
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equal to a message polynomial m(x) multiply g(x), e(x) is the 
error polynomial and ci , ei belong to GF(2). 

 The error locator polynomial is defined by 
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Where v is the number of occurred errors, and Xi is the 
error location. 

 The syndrome is defined as )()()( iii
i ecrs βββ +==  

where 400 ≤≤ i . The relations among syndromes for the (41, 
21, 9) QR code is given in following: 
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 If i belong to Q41, the syndromes are called the known 
syndromes and have the property  

)()( ii
i ers ββ ==  for 41Qi ∈  (2) 

Otherwise, the syndromes are called the unknown 
syndromes and are not obtained directly.  

For the binary (41, 21, 9) QR code, every known 
syndromes (resp., unknown syndromes) can be expressed as 
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some power of S1 (resp.,S3). For the detail about syndromes, 
we refer the reader to [10]. 

III. NEW DECODING ALGORITHM OF THE (41, 21, 9) QR CODE 
Recall the EEA when applied to find the greatest common 

divisor (g.c.d) of two nonzero polynomials a, and b over 
GF(q). If we use the EEA to determine the g.c.d of T(x) and 
x41-1, we generate sets of solutions ))(),(),(( )()()( xxPxW lll θ . 

)()( xW l  and )()( xP l are useful for our decoding method. The 
condition of the Gao’s algorithm, 2/)()(deg )( knxP l +≤ , is 
suitable for the (41, 21, 9) QR code. The particular solution 

)()( xW l  is the error locator polynomial when )()( xP l  has 
degree less than 62/2. Let polynomial S(x) (resp., 1+S(x)) 
replaces to T(x), when the weight v of E(x) is odd (resp., 
even). Consequentially, the new decoding algorithm for the 
(41, 21, 9) QR code and an example are given in the 
following. 

If the received polynomial r(x) is  zero, there is no error in 
the received word. When the errors occur in received word, 
the decoding algorithm is summarized below by nine steps. 

• Step  1. Evaluate the known syndromes by using Eq.     
(2) 

• Step  2.  Initialize by letting v=1. 
• Step  3. Compute the unknown syndromes by 

applying the technique in [10]. 
• Step 4. Applying the EEA to x41-1 and T(x) to 

determine the polynomial )()( xW l . 
• Step  5. Applying Chien search to find the roots of  

)()( xW l . 
• Step 6. If there are exists v errors, go to Step8. 

Otherwise, set v=v+1. 
• Step  7.  If v>4, stop. If not, go to Step3. 
• Step  8.  The error polynomial is determined and 

then the received word can be corrected. 
Example_Decoding the (41, 21, 9) QR code using the new 

algorithm 
 We consider the information polynomial )(xI  equal to 

,xxxxxxxx 201916151410951 ++++++++  then the code 
polynomial c(x) is 
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which is a multiple of g(x). We assume that the error 
polynomial e(x) is 1+x2+x10+x30. 

Then the received polynomial is the sum of the code 
polynomial c(x) and the error polynomial e(x), i.e. r(x)= 

,       
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The decoding process developed in this paper is described 
as follows. First of all, the known syndrome Si for each i in  
Q41 can be calculated from the received polynomial r(x) in  
Eq. (2).  

By evaluating r(x) at the roots of g(x) mentioned above, the 
primary known syndrome is 022533

1 ≠= αS , which means that 

there are errors occurred in the received polynomial r(x). 
If the number of errors is one, i.e., v=1, the primary 

unknown syndrome is 675993
13 α== SS . After the 

determination of the primary syndromes S1 and S3, all 
syndromes can be also determined. Therefore, we further 
obtain the syndrome polynomial. 

The EEA is applied to polynomial T(x)=S(x) and x41-1. 
One observes that 312/)2141(17))(deg( =+<=xPi . Thus, 
the error locator polynomial W(x) with degree 30 is obtained 
as follows: 
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Using Chien search to find the root of the W(x), there are 
more than one root }400{ ≤≤ iiβ  in W(x), and thus the 

assumption is not valid. 
If the number of the errors is two, the primary unknown 

syndrome S3 can be determined by the technique developed 
in [10]. A computer search is used to find the following 
matrix of size 33×  

⎥
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There is only one unknown syndrome S3 among the entries 
of this matrix. By [4], the determinant of the above matrix is 
zero. The unknown syndrome S3 for the two-error case is thus 
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where S0=0 and S1= 22533α . Since v=2 is even, the 
polynomial T(x)=1+S(x) is used in the EEA. Similarly, the 
error locator polynomial is determined in the following: 
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Using Chien search to find the root of the W(x), there are 
more than two roots }400{ ≤≤ iiβ  in W(x), and thus the 
assumption is not valid.  
 If the number of the errors is three, the primary unknown 
syndrome S3 can be determined [10] by the following: 
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where S0=1 and 22533
1 α=S . Since v=3 is odd, the 

polynomial T(x)=S(x) is used in the EEA. Similarly, the error 
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locator polynomial is determined in the following: 
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A full computer search shows that there are more than three 
roots 400for ≤≤ i iβ to satisfy 0)( =iW β , and therefore 
the assumption is not valid. 

If the number of the errors is four, i.e., v=4, the primary 
unknown syndrome 3S  can be determined as follows:     
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where 00 =S and 22533
1 α=S . The unknown syndrome 3S  

for the four-error case is 1036507
3 α=S . Therefore, we further 

obtain the syndrome polynomial 
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Since v=4 is even, the polynomial T(x)=1+S(x) is used in 
EEA. Similarly, the error locator polynomial is determined as 
follows: 

4255753307172863025225331 xxxx)x(W αααα ++++= , 

and there exists exactly four roots  ,,, -30-10-20 ββββ in W(x) 
via Chien search. In other words, the error polynomial 
e(x)=1+x2+x10+x30 is determined.  

IV. CONCLUSION 
In this paper, a new decoding algorithm of the (41, 21, 9) 

QR code is proposed. We apply the key equation of the Gao’s 
algorithm in our decoding method. The key equation of the 
Gao’s algorithm supplies a successful condition to determine 
the error locator polynomial. It would be interesting to see if 
there exists the condition to determine the number of 
occurred four-errors. 
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Fig. 1: Flowchart of the (41, 21, 9) QR decoder 
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