
 
 

  
Abstract— Robust loop shaping control is a feasible method for 
designing a robust controller; however, the controller designed 
by this method is complicated and difficult to implement 
practically. To overcome this problem, in this paper, a new 
design technique of a fixed-structure robust loop shaping 
controller for a highly maneuverable airplane, HIMAT, is 
proposed. The performance and robust stability conditions of 
the designed system satisfying H∞ loop shaping control are 
formulated as the objective function in the optimization 
problem. Particle Swarm Optimization (PSO) technique is 
adopted to solve this problem and to achieve the control 
parameters of the proposed controller. Simulation results 
demonstrate that the proposed approach is numerically 
efficient and leads to performance comparable to that of the 
other method. 
 
Index Terms— H∞ loop shaping control, robust control, 
particle swarm optimization, HIMAT system, fixed-structure 
controller. 
 

I. INTRODUCTION 
  In the past decades, many immense developments in 

robust control techniques have been proposed and the results 
of those are utilized in many control systems. As shown in 
previous works, H∞ optimal control is a powerful technique 
to design a robust controller for system under conditions of 
uncertainty, parameter change, and disturbance. However, 
the order of controller designed by this technique is much 
higher than that of the plant. It is not easy to implement this 
controller in practical applications. In industrial applications, 
structures such as PID, lead-lag compensators are widely 
used because their structures are simple, tuning parameters 
are fewer, and they are lower order. Unfortunately, tuning of 
control parameters of such controllers for achieving a good 
performance and robustness is difficult. To solve this 
problem, the design of fixed-structure robust controller has 
been proposed. Fixed-structure robust controller has become 
an interesting area of research because of its simple structure 
and acceptable controller order. However, the design of this 
controller by using analytical methods remains difficult. To 
simplify the problem, searching algorithms such as genetic 
algorithm, particle swarm optimization technique, 
tabu-search, etc., can be employed. Several approaches to 
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design a fixed-structure robust controller were proposed in 
[1-3, 5-7].  In [1], a robust H∞ optimal control problem with 
structure specified controller was solved by using genetic 
algorithm (GA). As concluded in [1], genetic algorithm is a 
simple and efficient tool to design a fixed-structure H∞ 
optimal controller. Bor-Sen.Chen. et. al.[2], proposed a PID 
design algorithm for mixed H2/H∞ control. In their paper, PID 
control parameters were tuned in the stability domain to 
achieve mixed H2/H∞ optimal control. A similar work was 
proposed in [3] by using the intelligent genetic algorithm to 
solve the mixed H2/H∞ optimal control problem. The 
techniques in [1-3] are based on the concept of H∞ optimal 
control which two appropriate weights for both the 
uncertainty of the model and the performance are essentially 
chosen. A difficulty with the H∞ optimal control approach is 
that the appropriate selection of close-loop objectives and 
weights is not straightforward [4]. Moreover, especially in 
MIMO system, it is not easy to specify the uncertainty weight 
in practice. Alternatively, MIMO controller can be designed 
by using H∞ loop shaping control [4] which is a simple and 
efficient technique for designing a robust controller. 
Uncertainties in this approach are modeled as normalized 
co-prime factors; this uncertainty model does not represent 
actual physical uncertainty, which usually is unknown in real 
problems. This technique requires only two specified 
weights, pre- and post-compensator weights, for shaping the 
nominal plant so that the desired open loop shape is achieved. 
Fortunately, the selection of such weights is based on the 
concept of classical loop shaping which is a well known 
technique in the controller design. By the reasons mentioned 
above, this technique is simpler and more intuitive than other 
robust control techniques. However, the controller designed 
by H∞ loop shaping is still complicated. To overcome this 
problem, several approaches have been proposed to design a 
fixed-structure H∞ loop shaping controller, such as a 
state-space approach by A. Umut. Genc in 2000 [5], genetic 
algorithms based fixed-structure H∞ loop shaping by Somyot 
and Manukid in 2004 [6], etc. The method in [5] is based on 
the concept of state space approach and BMI optimization. 
Unfortunately, the chance of reaching a satisfactory solution 
of this approach depends on the initial controller chosen and 
the problem of the local minima is often occurred.  In [6], a 
global optimization method was adopted to design the 
fixed-structure robust H∞ loop shaping controller; however, 
the designed controllers in [6] were only implemented on a 
pneumatic servo system which is a SISO system. In [7], the 
same technique as [6] was adopted to design a robust 
controller of a boost converter; however, this application is 
also a SISO system. In this paper, PSO is proposed to 
synthesize a fixed-structure H∞ loop shaping controller for 
HIMAT system. Based on the concept of PSO technique, the 
choosing of initial controller required in the method in [5] is 
not necessary and the problem of local minima is reduced. 
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Structure of controller in the proposed technique is 
selectable; in this paper, two fixed-structure controllers, 
centralized and decentralized PID controllers, are designed. 
Simulation results show that the controller designed by the 
proposed approach has a good performance and robustness as 
well as simple structure. This allows our designed controller 
to be implemented practically and reduces the gap between 
the theoretical and practical approach.  

The remainder of this paper is organized as follows. 
Conventional H∞ loop shaping and the proposed technique 
are discussed in section 2. PSO algorithm is also described in 
this section. Section 3 demonstrates a design example and 
results. And, finally, in section 4 the paper is summarized 
with some final remarks. 

II. H∞ LOOP SHAPING CONTROL AND PROPOSED 
TECHNIQUE 

This section illustrates the concepts of conventional H∞ 
loop shaping control and the proposed technique.  

A. Conventional H∞ Loop Shaping Control 
H∞ loop shaping control is an efficient method to design a 

robust controller. This approach requires two weighting 
functions, W1 (pre-compensator) and W2 (post-compensator), 
for shaping the original plant G0 so that the desired open loop 
shape is achieved. In this approach, the shaped plant is 
formulated as normalized co-prime factor, which separates 
the shaped plant Gs into normalized nominator Ns and 
denominator Ms factors [8].  

1 2K W K W∞=

2 1SG WGW=

1W G

K ∞

2W

Fig. 1. H∞ loop shaping design. 
 
The following steps can be applied to design H∞ loop shaping 
controller [4].  
 

Step 1 Shape the singular values of the nominal plant Go by 
using a pre-compensator W1 and/or a post-compensator W2 to 
get the desired loop shape. W2 can be chosen as a constant 
since the effect of the sensor noise is negligible when the use 
of good sensor is assumed [9]. 

Gs = W2G0W1= 1
s sN M − .                                      (1) 

Based on the concept of H∞ loop shaping, the perturbed plant 
is written as  

1( )( )s N s M ssG N M −
Δ = + Δ + Δ                               (2) 

where  ΔNs and ΔMs are stable, unknown representing the 
uncertainty satisfying ,Ns Ms ε

∞
Δ Δ ≤ , ε   is the 

uncertainty boundary called stability margin. There are some 
guidelines for selecting the weight available in [9]. 
 
 

Step 2 Calculate εopt, where  

 

( ) 1 1( inf [ ] )opt s sK stabilizing

I
I G K I G

K
ε − −

∞
∞ ∞

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
           (3) 

To determine εopt, there is a unique method explained in 
appendix A. εopt  << 1 indicates that W1 or W2 designed in step 
1 are incompatible with robust stability requirement. To 
ensure the robust stability of the nominal plant, the weighting 
functions are selected so that εopt ≥ 0.25 [9]. If εopt is not 
satisfied, then go to step 1, adjust the weighting functions. 
 

Step 3 Select ε < εopt and then synthesize a controller K∞ that 
satisfies [4] 

∞zwT = ( ) 1 1[ ]s s

I
I G K I G

K
ε− −

∞
∞ ∞

⎡ ⎤
− ≤⎢ ⎥

⎣ ⎦
            (4) 

where 
∞zwT is the infinity norm from the disturbances w to 

state z. Controller K∞ is obtained by solving the sub-optimal 
control problem in (4). The details of this solving are 
available in [8]. 
 

Step 4 Final controller (K) is determined as follow  
K = W1K∞W2                                                         (5) 

 

Fig. 1 shows the controller in H∞ loop shaping control. 
 

B. PSO based Fixed-Structure H∞ Loop Shaping 
Optimization 
In the proposed technique, PSO is adopted to design a 

fixed-structure robust controller. A similar work was 
presented in [5]. However, the problem in [5] was formulated 
by using a BMI-based optimization approach unlike the PSO 
approach taken in this paper. In [5], initial solution required 
in the design procedure strongly influences the performance 
of final solution. Moreover, there is no systematic method to 
select such initial value. In the proposed technique, the 
design is more flexible than the previous work [5] by 
selecting the appropriate upper and lower bounds of solution. 
In the design, boundary of solution of PSO is selected by 
considering the pre-compensator weight. Normally, this 
weight is specified by first or second order transfer functions 
at the diagonals entries of W1. Fortunately, it is not difficult to 
transform these transfer functions to PI/PID structure. Since 
the fixed-structure controller in the paper is PID, thus, the 
choosing of boundary of solution by considering weight, W1, 
can be done easily. In addition, because PSO technique is 
based on the concept of global optimization searching, the 
problem of local minima is reduced. 

PSO was first proposed by Eberhart and Kennedy [10]. 
This technique is a population-based optimization 
problem-solving algorithm. Fig.2 shows the swarm’s 
movement which is the basic idea of PSO. As seen in this 
figure, a bird represents the particle and the position of each 
particle represents the candidate solution. Population is 
formed by a number of particles. In the PSO, particles fly 
around the problem space until the stopping criteria are met. 
This algorithm is simple, fast and can be programmed easily. 
During the flight, the velocity and position of each particle 
are updated according to its own and its companion’s fitness 
value. To illustrate the strategies of PSO, the following 
equation is shown. 
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1 1 2 2( 1) ( ) [ ( ( )] [ ( ( )]i i i pi i i iv iter Qv iter X X iter G X iterα γ α γ+ = + − + −  

(6) 
 

where Q is the momentum coefficient, iv is the velocity of ith 

particle, iter is the iteration count, 1α and 2α are the 
specified acceleration coefficients,  Xpi is the best position 
found by ith particle, G is the best position found by swarm 
(global best), 1iγ  and i2γ  are the random numbers in the 
range [0,1]. Note that the velocity must be within the 
specified range [Vmin , Vmax]. If not, set it to the limiting 
values. As shown in (6), there are three terms in the equation. 
By these terms, the advantages of local minimum searching, 
global minimum searching, local optima avoidance and the 
information sharing among particles are achieved and the 
particle can reach the best solution. The details of PSO are 
available in [10].  
 

 
Fig. 2 The movement of a swarm. 

 
In the proposed technique, although the controller is 

structured, it still retains the entire robustness and 
performance guarantee as long as a satisfactory uncertainty 
boundary ε is achieved. The proposed algorithm is explained 
as follows. Assume that the predefined structure controller 
K(p) has satisfied parameters p. Based on the concept of H∞ 
loop shaping, optimization goal is to find parameters p in 
controller K(p) that minimize infinity norm from 
disturbances w to states z, 

∞zwT . In the proposed 

technique, the final controller K is defined as  
 

K = K(p)W2                                                            (7) 
 

Assuming that W1 are invertible, from (5) then it is obtained 
that 

K∞ = 1
1
−W K(p)                                                       (8) 

 

In many cases, the weight W2 is selected as identity matrix I. 
However, if W2 is a transfer function matrix, then the final 
controller is the controller K(p) in series with the weight W2. 
By substituting (8) into (4), the ∞-norm of the transfer 

function matrix from disturbances to states, ∞zwT , which 

is subjected to be minimized can be written as  
 

( ) 1
cos 2 01

1

( ) [ ]
( )t zw s

I
J T I W G K p I G

W K p
γ −

−∞
∞

⎡ ⎤
= = = −⎢ ⎥

⎣ ⎦
 

The optimization problem can be written as  
 

Maximize  ( )
1

1
2 01

1

( ) [ ]
( ) s

I
I W G K p I G

W K p

−
−

−

∞

⎡ ⎤
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⎣ ⎦
 

 

Subject to  max,min, iii ppp << , 

where min,ip and max,ip are the lower and upper bound 

values of the parameter pi in the parameter vector p, 
respectively. Thus, the fitness function in the controller 
synthesis can be written as 

( )
1

1
2 01

1

( ) [ ]  
( )Fitness (J)

if  stabilizes the plant
     0.0001                                  otherwise    

s

I
I W G K p I G

W K p

K

−

−

−

∞∞

⎧⎛ ⎞⎡ ⎤⎪ −⎜ ⎟⎢ ⎥⎜ ⎟⎪ ⎣ ⎦⎝ ⎠= ⎨
⎪
⎪
⎩

     

(9) 
 

The fitness is set to a small value (in this case is 0.0001) if 
K does not stabilize the plant. Our proposed algorithm is 
summarized as follows. 

 
-Weight Selection 
Step 1 Select the weights W1 and W2 to achieve the 
performance and desired loop shape.  
Step 2 Evaluate εopt using (3). If εopt < 0.25, then back to step 
1 to change the weights. 
 
-Controller synthesis 
Step 3 Select a controller structure K(p) and define the PSO 
parameters and control parameter ranges. Initialize several 
sets of parameters p as swarm in the 1st iteration. In this case, 
each p is a particle.  
Step 4 Use the PSO to find the optimal control parameter, p*.  
Step 5 Check performances in both frequency and time 
domains. If the performance is not satisfied such as too low ε 
(too low fitness function), then go to step 3 to change the 
structure of controller. Low ε indicates that the selected 
control structure is not suitable for the problem. 
 

 Standard PSO algorithm used in step 4 of the proposed 
technique is briefly described as follows. 

 Specify the parameters in PSO such as population size (n), 
upper and lower bound values of problem space, fitness 
function (J), maximum and minimum velocity of particles 
(Vmax and Vmin, respectively), maximum and minimum inertia 
weights ( maxQ and minQ , respectively). 

1. Initialize n particles with random positions within 
upper and lower bound values of the problem space. 
Set iteration count as iter =1. 

2. Evaluate the fitness function (J) of each particle 
using (9).  

3. For each particle, find the best position found by 
particle i call it Xpi and let the fitness value 
associated with it be Jpbesti. At first iteration, position 
of each particle and its fitness value of ith particle are 
set to Xpi and Jpbesti, respectively. 

4. Find a best position found by swarm call it G which 
is the position that maximum fitness value is 
obtained. Let the fitness value associated with it be 
JGbest. To find G the following algorithm described 
by pseudo code is adopted.  

(At first iteration set Jgbest,=0) 
For i = 1 to n do 
    If Jpbesti > Jgbest, then  
 G = Xpi, JGbest= Jpbesti 
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 end; 
5. Update the inertia weight by following equation 

max min
max

max

Q QQ Q iter
iter

−
= −  

where Q is inertia weight, iter and maxiter are the 
iteration count and maximum iteration, respectively. 

6. Update the velocity and position of each particle. 
For the particle i, the updated velocity and position 
can be determined by following equations. 

 
1 1 2 2( 1) ( ) [ ( ( )] [ ( ( )]

( 1) ( ) ( 1)
i i i pi i i i

i i i

v iter Qv iter X X iter G X iter

X iter X iter v iter

α γ α γ+ = + − + −

+ = + +
 
       7.   Increment iteration for a step. (iter = iter+1) 

8. Stop if the convergence or stopping criteria are met, 
otherwise go to step 2. 

 

III. SIMULATION RESULTS 
In this paper, the design of pitch axis controller for an 

experimental highly maneuverable airplane, HIMAT, is 
studied. The dynamic model of this plant is taken from the 
μ-synthesis and analysis toolbox user’s guide [11].  The state 
vector of this plant consists of the four variables which are 
forward velocity, angle-of-attack, pitch rate, and pitch angle. 
The control inputs are the elevon and the canard. The 
measured variables are angle-of-attack and pitch angle. The 
details of this plant are given in appendix B. The design 
objective is to reject disturbances up to about 1 rad/s in the 
presence of substantial plant uncertainty above 100 rad/s [5]. 
In this problem, the pre- and post-compensator weights are 
chosen as [5]. 

 
 

1 2

1 0 1 00.001 ,
1 0 10

0.001

s
sW W

s
s

+⎡ ⎤
⎢ ⎥ ⎡ ⎤+= =⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎢ ⎥
⎢ ⎥+⎣ ⎦

        (10) 

 

Singular values of HIMAT and desired loop shape are plotted 
in Fig. 3 (a). As seen in this figure, the bandwidth and 
performance are significantly improved by the compensator 
weights. The shaped plant has large gains at low frequencies 
for performance and small gains at high frequencies for noise 
attenuation. With these weighting functions, the robust 
requirement is satisfied. 

By using (3), the optimal stability margin of the shaped 
plant is found to be 0.436. This value indicates that the 
selected weights are compatible with robust stability 
requirement in the problem. To design the HLS controller, 
stability margin 0.3964 is selected. As a result, the final 
controller (full order HLS controller) is 7th order and 
complicated.  
 

 
(a) 

 
(b) 

Fig. 3. Open loop shape of (a) the nominal plant (Red line) 
and shaped plant (Black line) (b) the loop shape by the 
proposed controllers (Red line: Centralized PID, dash line: 
Decentralized PID) and HLS (Blue line). 

 
Next, two fixed-structure robust controllers are designed. 

The structure of controllers is selected as PID with first-order 
derivative filter. Accordingly, these controllers are simple 
and easy to implement in real applications. These controllers 
are expressed in (11) and (12) for centralized and 
decentralized controllers, respectively. Kp, Ki, Kd, and τd are 
parameters to be evaluated. 
 
 

Centralized controller:  
 

( )

1 1 2 2
1 2

3 3 4 4
3 4

1 2 1 2 1 2

3 4 3 4 3 4

1 1

1 1

, ,

i d i d
p p

d d

i d i d
p p

d d

p p i i d d
p i d

p p i i d d

K K s K K sK K
s s s s

K p
K K s K K sK K
s s s s

K K K K K K
K K K

K K K K K K

τ τ

τ τ

⎡ ⎤+ + + +⎢ ⎥+ +⎢ ⎥=
⎢ ⎥

+ + + +⎢ ⎥+ +⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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             (11) 
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Decentralized controller:  
 

( )

1 1
1

4 4
4

1 1 1

4 4 4

0
1

0
1

0 0 0
, ,

0 0 0

i d
p

d

i d
p

d

p i d
p i d

p i d

K K sK
s s

K p
K K sK
s s

K K K
K K K

K K K

τ

τ
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⎢ ⎥

+ +⎢ ⎥+⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

               (12) 

 

In the optimization problem, the upper and lower bounds 
of control parameters and PSO parameters are set as follows: 
Kp ∈ [-10, 10], Ki ∈ [-10, 10], Kd ∈ [-5, 5], τd ∈ [0.01, 1], 
population size = 300, minimum and maximum velocities are 
0 and 2 respectively, acceleration coefficients = 2.1, 
minimum and maximum inertia weights are 0.6 and 0.9, 
respectively, maximum iteration = 80. As shown in the above 
mentioned control parameter ranges, the selection of upper 
and lower bounds is easily carried out by observing the 
performance weight 1W . After running the PSO for 80 
iterations, the optimal control parameters are found to be 

 
Case I: Centralized controller.  
 

d

0.52601 0.14172 1.96082 0.28352
, ,

0.47833 0.70387 2.2261 1.224

0.007434 0.006844
, 0.0068479

0.006272 0.0016058

p i

d

K K

K τ

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

⎡ ⎤
= =⎢ ⎥−⎣ ⎦

   (13) 

 

Case II: Decentralized controller.  
 

d

0.5367 0 1.488 0
, ,

0 0.5659 0 0.4909

0.01569 0
, 0.0085855

0 0.00499

p i

d

K K

K τ

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

⎡ ⎤
= =⎢ ⎥−⎣ ⎦

                 (14) 

 

 
 

Note that all of the designed controllers in this paper are 
the controllers in positive feedback control system. Fig. 8 (b) 
shows comparison of the loop shapes by the proposed 
controllers and HLS. As seen in this figure, all loop shapes 
are close to the desired loop shape. Fig. 9 shows plots of 
convergence of objective function (stability margin) versus 
iterations by PSO. As seen in this figure, the stability margins 
obtained from the proposed centralized and decentralized 
controllers are 0.432 and 0.389, respectively. These values 
indicate that the robust stability and performance of the 
designed systems are satisfied.  

 

 
Fig. 9 Convergence of the fitness value. 

 
In this simulation studies, the robustness and performance 

of the proposed controllers are compared with those of the 
controller obtained from [5], that is. 
 

d

1.3074 0.0601 1.2729 0.0795
, ,

1.3414 1.3123 1.3609 1.2921

0.0077 0.0043 1, 
0.0069 0.0039 99.5724

p i

d

K K

K τ

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

⎡ ⎤
= =⎢ ⎥− −⎣ ⎦

         (15) 

 

Table 1 Comparisons of the stability margins obtained from the controllers in Example 2. 
Controller  Stability Margin 
1. Proposed Controller:  
    1.1 Centralized PID Controller 0.432 
    1.2 Decentralized PID Controller  0.389 
2. Robust Centralized PID Controller designed by BMI optimization [5] 0.309 
 

The stability margin obtained by the above controller is 
0.309. Clearly, the stability margin of the proposed 
centralized controller is also much better than that of the 
controller in [5].  

 Table 1 summarizes the results of stability margin obtained 
from the proposed controller and others. As the results, the 
stability margin from the proposed centralized PID controller 
is better than that of other controllers. Accordingly, the 
proposed technique is an efficient method to design a 
fixed-structure robust loop shaping controller. Note that the 
design of decentralized PID controller was not presented in 
the previous work [5]. 

IV. CONCLUSIONS 
In this paper, a PSO based fixed-structure H∞ loop shaping 

controller for HIMAT system is proposed. Based on the 
concept of conventional H∞ loop shaping, only a single 

index, stability margin, ε, is used to indicate performance and 
robustness of the designed controller. This index is utilized as 
the objective function of the proposed technique. The 
resulting stability margins indicate that the proposed 
controllers are compatible with the specified open loop shape 
and also guarantee robustness. Moreover, the structure of 
controller is not restricted to PID. The controller K(p) can be 
replaced by any fixed-structure controller and the proposed 
algorithm can still be applied functionally. By comparison 
with the previous work [5], the optimal stability margin 
obtained by the proposed technique is also much better than 
that of the method in [5] and the problem of local minima is 
reduced by the proposed algorithm. In conclusion, by 
combining the two approaches of PSO and H∞ loop shaping; 
fixed-structure H∞ loop shaping controller can be designed. 
Although the design of fixed-structure robust controller is 
difficult because of its inherently non-convex nonlinear 
problem, the PSO simplifies the problem by searching the 
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optimal solution. Simulation results demonstrate that the 
proposed technique is valid and flexible. 

 

APPENDIX A 
Given a shaped plant Gs and A, B, C, D represent the 

shaped plant in the state-space form. To determine εopt, there 
is a unique method as follows [8].   

 

2/1
max

1 ))(1( XZoptopt λεγ +== −  

 
where X and Z are the solutions of two Riccati in (A.1) and 
(A.2) respectively, λmax is the maximum eigenvalue.  
 

1 1 1 1( ) ( ) 0T T T T TA BS D C Z Z A BS D C ZC R CZ BS B− − − −− + − − + =  
(A.1) 

 
1 1 1 1( ) ( ) 0T T T T TA BS D C X X A BS D C XBS B X C R C− − − −− + − − + =

(A.2) 
 

where DDIS T+= , R = I+DDT 
 

APPENDIX B 
 The state vector of HIMAT model consists of vehicle’s 

rigid body variables. 
 

[ , , , ]Tx v qδ α θ=  
 

where vδ  is the forward velocity, α is angle between 
velocity vector and aircraft's longitudinal axis, q is 
rate-of-change of aircraft attitude angle, and θ is the aircraft 
attitude angle. The state space of HIMAT can be written as 

 

x Ax Bu
y Cx Du

•

= +
= +

 

 
The control inputs are the elevon and the canard. The 

measured variables are angle-of-attack and pitch angle. In 
this paper, the linearlized model is taken from [11], that is  

0.0226 36.6 18.9 32.1
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,
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,
77.8 22.4
0 0

0 57.3 0 0
,

0 0 0 57.3

0 0
0 0

A

B

C

D

− − − −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
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