

Abstract—A Wiener model consists of a dynamic linear

transfer function in series with a static nonlinear function. We
can through the essences of GP, like robustness, domain
independence and ability to search for satisfying solutions in
solving complicated nonlinear problems, this study hoped that
the evolved GP models could have a better applicability and
accuracy of evaluations, and easily obtain the correct structure
and parameters of the nonlinear function, and number of zeros
and poles of the linear transfer function. GP is applied to the
determine nonlinearity and unknown parameters in the
nonlinear function and linear dynamic system model are
estimated by a least square algorithm. The results of numerical
studies indicate the usefulness of proposed approach to Wiener
model identification.

Index Terms—Wiener model, system identification, Genetic
Programming (GP), Akaike information criterion (AIC).

I. INTRODUCTION

The black box modeling based on the observed system
input and output data for unknown dynamic system is called
system identification. One of the difficulties in nonlinear
system identification is that both the structure and the
unknown parameters of model should be determined [1].

In [2], a fast method to get a first estimate of Wiener or
Hammerstein systems has been introduced. However,
methods must assume that the order of linear part is known
and the search space is differentiable, and linear in the search
parameters. In [3], Wiener model identification by
evolutionary computation approach with piecewise
linearization has been introduced. However, methods must
assume that the nonlinear static part is invertible. Regarding
these problems, we can use GP to improve.

Because GP exploit strategies of genetic information and
survival of the fittest to guide their search, they need not
calculate the gradient or assume that the search space is
differentiable or continuous. GP simultaneously evaluate
many points in the parameter space, so they are more likely to
converge toward a global solution. The aim of system
identification is to give the optimal mathematical model both
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nonlinearity and linear dynamic system in an appropriate
sense. We can use GP to determine the structure of nonlinear
static block. The unknown parameters including linear
dynamic system model's ones are estimated by the least square
method.

Remainder of this paper is organized as follows. In section
II, the expression tree is introduced. In section III, the Wiener
model is introduced. Section IV describes our approach to the
Wiener model identification and results of some numerical
examples are shown in Section V. Finally, a conclusion is
presented in Section VI.

II. EXPRESSION TREE

Each program or individual on the population is generally
represented as a tree composed of functions and terminals
appropriate to the problem domain. The function set may
contain standard arithmetic operators, mathematical functions,
logical operators, and domain-specific functions. The
terminal set usually consists of variables and constants. The
simple expression is represented as shown in Figure 1.

where the function set is {+, -, sin, exp}, and the terminal
set is {x, 0.2} [4].

Figure 1: An example of GP Tree

III. WIENER MODEL IDENTIFICATION

A Wiener model consists of a linear dynamic system G
followed by a static nonlinear part F as in Fig 2.
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Figure 2: A Wiener model.

Let consider the Wiener model
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Here q-1 is delay operator. y (t),u (t) and e (t) are the system
output, input and measurement noise at time instant t
respectively. The orders of linear dynamic block na and nb are
unknown and it should be determined from observed input

and output data. ( )F   is unknown nonlinear function.

We can rewrite (1) as,
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For the sake of convenience, again let:
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According to Eq. (3), we have:
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Suppose m represent sampling steps used to identify, let:
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Hence:

( )t H                                  (5)

Parameters are identified by the least square criterion as [5]:

1( ) ( )T TH H H t                                                        (6)

Then, we assume that nonlinear function is written by:
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Here, θk are model parameters and pk (.} are the suitably
selected nonlinear functions.

The function terms were determined by decomposing the
tree starting from the root as far as reaching non-linear nodes
(nodes which are not '+' or '-') [6] [7].

In Fig 3: The root node is a ’+’ operator, so it is possible to
decompose the tree into two subtrees: ’p’ and ’p1’ trees. The
root node of the ’p’ tree is again a linear operator, so it can be
decomposed into ’p2’ and ’p3’ trees. The root node of the ’p1’
tree is a nonlinear node (’*’) so it cannot be decomposed, so
finally the decomposition procedure results in three
subtrees: ’p1’, ’p2’ and ’p3’.

Figure 3: Decomposition of a tree to function terms

The parameters are assigned to the model after ’extracting’
the ip  function terms from the tree. Least Squares Method

can be used for the parameters identification.

The optimal 1[ ,  . . . ,  ]T
M   parameter vector can

be analytically calculated:

-1  ( )T TP P P y  (8)

Where   [  (1),  . . . ,  ( )] Ty y y N  is the measured

output vector, and the P regression matrix is:
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(9)

The compact matrix form corresponding to the
linear-in-parameters model is

y P e   (10)

where P  is the regression matrix,  is the parameter
vector, e is the error vector [8].

Based on this representation, we can estimate unknown
parameters, ai, bj and θk using the least square algorithm. The
orders of this model, na, nb and M should be determined by
AIC, which is defined by [9],

( , , ) log( ) 2( )AIC na nb M N E na nb M    (11)
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Where, E is the mean square error between actual output
and estimated output, N is the number of sample points.

This kind of models is investigated in many actual
processes such as Control Valve, where the measurement
device with nonlinear characteristics is a component of the
system.

The Control Valve is an opening with adjustable area.
Normally it consists of an actuator, a valve body and a valve
plug. The actuator is a device that transforms the control
signal to movement of the stem and valve plug.

where u(k) is the control pressure, x(k} is the stem position,
and y(k) is the flow through the valve which is the controlled
variable [10].

IV. THE FLOW CHART OF WIENER MODEL

The flow chart of the Wiener model identification with GP
is as follows：

Figure 4: flowchart of GP

A. Creation of initial population

Our chromosome consists of two parts, parameters of the
nonlinear function and order of linear discrete transfer
function. We generate one hundred initial chromosomes of
random compositions of the functions and terminals
according to this method.

B. Evaluate Population Fitness

The fitness function reflects the goodness of a potential
solution which is proportional to the probability of the
selection of the individual. The fitness for each individual is
evaluated by AIC to balance the accuracy and the complexity

of model. AIC is calculated with the number of nodes in the
GP tree, the order of linear dynamic model and the accuracy
of model. The fitness for each individual is evaluated with the
minimum AIC.

C. Keep the better chromosome

We arrange the chromosome according to the fitness
function, and keep the first groups of better chromosome as
the parental generation of the next generation.

D. Use Genetic Operation：

The genetic operations include crossover and mutation.
After the genetic operations are performed on the current
population, the new generation replaces the now-old
generation. This iterative process of measuring fitness and
performing the genetic operations is repeated over many
generations. The run of GP terminates when the termination
criterion is satisfied. Sometimes we can’t find the optimal
solution quickly; therefore we can set up generation. We will
stop the program when it reaches the generation, and select
the best chromosome from inside.

V. EXPERIMENT RESULT

A. Experiment I

To show the validity of proposed approach to Wiener
model, numerical simulation study is carried out.

Consider the following Wiener model [3]:

( ) 1.5 ( -1) - 0.7 ( - 2)

      ( -1) 0.5 ( - 2)

x t x t x t

u t u t
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Here, the nonlinear static part is invertible, measurement
noise is a white noise normally distributed with mean zero,
and the input signal u(t) is assumed random input uniformly
distributed over [-1,1]. GP is used to determine a
mathematical function form for the static nonlinear block. The
design parameters in the GP are as follows.

Table I: Parameters of GP

terminal sets { x(t),  }

function sets {+, -, *, exp, sinh, cosh, tanh}

Population size 100

generation 500

Max tree depth 6

Type of selection Tournament selection

Crossover rate 0.7

mutation rate 0.3
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Here   is constant. The identified linear dynamic system
part is given by:

ˆ
ˆ ˆ

( ) 1.532 ( -1) - 0.692 ( - 2)

      1.044 ( -1) 0.496 ( - 2)

x t x t x t

u t u t


 

(15)

and the identified inverse function of nonlinear static part is
shown in Fig. 5.

Figure 5: Estimated nonlinearity.

The output estimates ŷ(t)  are shown with the observations

y (t) in Fig 6.

Figure 6: Output estimate and observation.

B. Experiment II

To show the validity of proposed approach to
non-invertible static part, numerical simulation study is
carried out.

Consider the following Wiener model:
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Here, the nonlinear static part is non-invertible,
measurement noise is a white noise normally distributed with
mean zero, and the input signal u(t) is assumed random input
uniformly distributed over [-1,1]. The design parameters in
the GP are represented as shown in Table I.

The identified system part is given by

ˆ
ˆ ˆ

( ) 1.532 ( -1) - 0.692 ( - 2)

      1.044 ( -1) 0.496 ( - 2)

x t x t x t

u t u t


 

(18)

ˆ
ˆ

( ) 1.48 tanh( ( ))y t x t (19)

The estimated nonlinear function of nonlinear static part is
given in Fig. 7.

Figure 7: Estimated nonlinearity.

The output estimates ŷ(t)  are shown with the observations

y (t) in Fig 8.
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Figure 8: Output estimate and observation.

VI. SUMMARY

The GP is an effective algorithm to generate model
structures from input-output data. Based on the GP method,
methods needn’t to assume that the order of linear part is
known and the search space is differentiable, and linear in the
search parameters. In addition, methods also needn’t to
assume that the nonlinear static part is invertible. Numerical
simulation study result indicates the usefulness of the
proposed approach to Wiener model identification. We can
easily modify this approach for the other kind of nonlinear
system models by selecting suitable nodes for GP.
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