

Abstract—This paper proposes a framework for

troubleshooting network faults pertaining to Internet
applications. The system is called ANFIT which stands for
Automated Network Fault Inference Tool. We have designed
the system in two layered architecture in order to efficiently
troubleshoot the faults. The first layer is dedicated to detect
where the network has gone wrong and the second layer is to
identify the cause of fault. However, at present we narrow down
our focus on Web Service application. We have analyzed real
failure scenarios and ANFIT has been tested against them. This
paper however, presents only the parts on system framework
and overall architecture of ANFIT.

Index Terms—automated network fault identification,
network diagnosis, network troubleshooting.

I. INTRODUCTION
Diagnosing why a network service does not work is a

difficult and time consuming task, even for someone who
knows what they are doing. "Is the net down?" is a common
query. The cause can range from an unplugged network cable
on the client machine, to the server being down, with many
other possibilities in between, such as DNS
misconfiguration, routing failure, or link failure. It is also an
arduous task due to the fact that network is a complex system
with many inter-dependent properties that affect its behavior.
Furthermore, the increasing number and complexity of
technologies in today’s network also contributes in making
the troubleshooting process more intricate.

Network troubleshooting is an ideal candidate for
automation because the underlying network elements
themselves are digital devices inherently capable of
computation and communication. Automated diagnostic tool
is likely to be as accurate as human diagnosis but much faster
because it is capable of rapid identification, analysis of
conditions and diagnosis in real time. Besides, human experts
are not systems of rules; they are library of experiences which
make them sometimes unable to articulate reasoning process
sufficiently and precisely. Moreover, the inferences given
may vary from one expert to another though given the same
problem scenario. Furthermore, human experts are

Manuscript received Novermber 23, 2007.
N. S. Haron, is with the Computer and Information Sciences (CIS)

Department of Universiti Teknologi Petronas, Tronoh, 31750 Perak,
MALAYSIA. (phone: 605-368 7486; fax: 605-365 6180; e-mail:
nazleeni@petronas.com.my).

Z. Sulaiman., was with Universiti Teknologi Petronas, MALAYSIA. She
is now with Faculty of Management, Universiti Teknologi Malaysia, Skudai,
Johor, MALAYSIA. (e-mail: zuraidahs@utm.my).

M. H. Hasan is with the CIS Department, Universiti Teknologi Petronas,
Tronoh, 31750 Perak, MALAYSIA. (mhilmi_hasan@ petronas.com.my).

expensive, can be affected by fatigue, emotional states,
forgetfulness which makes automated tool a preferred choice.

Even though there exists network troubleshooting tools in
the market, but due to their proprietary nature, the technical
details were not disclosed. Additionally, despite the
numerous kinds of tools, lack of general tool for accurate
fault diagnosis has been identified as one of the top problems
for network troubleshooting [10].

Internet has been known for its layered model in order to
mitigate the complexity of networking. However this
excellent approach actually has a significant drawback in
terms of error reporting. This is because applications must
operate independently of the network environment and lower
layers of the network do not generally report meaningful
errors to upper layer applications. It is always the case that
lower layer network problem can cause upper layer
application but without giving any information why the
errors are occurring. To worsen things, the nature of
applications is that they do not possess any sophisticated
methods for identifying network-related errors. As a
consequence, none of any corrective measures can be taken
as the network does not identify any specific problems for the
application. For the normal network user, with limited
knowledge, this will only result on them being exasperated
and frustrated for not knowing what has happened to their
applications.

Therefore, these issues have motivated us in coming up
with a simple type of automated and extensible network fault
diagnosing tool that is user-friendly to different type of users;
be it the normal network users or the advanced users such as
the network experts or professional support teams
respectively.

II. RELATED WORK
There have been numerous studies on network diagnostic

approaches. Brodie, et al. describe an architecture using
Bayesian networks and how to use probes in order to identify
network faults [1]. Lee, et al. present an optimal strategy for
network diagnosing by checking the candidate nodes first
instead of checking the most likely faulty nodes [4]. The idea
is somewhat similar to our two-layered approach because
diagnosis is performed only to identified faulty component.
Thaler and Ravishankar are proposing architecture for
diagnosing faults using a network of experts [12]. Lee, et al.
are also proposing an architecture comprises of a network of
intelligent agents to collect data and diagnose faults [6]. Lee
suggests CAPRI, an architecture that uses Probabilistic
Reasoning Model (PRM) to support autonomous diagnosis of
IP reachability [5]. Chen and Bindel describe a novel
approach in diagnosing network using unbiased diagnosis

ANFIT: Two-layered Framework for Network
Troubleshooting

Nazleeni S. Haron, Zuraidah Sulaiman and Mohd H. Hasan

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

[2]. Li and Bara prove that distributed fault diagnosis can be
done using belief networks [8].

Our solution is also inspired by few research works that
emphasize on user’s limited knowledge in network
troubleshooting [3, 9]. Mahajan, et al. develop an Internet
diagnostic tool called tulip focusing only on performance
faults [9]. Emodis [3], another diagnostic tool developed by
Hu and Steenkiste is focusing on computing route-sensitive
path metrics such as available bandwidth and packet loss rate.
Other tools are also developed for network diagnosis such as
Shrink [4] and Scriptroute [11]. However, users need to have
good understanding of these tools before they can use them
[3]. Therefore they are not user-friendly enough to be used by
normal network user.

III. OUR WORK
To develop an accurate automated network

troubleshooting tool for a web service application, we require
a thorough understanding on how normal network works,
classes of network components that might fail and classes of
tools available for testing these components. Accordingly, in
order to come out with this solution, we embarked on a
course of researching and studying on the normal network
behaviors on how different things are working together in
order to obtain a web page. We then gathered and understood
how the existing technical implementations, algorithms and
protocols that are associated to the network actually operate.
Subsequently, we then determine a set of possible failure
cases that may occur in the network followed by figuring out
the set of diagnostic tests that can be executed in order to
reveal the failures. Some of the related and appropriate
protocols, tools and technologies are then adopted and
customized to our project needs. All these initial preparations
then encourage us in a great deal of coming out with the
inference table, which is the heart of the project. After all are
set, we then automate those set of different diagnostic tests
into code where we then sum up everything with the
displaying out of different error messages to the different
level of users.

A. ANFIT Conceptual Model
The relationship among all the main components in ANFIT

is depicted in Fig. 1.

Fig. 1. ANFIT conceptual model

As depicted in Fig. 1, users will need to enter the URL of
the web page that they are having problem with in order to

start off with ANFIT. This pertinent information will then be
passed to Framework which is the heart of ANFIT as here
lies the inference engine. The mechanism that involved is that
all the relevant information to be processed in this inference
engine is based on the inference table that we outlined during
the designing stage. This table comprises of a set of
diagnostic tests, problem layers and the mappings of
diagnostic results and decisions. Besides being the central
repository of all the results obtained from executing the
diagnostic tests, Framework also functions as the inference
engine that decides whether or not to launch the further
detailed diagnostic test for the particular problematic layers.
The results of these thorough diagnostic tests will then again
be sent to Framework as to allow the final mapping of error
codes to the corresponding error messages. Eventually, these
error messages or warning messages (where necessary)
generated by Framework will be displayed to the users which
will inform them the cause of failure to obtain a web page that
has been detected by ANFIT.

IV. ANFIT DIAGNOSIS ARCHITECTURE
In this section, we will describe the components that make

up our fault detection architecture as illustrated in Fig. 2. The
architecture can be divided into three main components,
which are Framework, Two-layered Diagnostic Tests and
Error Messages.

Fig. 2. ANFIT diagnosis architecture

A. Two-layered Diagnostic Tests
ANFIT consists of a two stage tests in order to reduce time

in executing all the diagnostic tests. In the first stage, ANFIT
can infer the location of network fault meaning, which layer
is having problem. As in the second stage, ANFIT will
produce detail information about the possible cause of failure.
This kind of structure is appropriate because to detect and to
analyze are two different tasks that require different kinds of
approach respectively. Apart from that, the varied time
needed to accomplish each task since the latter consumes
more time. Intersession message will be displayed in between
the two stages.

INFERENCE
ENGINE

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

1) First stage diagnostic test. This stage adopts a breadth
style of diagnosing which will execute all the diagnostic tests
sequentially to gather all the results. Each diagnostic test is
designed in such way that it is sufficient enough to detect
where the error lies, as no aspect of thoroughness is needed
yet at this point. It is also at this stage that inference table
holds a significant role by facilitating us in mapping the
diagnostic test results and decisions, determining the final
decision that eventually concludes which problem layer
should be launched in the second stage. The breadth style will
ensure ANFIT can accomplish running all diagnostic tests in
short time yet possess enough and useful information.
Essentially, this information is needed to generate the
intersession message and to launch the second stage. After
careful consideration, the diagnostic tests that have been
chosen are comprised of checking the physical line status,
checking the host configuration (IP address, default gateway
and subnet mask), checking the validity of web server IP
address that we obtained from DNS, checking IP level
connectivity between the host and remote server, checking
TCP connection with web server, checking HTTP connection
with web server and checking the existence or availability of
the URL.

2) Second stage diagnostic test. This stage adopts a more
comprehensive mechanism for each detailed diagnostic test
since ANFIT will only execute these tests on the problem
layers that have been detected having error as determined by
the first stage. These detailed diagnostic tests which will run
in parallel, assimilate a more exhaustive analysis and more
combination of tools and technologies. It is at this stage that
failure scenarios are referred as guideline to design the
detailed diagnostic tests. Failure scenarios have been
identified to consist of general and specific cases that each
should reveal one or more errors. Realizing that, detailed
diagnostic tests need to be crafted in order to ensure a higher
level of certainties in determining what the cause of failure is
and why it occurs.

B. Framework
Framework architecture is further subdivided into three

components which are Inference Table, Central Repository
and Error File. However, only Inference Table will be further
explained in this section.

1) Inference table. The inference table is made up of a
series of diagnostic tests and problems that can be identified
from the results of the tests. The table is structured in such a
way that the first stage diagnostic tests fill the column of the
table and problem categories that were devised from failure
scenarios gathered, form the row as shown in Table 1.The
intersection between test and failure case is called decision
pair. It holds the mapping between the result of a test and the
corresponding decision.

TABLE 1
INFERENCE TABLE

V. ANFIT DIAGNOSTIC PROCESS
In this section, we will highlight on how we infer which

layer is the likely cause of failure.

A. Framework
Each diagnostic test will return either of the results as shown in

Table 2. We have designed them in such way because diagnostic
result cannot be too decisive. The result is not as simple as yes or no
situation but lies in those probabilities.

B. Decision Based on Diagnostic Test Results
Each diagnostic test’s result will be mapped to either of the

decisions as shown in Table 3. The same reason applies here;
the each result needs to be mapped to a decision that is
flexible.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

z Enter the URL: www.goole234.com/index.html
z Using domain name: www.goole234.com
z Using port: 80
z End is: index.html
z ----------
z Running Configuration Test...
z RESULT OK
z Decision: UP Problem: Local Host Problem
z ----------
z Running Default Gateway Connectivity Test...
z RESULT OK
z Decision: UP Problem: Local Host Problem
z Decision: UP Problem: Network Problem
z ----------
z Running Root DNS Servers Connectivity Test...
z RESULT OK

z Decision: UP Problem: Local Host Problem
z Decision: UP Problem: Network Problem
z ----------
z Running DNS Consistency Test...
z Added error ERR-DNS1_www.goole234.com
z NXDOMAIN
z Added error ERR-DNS1_www.goole234.com
z RESULT NO
z Decision: PR Problem: DNS Problem
z ----------
z Running Remote Server IP Connectivity Test...
z RESULT CN
z TCPCONN RESULT CN
z Result CN
z Decision: NR Problem: DNS Problem
z Decision: NR Problem: Reachability Problem
z ----------
z Running Remote Server TCP Connectivity Test...
z RESULT CN
z Decision: NR Problem: DNS Problem
z Decision: NR Problem: Remote Server Problem
z ----------
z Running Remote Server Application Test(HTTP)...
z RESULT CN
z Decision: NR Problem: DNS Problem
z Decision: NR Problem: Remote Server Problem
z ----------
z Running Remote Server Application Test(URL)...
z
z ==========
z Launching 2nd stage of: DNS Problem:PR
z Local Host Problem : UP
z Network Problem : UP
z DNS Problem : PR
z Reachability Problem : NR
z Remote Server Problem : NR
z ====ERROR RESULTS======
z ERR-DNS1 : The host name for the web

page(www.goole234.com) that you requested does not
exist. Please check your spelling and try again

TABLE 2
DIAGNOSTIC TEST RESULTS

TABLE 3

DECISION BASED ON DIAGNOSTIC TEST RESULTS

C. Preferences of Final Decision
Final decision will determine which layer to be launched in

the second stage test. The decision of each diagnostic test will
be evaluated to get the final decision. The final decision is
derived from the rules as set in Table 4. The leftmost which is
the Problem (PR) will have highest priority while the
rightmost, which is Not Related (NR) carries the least
priority.

TABLE 4
PREFERENCES OF FINAL DECISION

1) Inferring process. To better understand how the
inferring process works, let’s look at an example. For
instance, if the problem category is Reachability Problem and
the results of the diagnostic tests are as follows:
• Remote Server IP Connectivity Test (RSICT) is NO
• Remote Server TCP Connectivity Test (RSTCT) is MN

Therefore, as shown in Table 1, the corresponding
decision for the RSICT is PR and the decision for RSTCT is
NR. Accordingly, based on our preferences for final decision

(Table 4), since PR is higher priority than NR, so we infer
that there is a reachability problem with the network.
Therefore, this problem will be further checked and second
stage diagnostic tests will be launched as to find the cause of
failure.

Fig. 3 shows the output from ANFIT given a problematic
URL. For every diagnostic test run, the obtained result and
corresponding decision will be imparted to the user. After all
the tests have been run, a summary of the results will be
displayed to the user as to inform where the cause of the fault
is. Since this is the first phase of the research, therefore
abbreviations are still used despite its original word. More
comprehensible output will feature in the second stage of
this research.

Abbrev. Meaning Description

CN Cannot be
tested

The diagnostic test cannot be
carried out due to not enough
information from the previous
test(s) or does not meet the
pre-conditions

OK OK Explicit indicator of success
from that diagnostic test

NO Not OK Explicit indicator of error
from that diagnostic test

MO Maybe OK Implicit indicator of success
from that diagnostic test

MN Maybe Not OK Implicit indicator of error
from that diagnostic test

NE Neutral
Balanced indicator of error
and success from that
diagnostic test

Abbrev
.

Meaning Description

NR Not Related
The diagnostic test’s result is
not associated to the
corresponding layer.

PR Problem The corresponding layer is
having problem.

NP No Problem The corresponding layer has no
problem.

LP Likely
Problem

The corresponding layer may
have problem.

UP Unlikely
Problem

The corresponding layer may
not have problem.

PR >> NP >> LP >> UP >> NR

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

VI. IMPLEMENTATION
Two different programming languages were needed to

cater for two distinct parts of the project which are the
Framework and diagnostic tests (First and second stage).
Framework and diagnostic tests are of disparate nature that
Java has been picked as the language of choice for
developing framework while Python was deployed in
implementing diagnostic tests.

D. Java for Framework
The Framework development requires a system

programming language like Java, in order to optimize the
performance of ANFIT. Furthermore, Java facilitates a good
data structure for the framework with its object-oriented
feature. As a consequence, it provides ease of integration or
interaction among objects such as diagnostic tests objects,
problem objects and etc. Java also has support for other
languages, so Python commands (in order to execute
diagnostic tests) can be run through it. Moreover, the main
feature of Framework is the inference table of which is
portrayed using XML file structure. XML documents tend to
have a very explicit structure that is easily addressed by a
language like Java. Although there are available
implementations of standard XML parsers in many languages,
including C, C++, Tcl, Perl and Python but the XML parser
we are using which is SAX (Simple API for XML) is
designed in and for Java. SAX which is an event-based
interface parser reads the document and tells the program
about the symbol it finds, as it finds them. For example, it will
notify the application when it finds a start tag, when it finds
character data and when it finds the end tag. Thus, the
implementation of Inference Table is made feasible by using
this approach, hence making Java as the ideal language to
use.

E. Python for Diagnostic Tests
Scripting language was decided as the ultimate type of

language for developing diagnostic tests as it possesses such
traits as providing fast build-cycle turnaround (no
compilation needed), facilitating dynamic typing(no
declaring of variables needed) , and offering interactive
environment where we can create, view or change objects at
runtime. Scripting language is also better for rapid
development and reusing code which are apt for test
automation. All these significant features are very useful to
ensure the efficiency and flexibility of the diagnostic tests.
All these traits can be found in Python.

VII. CONCLUSION
ANFIT is designed in two-layered architecture in order to

efficiently troubleshooting the network fault.
Troubleshooting requires detection and localization of the
fault and these two different tasks require different approach.
Therefore ANFIT deploys optimal strategy where detailed
diagnosis will be performed to the identified faulty
components only. In the first layer, ANFIT will perform
breadth style of search in detecting the network fault.

Apart from that, ANFIT is intended to integrate isolated
yet related existing probing tools/applications into one unify
Web Service tool while in the end providing the users with
simple and practical suggestions where necessary.

In this paper, we also disclose how our diagnosis work
where we have a created an inference table. The table was
formulated based on understanding on how normal network
works and classes of network components that might fail.
Therefore ANFIT is a tool that attempts to calibrate how
normal network behavior works and if something fails, it will
be able to answer such as question as “Why I can’t get to the
website?”.

However, further improvement could be made such as
extending ANFIT to diagnose other Internet applications
such as FTP, email service or etc. Apart from that, ANFIT
may be modified to become platform independent in order to
ensure smooth running on all platforms. Another feature that
can be added is to provide level of certainty to all responses
given to the user. This will act as an indicator for degree of
accuracy of the answer.

REFERENCES
[1] M. Brodie, I. Rish, and S. Ma, “Intelligent probing: A Cost-Efficient

Approach to Fault Diagnosis in Computer Networks,” IBM Systems
Journal, 41, 3, 2002, pp. 372-385.

[2] Y. Zhao, Y. Chen, and D. Bindel, “Towards Unbiased End-to-End
Network Diagnosis,” in Proc. of ACM SIGCOMM, Sep. 2006.

[3] N. Hu and P. Steenkiste, “Emodis - An End-Based Network
Monitoring and Diagnosis System,” Technical Report
CMU-CS-05-146, Carnegie Mellon University, 2005, pp. 187-192.

[4] S. Kandula, D. Katabi and J-P. Vasseur, “Shrink: Tool for Failure
Diagnosis in IP Networks,” . In ACM SIGCOMM Workshop on mining
network data (MineNet-05), Philadelphia, PA, August 2005.

[5] G. Lee, “CAPRI: A Common Architecture for Autonomous,
Distributed Diagnosis of Internet Faults using Probabilistic Relational
Models,” In Proceedings of the First Workshop on Hot Topics in
Autonomic Computing (HotAC I), 2006.

[6] G. Lee, S. Bauer and P. Faratin, “A Scalable Architecture for Network
Fault Diagnosis in the Knowledge Plane,” In Proceedings of the CSAIL
Student Workshop (CSW '05), 2005.

[7] P. P. C. Lee, V. Misra, and D. Rubenstein, “Toward Optimal Network
Fault Correction via End-to-End Inference,” In Proceedings of IEEE
INFOCOM, Anchorage, Alaska, May, 2007.

[8] H. Li, and J. S. Baras, “A framework for supporting intelligent fault and
performance management for communication networks,” In
Proceedings of 4th IFIP/IEEE International Conference on
Management of Multimedia Networks and Services (MNS ’01),, 2001.

[9] R. Mahajan, N. Spring, D. Wetherall and T. Anderson, “User-level
internet path diagnosis,” In ACM SOSP, 2003.

[10] D. Oppenheimer, A. Ganapathi and D. A. Patterson, D. “Why do
internet services fail, and what can be done about it? ,” In Proceedings
of 4th Usenix Symposium on Internet Technologies and Systems
(USITS ’03), 2003.

[11] N. Spring, D. Wetherall and T. Anderson, “Scriptroute: A public
internet measurement facility,” In Proceedings of USENIX Symposium
on Internet Technologies and Systems (USITS), 2003.

[12] D. G. Thaler, and C. V. Ravishankar, “An architecture for inter-domain
troubleshooting,” Journal of Network and Systems Management, 12, 2,
2004.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

