
Min-cut Determination for Linear Network Code in
Wireless Ad Hoc Networks

Su-Kit Tang, Lingxiong, Li, and Dongyang Long

AbstractIn this paper, we propose an implementation
neutral protocol, called Multiple Disjoint Path (MDP), for the
determination of the min-cut in wireless ad hoc networks by
summarizing the capacity of disjoint paths constructed from
source node to sink nodes. Min-cut is essential in the
formulation of data being sent using Linear network code in
source node. MDP consists of virtual source routing and core
heuristic. Virtual source routing is to resolve scalability,
privacy and efficiency problems caused by long paths in large
networks. Core heuristic is to ensure the efficiency of request
packet propagation. Our simulation results reveal that MDP
performs at a satisfactory level in dense networks in terms of
connectivity and transmission efficiency. An opportunity for
deployment of linear network code for data transmission in
dynamic wireless environment can be created.

Index TermsNetwork Coding, Ad Hoc, Multiple Disjoint
path, Routing

I. INTRODUCTION

Network coding is proved to be able to optimize network
resources for transmission in a network at a rate close to the
min-cut of a network [1][2]. In Figure 1, two bits of data, a
and b, sending from s to t1 and t2, are transmitted by two
downlinks individually. When a and b meet at node y, they
collide as y cannot transmit both at once. Encoding at node y
is required so that delay caused by data collision between a
and b can be avoided. Encoding involves loss-less
transformation of two individual pieces of data into one for
a single transmission instead of two. Encoded data is then
recovered at sink nodes, t1 and t2. To some degrees the
encoding reduces the transmission time for packets in entire
journey if collision occurs. Usage of edges in the network
are utilized and both sink nodes are able to receive the two-
bit data without delay caused by data collision at node y.

If Linear network code [2] is used, the encoding at node y
requires source node s to formulate its data into a form of
linear independent equations before send. With the
possession of linear independency in data being sent, data
decoding at sink nodes can be achieved successfully after
encoding at intermediate nodes. Therefore, the min-cut of a
network is crucial in the encoding process. The min-cut
determines the maximum flow of data in one transmission to
all sink nodes from a source node and the linear
independency of data in the encoding process. Hence, the
main question is how to obtain the min-cut of the network,
especially in wireless ad hoc networks, to apply Linear
network code in transmission. The contribution of our paper

is to find out the min-cut of a wireless ad hoc network. This
specific problem we consider has not been studied
previously. The concept of our solution is to construct some
disjoint paths, connecting sink nodes to the source node, in
the network. Different data at different paths can be
transmitted at the same time. Encoding is involved if two
disjoint paths intersect. By counting the minimum capacity
of disjoint paths among sink nodes, the min-cut of a network
is obtained. With the knowledge of min-cut, the source node
can formulate its data using Linear network code. Figure 2
depicts the network in Figure 1 by disjoint paths for two bits
of data, a and b, transmitting to t1 and t2 from s. It is clear
that the min-cut of the network from source node s is 2 as
there are two disjoint paths for each sink nodes, assuming
that all links are of unit capacity.

In this paper, we propose MDP in an abstract way that is
neutral in implementation for flexibility. MDP constructs
maximal disjoint paths for a source node in one-to-many
transmission by extending SMR with implicit source
routing. In section II, we reviews some routing algorithms
for ad hoc wireless networks that are essential to MDP. In
section III, MDP will be proposed and discussed. We will
show how the min-cut of a wireless ad hoc network can be
determined from the disjoint paths constructed by MDP.

s

t1

w

t2

x

y

z

a b

b

b

a

a a⊕b

a⊕b a⊕b

Figure 1. Transmission of Two-bit Data Using Linear Network Code.

s

t1

w

t2

x

y

z

a b

b

a

a

a

s

t1

w

t2

x

y

z

a b

b

a b

b

Figure 2. Transmission of Two-bit Data by Disjoint Paths.

This work was partially sponsored by the Natural Science Foundation
of China (Project No. 60273062, 60573039) and the Guangdong Provincial
Natural Science Foundation (Project No. 04205407, 5003350)

Mr. Su-Kit Tang is a Doctor candidate of the Sun Yat-Sen University,
GuangZhou, China. He is also with the Macao Polytechnic Institute,
Macao, China (phone: 853-599-6440; email: sktang@ipm.edu.mo)

Mr. Lingxiong Li is a Doctor candidate of the Sun Yat-Sen University,
GuangZhou, China (email: lilx@mail2.sysu.edu.cn)

Professor Dongyang Long is with the Sun Yat-Sen University,
GuangZhou, China (email: issldy@mail.sysu.edu.cn)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

Lastly, we conclude this paper. For declaration, this paper
does not consider aspects such as resource and energy
allocation, but focuses on optimally constructing disjoint
paths in order to assist for min-cut determination. We also
do not consider the encoding of linear network code from an
optimality perspective as it is out of scope of this paper.

II. RELATED WORKS

MDP builds maximal disjoint paths for a source node in
one-to-many transmission by extending SMR with implicit
source routing. Therefore, DSR is essential to MDP. DSR
[3] is a single path routing algorithm that setups a path from
sender to destination by forwarding the address of each node
in a path to the destination. Sender will maintain a route
cache that it has learned. If a route is found in the cache, it
uses the route to transmit the packet. If a route is not found,
it initiates a route request and the route request will be
propagated in the ad-hoc network until it reaches the
destination. When the destination receives the route request,
it will return the route record (The path), in which it
contains all intermediate nodes’ addresses along the trip, to
the sender. Significantly, DSR suffers a scalability problem
that the propagation of route record may involve unexpected
size of source routing information. This creates impact on
limited wireless bandwidth. Therefore, Hu proposed the use
of implicit source routing in wireless ad hoc networks that
preserves the advantage of source routing while avoiding the
associated per-packet overhead in most cases [4]. It
introduced a cache table in each participating nodes. This
cache table maintains a list of next hop addresses for each
particular routing path, indexed by a flow identifier. A
source may then send any packets headed by a flow
identifier in lieu of a source route. This avoids of the
overhead caused by the source route. In Split Multipath
Routing (SMR) [5], an extension to DSR, disjoint paths are
constructed by spreading request paths in a network. Its
objective, which is different from ours, is to build
maximally disjoint paths for load balancing transmissions
over the network. Data traffic is split into multiple routes to
avoid congestion and to use network resources efficiently.
Similar to DSR, SMR is designed for one-to-one
transmission. It also suffers from unexpected length of route
record in large networks.

III. THE PROTOCOL

To determine the min-cut of a network in dynamic
wireless environment, we propose a Multiple Disjoint Path
(MDP) construction algorithm which setups disjoint paths
from sink nodes to a source node. MDP constructs disjoint
paths based a virtual source routing concept and the core
heuristic. Virtual source routing is to resolve scalability,
privacy and efficiency problems caused by long paths in
large networks. Core heuristic is to ensure the efficiency of
request packet propagation among multiple sink nodes.

When some sink nodes initiate communication with a
source node, request packets will be created and broadcasted
by sink nodes. Request packets spread across the wireless
network until they reach the source node. As request packets
travel, intermediate nodes, receiving these packets, are
required to process and rebroadcast the packets. A simple
processing job on request packets involved in a node is to
extend a virtual path by assigning sequential virtual address
of a virtual path to the node. Since communication in
wireless network is done by broadcasting, duplicated request
packets of a sink node may be received. Nodes have to make

correct and accurate decision on request packet processing
and forwarding.

We assume for simplicity that communication request is
initiated by sink nodes. A source node will accept requests
from sink nodes. We also assume that the clocks of all nodes
are synchronized so that data transmission is handled in time
unit. One time unit is a block of time of some length and it
is not specified for flexibility of implementation in networks
of different conditions.

A. Model and Definitions
We first define our model of communication system in

wireless ad hoc networks.
Definition 1 (The network) We model a wireless ad hoc

network as a directed graph G = (V, E), where V is a finite
set of nodes and E is a finite set of directed links. Each node
in the network has a sufficiently large random number
generator, G. The node set V contains a node s, called the
source node, which only has out-going edges. The node set
T, which is subset of V, contains all sink nodes. The node set
U = V - s - T contains intermediate nodes that make up paths
to connect the source node s to some sink nodes in T. In our
model, an edge, denoted by e(a, b) for (a, b)∈V, is a acyclic
link from node a to node b. We also assume for simplicity
that each edge has a unit capacity.

Definition 2 (Request packet) A request packets, ri in a
finite set of request packets R, is generated by ti∈T for
communication with s. We denote a request packet by ri: {ti,
s, bi, vidi, ci}, where ti is the initiator of the request packet, s
is the source node the packet destines at, bi is the time unit
the packet travels, vidi, at the first node in a virtual path, is a
unique virtual path id, and ci is a hop count that can give the
length of the virtual path and the position of a node in a
path. vidi and ci also act as a virtual address of a node when
they come together as it is unique in the path. For simplicity
and without lost of generality, we assume that a request
packet ri will travel from a sink node ti to a source node s at
the time unit bi.

Definition 3 (Virtual path) A virtual path, p, is a subset
of V, which contains a collection of nodes {s, (u1,...,un)∈U,
t∈T} that a request packet r∈R has visited. For a virtual
path, pi∈P, pi must be unique among all paths for t such that
pi ∩ pj = {s, t}, for i ≠ j and (pi, pj)∈P. This is the disjoint
property of a virtual path. Two virtual paths, pi and pj, are
parallel, if they run to two different sinks with intersecting
nodes uk, such that pi ∩ pj = {s, uk}, for i ≠ j, some k and (pi,
pj)∈P.

Definition 4 (Virtual path table) Each node u∈U will
maintain a virtual path table, denoted by VPTu, for all
received request packets, r∈R, with unique sink nodes until
they timeout. We assume for simplicity that the request
packet timeout in VPTu is flexibly defined to some time
units for different network environment.

B. Virtual Source Routing
The virtual source routing (VSR) constructs virtual paths

that contain virtual addresses of intermediate nodes a
request packet has visited. Each virtual path is identified by
a unique virtual path id, vid, which is generated by the first
node after sink node. Along with a hop counter of a virtual
path, c, virtual addresses of a node in a path can be
determined. A node is now identified by a virtual address.
No address privacy issues would be raised among nodes if
this is a concern. As a request packet travels, c in virtual
address is incremented at each node. This maintains the
sequential order of virtual addresses in a path virtually. A

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

virtual path is always determined by vid and nodes in the
same path would have the same vid.

VSR creates a virtual path, p, by spreading request packet
r. When a sink node, t, initiates a transmission session, it
broadcasts a request packet r. A node, u, first receiving r, as
indicated by vid=0, will randomly generate a sufficiently
large number by G for vid. vid is assumed to be unique as it
is sufficiently large and collision-free. The hop count, c,
indicates the position of this node in a virtual path as well as
the length of the path at source nodes. Neighbor nodes
receiving r will verify whether r is new at current time unit
by vid and c. If it is new, c are incremented and r will be
rebroadcasted. Otherwise, r will be ignored. This avoids the
broadcast storm problem discussed in [6]. This processing
repeats all the way in a virtual path at nodes receiving r until
the source node is reached. Thus, a virtual path p is created.
Figure 3 shows an overview of the virtual source routing
operation.

In Figure 3, a virtual path, p, is constructed by s in a
transmission session initiated by t. First, t broadcasts a
request packet r that containing vid=0, and c=0. Nodes u
receives r and rebroadcast r after generating vid=a and
incrementing c by one. Subsequent node v receiving r will
increment the path variable c by one, and rebroadcast r.
Gradually, source node s will receive r containing vid=a,
and c=2, which indicates that a 2-hop virtual path p,
identified by vid=a, from node (a, 2). The virtual path
{t→u→v→s} is constructed.

A node receiving a request packet r will propagate and
maintain r in its virtual path table for a transmission session
until r expires. Since vid and c can uniquely identify a node
in a path, quick routing decision can be made. A node is also
needed to maintain a virtual path table in cache for a period
of time. It records all virtual paths that the node resides until
timeouts.

C. Core Heuristic
We define disjoint paths as non-intersecting paths,

running from a sink node to a source node. These paths do
not consist any common intermediate nodes if they are
parallel. Figure 2a illustrates two disjoint paths running
from s to t1. To ensure that paths are disjoint with each
others for a sink node, a path discovery heuristic is required
to verify the originality of a request packet. This enables a
node to determine if a request packet should be accepted
when there are many of same originality. Note that parallel
virtual paths are constructed by request packets from
different sink nodes. They are assumed to be of no conflict
of interest, so they would not be considered in the heuristic.
The heuristic includes the following rules.

Rule 1 (Non-broadcast storming) A request packet ri:
{ti, si, bi, vidi, ci} will be accepted if virtual path table VPTu
does not show rj: {tj, sj, bj, vidj, cj} where i ≠ j, ti =tj, si = sj
and bi = bj.

A request packet ri is used to initiate a communication
from a sink node ti to a source node si at a time unit bi.

When a node u receives ri, u can determine if ri should
accept it by looking up its VPTu. If rj is not found in VPTu
such that ti =tj, si = sj and bi = bj, ri will be accepted,
processed and rebroadcasted.

Rule 2 (Non-intersecting) A request packet ri: {ti, si, bi,
vidi, ci} may be accepted if virtual path table VPTu shows rj:
{tj, sj, bj, vidj, cj} where ti = tj, si = sj, bi = bj, vidi = vidj and
ci ≠ cj.

Request packets are running directionless and a node v
may receive request packets, ri and rj, initiated by the same
sink node, ti = tj, and destined at the same source node, si =
sj, at same time unit, bi = bj. Since vidi and vidj are collision-
free, ri and rj are shown to be running their own paths as vidi
would be different from vidj. ri and rj are originated by the
same communication request but of different paths. Running
both request packets through node v would lead to a single
delivery path only. Therefore, node v can only take either ri
or rj. However, the evaluation of request packets raises an
optimization issue in this situation.

Rule 2.1 (Selection criteria) A request packet ri of (vidi,
ci) will be accepted if virtual path table VPTu shows rj of
(vidj, cj) where vidi = vidj, ci ≠ cj and ci < cj, such that ri
replaces rj.

In this paper, the term optimal is defined to be minimal
hop count as the amount of energy consumed in a
transmission would be less, assuming that the energy
consumption for one broadcast operation is same for all
nodes. The shorter the path is, the less the energy it
consumes, in one transmission. Based on this rationale, node
v will accept ri as ci < cj. This will trigger a rebroadcast of
request packet with updated information for the change of
the path segment constructed previously if ri comes after rj.
In case of ci = cj, a request packet from a farthest distance is
in preference comparatively. This can encourage the
construction of shortest path in a dense area. However,
determination of the distance of neighbor nodes is out of
scope of this research.

Rule 3 (Loop-free) A request packet ri: {ti, si, bi, vidi, ci}
will not be accepted if virtual path table VPTu shows rj: {tj,
sj, bj, vidj, cj} where ti = tj, bi = bj, vidi = vidj and ci > cj.

Suppose that node u is somewhere after node v in a path
construction from sink node t to source node s at time unit b
in Figure 4. Request packet ri of (vidi=x, ci=y+2) from node
v is running into node u. VPTu shows rj of (vidj=x, cj=y)
where vidi = vidj and ci > cj. From Rule 2.1, node u will not
accept ri. In addition, a condition vidi = vidj holds. We can
see that ri and rj are of same originality and it is a loop.

Rule 4 (Shadow path) A request packet ri: {ti, si, bi, vidi,
ci} will be accepted if virtual path table VPTu shows rj: {tj,
sj, bj, vidj, cj} where ti = tj, si = sj, bi = bj, vidi = vidj, and ci <
cj, such that ri replaces rj.

A shadow path is a path that is an extension of a segment
of another path. Suppose that a request packet ri of (vidi, ci)

svt u

r: {t, s, b,
vid=a, c=1}

r: {t, s, b,
vid=a, c=2}

r: {t, s, b,
vid=0, c=0}

Figure 3. Virtual Source Routing Operation

Figure 4. A node u rejecting a loop-back request packet ri from node v
during path construction in MDP algorithm

vu

rj: {tj, sj, bj,
vidj=x, cj=y}

rj: {tj, sj, bj,
vidj=x, cj=y+1}

ri: {ti, si, bi, vidi=x,
ci=y+2}

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

is running into a node v along with another request packet rj
of (vidj, cj). If ri and rj are running in with two different
paths, vidi ≠ vidj, recalled that vid is a sufficiently large
random number and collision-free. However, it is
contradicting and vidi = vidj. ri and rj are actually one
delivery path. The selection criteria is same as Rule 2.1 as
only one request packet is allowed.

Based on the rules discussed above, we have the pseudo-
code of MDP presented below. The MDP will take a request
packet r as a parameter to implement the Rule 1 by lines 10
to 11; Rule 2 by lines 12 to 16; Rule 3 by lines 12, 17 to 19
and Rule 4 by lines 12, 17, 20 to 22. Depending on the type
of a node, MDP(r) will do corresponding tasks. If it is a sink
node, it initiates r and broadcast r. If it is an intermediate
node, it follows the core heuristics to process r. If it is a
source node, it accepts request packet r if it is not from a
shadow path.

D. Min-cut Determination
To determine the min-cut of a network using MDP, it is

simply by looking at the capacity of disjoint paths from each
sink nodes. By taking the minimum capacity of paths from
sink nodes, the min-cut can be determined. Since a virtual
path is assumed to be a unit capacity in this paper, the min-
cut of a network would be the minimum number of disjoint
paths per a sink node among all sink nodes. In Figure 1, s is
supposed to receive four request packets (four virtual paths)
of four different vid, in which two are from t1 and two are
from t2. Therefore, taking the minimum number of disjoint
paths per sink node among all sink nodes, the min-cut of the
network is found to be two. It implies that 2 bits of data can
be sent to all sink nodes in one time unit, if linear network
code is used.

IV. PERFORMANCE EVALUATION

To evaluate the performance of MDP, we implemented
MDP in ns2 [7], an open source network simulator, and

conducted a set of simulations using the following settings:
IEEE 802.11b standard at MAC layer implementation; 50
nodes randomly placed on areas of 500×100m2, 500×500m2,
1500×300m2, 1500×500m2 and 1500×1500m2 for different
network density environments; 1000 randomly generated
scenarios for each area; Five sink nodes and one source
node are assigned. Since this study is new in the research
field, our experiment is designed to evaluate how MDP
performs in environments of different network density. In
our simulation, a run was conducted for each scenario at
each area and collected data was averaged over 1000
scenarios. The metrics we consider are:
(a) Disjoint Paths constructed: The number of disjoint

paths constructed from all sink nodes to the source
node.

(b) Min-cut: The min-cut of the network from the source
node, based on the disjoint paths constructed.

We observe that MDP constructs more disjoint paths in
dense networks. This happens because MDP propagates its
packets by broadcasting and nodes will get involved in
packet delivery. Connectivity among nodes is comparatively
higher. In Figure 5a, the curve runs downwards from higher
density area to lower density area, so the number of disjoint
paths MDP can construct gets less. However, there are still
more than one disjoint path running to each sink node in
area of size 1500×1500m2, in which only 2.83 sink nodes
can connect to the source node on average. It is due to the
network partitioning problem caused in large area. We also
observe that the min-cut in dense networks is higher than
those in sparse networks. Figure 5b shows that the min-cut
drops from 4.78 to 1.26. Likely to the connectivity of sink
nodes, the efficiency of data transmission follows the
downwards trend. From the aspect of connectivity and

Algorithm MDP(r)
1. if this is a sink node then
2. t ← this
3. s ← source node (destination)
4. b ← now
5. vid ← 0
6. c ← 0
7. broadcast r = (t, s, b, vid, c)
8. else if this is an intermediate node then
9. result = VPT_lookup(r)
10. if result = null then
11. VPT_add(r)
12. else if result = path_found then
13. if r and result are from diff paths then
14. if r is better than result then
15. VPT_replace(r)
16. end if
17. else if r and result are same path then
18. if r.c > result.c then
19. do nothing...loop
20. else if r is better than result then
21. VPT_replace(r)
22. end if
23. end if
24. end if
25. broadcast r = (t, s, b, vid, c + 1)
26. else if this is a source node then
27. result = VPT_lookup(r)
28. if r and result are not shadow then
29. VPT_add(r)
30. end if
31. end if

Figure 5. Performance of MDP in Networks of Different Sizes

(b) Min-cut determined by disjoint paths

4.78

1.26
1.09 1.08

2.32

0.00

1.00

2.00

3.00

4.00

5.00

6.00

500x100 500x500 1500x300 1500x500 1500x1500

Sizes

M
in

-c
u
t

(a) Disjoint paths constructed by MDP

51.89

4.24

15.61

11.52

30.96

0.00

10.00

20.00

30.00

40.00

50.00

60.00

500x100 500x500 1500x300 1500x500 1500x1500

Sizes

D
is

jo
in

t
p
at

h
s

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

transmission efficiency, MDP shows satisfactory
performance in dense networks comparatively. A summary
of our simulation results is shown in Table 1.

V. CONCLUSION

In this paper, we proposed a multiple disjoint paths
construction algorithm, called Multiple Disjoint Path
(MDP), to determine the min-cut of a network by taking the
minimum number of disjoint paths per sink node among all
sink nodes. Using Linear network code, a source node can
formulate its data into a form of linear equations with linear
independency so that data recovery at sink nodes can be
achieved successfully. Our simulation reveals that, from the
aspects of connectivity and transmission efficiency, data
transmission using Linear network code would perform
better in dense networks than sparse networks. This is
because the min-cut of a network is better as the density of a
network is higher. In addition, as an extension to MDP with
implicit source routing, MDP does not suffer from the
scalability, privacy and efficient problems caused by long
paths in large networks. Thus, MDP creates an opportunity
for deployment of Linear network code in data transmission
in dynamic wireless environment, especially in dense
networks.

REFERENCES
[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Leung, “Network

information flow”, IEEE Trans. Information Theory, vol. 46, no. 4,
July 2000, pp. 1204-1216.

[2] S.-Y. R. Li, R. W. Leung, and N. Cai, “Linear network coding”, IEEE
Trans. Information Theory, vol. 49, no. 2, February 2003, pp 371-381.

[3] D. Johnson, D. Maltz & Y. Hu, “Dynamic Source Routing in Ad Hoc
Wireless Networks”, Internet Draft, draft-ietf-manet-dsr-10.txt, work
in progress, July 2004.

[4] Y.-C. Hu & D. Johnson, “Implicit Source Routes for On-Demand Ad
Hoc Network Routing”, Proc. of the 2nd ACM International
Symposium on Mobile Ad Hoc Networking & Computing, Long
Beach, CA, USA, October 2001, pp.1-10.

[5] Lee, S.-J., Gerla, M., “Split Multipath Routing with Maximally
Disjoint Paths in Ad Hoc Networks”, IEEE International Conference
on Communications, Vol. 10, 2001

[6] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The Broadcast
Storm Problem in a Mobile Ad Hoc Network”, ACM/IEEE Mobicom,
Seattle Washington, USA, August 1999, pp. 151-162.

[7] Network Simulator (NS-2), Available at http://www.isi.edu/nsnam/ns/
index.htm.

Network size
(m2)

Density
(m2 per node)

Disjoint paths
(Figure 5a)

Min-cut
(Figure 5b)

500x100 1000 51.89 4.78

500x500 5000 30.96 2.32

1500x300 9000 15.61 1.09

1500x500 15000 11.52 1.08

1500x1500 45000 4.24 1.26

Table 1. Summary of MDP performance

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

http://www.isi.edu/nsnam/ns/index.htm
http://www.isi.edu/nsnam/ns/index.htm
http://www.isi.edu/nsnam/ns/index.htm
http://www.isi.edu/nsnam/ns/index.htm

