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Abstract— An experiment based method is proposed for 
parameter estimation of a class of linear multivariable systems. 
The method was applied to a pressure-level control process. 
Experimental time domain input/output data was utilized in a 
gray-box modeling approach. Continuous-time system transfer 
matrix parameters were estimated in real-time by the least-
squares method. Simulation results of experimentally 
determined system transfer function matrix compare very well 
with the experimental results. The proposed method can be 
implemented conveniently on a desktop PC equipped with a 
data acquisition board for parameter estimation of moderately 
complex linear multivariable systems. 

 
Index Terms— least-squares method, MIMO systems, System 

identification,  

 

I. INTRODUCTION 

In control design for industrial processes an efficient real-
time parameter estimation scheme is needed. These processes 
are usually in the form of multi-input multi-output (MIMO) 
systems with nonlinear dynamics. Prior knowledge of the 
dynamical relations between individual inputs and outputs 
often exists, or can be derived without much effort. The 
remaining part of the problem is to find out the correct 
parameters of these dynamical relations. 

The system identification methods rely heavily on the method 
of least-squares [1].The least-squares method was first used 
by Karl Gauss for calculating the planets’ orbits at the end of 
18th century. Afterwards, the method has been widely 
accepted as a means for parameter estimation from 
experimental results. Readily available parameter 
identification methods have been associated with this 
method. The method is implemented easily, and can provide 
convenient closed-form solutions [7]. 

Identification methods for certain multi-input multi-output 
dynamical systems are available in the literature [3,6]. In this 
paper, emphasis is given to derivation of a real-time scheme 
1for parameter estimation of a class of linear MIMO dynamic 
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systems. The method is applied to a MIMO system where the 
process outputs are pressure in a tank and liquid level in a 
connected container. Least-squares method was utilized to 
determine the parameter estimates. The method is 
implemented on a desktop PC computer equipped with a data 
acquisition board. An interface tool was developed for 
capturing and processing the data. The method can be utilized 
for parameter estimation of a class of MIMO systems, where 
prior knowledge of the form of dynamical relations between 
the inputs and outputs exist.  

 

 

Fig. 1 A Picture of the pressure-level system 
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Fig. 2 Block diagram of the pressure-level system 

II. IDENTIFICATION OF THE PRESSURE-LEVEL 
SYSTEM BY THE REAL-TIME PARAMETER 

ESTIMATION METHOD 

An experimental method is proposed for modeling of the 
pressure-level system. A black-box model along with a curve 
fitting approach was used to identify the input-output 
behavior of the system [2,5].The pressure-level system has 
two inputs and two outputs.  

The inputs to the system are, 

U1: control signal applied to the pump, 

U2: control signal applied to proportional valve. 

The outputs are 

Y1: liquid level output signal, 

Y2: pressure value output signal. 

 

The following 2x2 system transfer function matrix is 
obtained 

Y1(s) = G11(s).U1(s) + G12(s).U2(s)   (1) 

Y2(s) = G21(s).U1(s) + G22(s).U2(s)   (2) 

The input-output relation of the system is shown in Fig.3. 

 

Fig. 3 Input-output model of the system 

G11 is a transfer function showing the relation between input 
1 and output 1. Likewise, G12(s) is the transfer function that 
shows the effect of input 2 to output 1, G21(s) indicates the 
effect of input 1 to output 2, and G22(s) indicates the effect of 
input 2 to output 2. 

Initially, a first order transfer function 
1+s

K
τ

 is chosen for 

each input-output relation Gij(s). To find G11(s), an input 
U2=0 is applied and the relation between input1 (U1) and 
output1 (Y1) is found. 
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In this equation, for calculating K and τ constants 
denominators are equalized and constants are left. 

 
Y1(s).τs+Y1(s)=K.U1(s) (4) 
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Transforming the expression from s-domain to t-domain, the 
1/s term is converted to an integrator. Equation for Y1 
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Let’s define the regressors 
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The output equation can be obtained as below 

φθ .=Y  (13) 
 
The regression vector is 
 

( ) YTT φφφθ
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Same calculations are also used for G12(s), G21(s), and G22(s). 
Calculation of system transfer function parameters are not 
done in real-time. A MATLAB program is used for this 
operation. 

III. INTERFACED USED FOR REAL-TIME SYSTEM 
MODELING 

An interface is designed for calculating the transfer function 
parameters of the experimental system by the least-squares 
(LS) method. MATLAB Simulink Real-Time Windows 
Target Toolbox (RTW) is used for the interface program 
(Fig.4). Besides, a data acquisition board (NI-DAQ PCI-
6024E) is utilized for recording and processing the data. 
When the interface software runs, signals are applied to 
system inputs. System outputs are recorded and calculations 
to determine system parameters are done during run-time. 

 
Fig. 4 MATLAB interface for real-time system modeling 

The procedure to identify the transfer functions’ are 
described as follows: 
 
To find G11(s): 
• U2 control input is initialized (zero volt is applied to the 

proportional valve input), 
• U1 control signal is set to several different values 

(several different voltages are applied to the pump), 
• Y1 output (liquid level in the tank) is measured. 
 
To find G22(s): 
• U1 control input is initialized (zero volt is applied to the 

pump), 
• U2 control signal is set to several different values 

(several different voltages are applied to proportional 
valve), 

• Y2 output (pressure in the tank) is measured. 
 
To find G12(s): 
• U1 control input is initialized (zero volt is applied to the 

pump), 
• U2 control signal is set to several different values 

(several different voltages are applied to proportional 
valve), 

• Y1 output (liquid level in the tank) is measured. 
 
To find G21(s): 

• U2 control input is initialized (zero volt is applied to the 
proportional valve input), 

• U1 control signal is set to several different values 
(several different voltages are applied to the pump), 

• Y2 output (pressure in the tank) is measured. 
 
Here φ and Y values are recorded. θ  is found as  

 

1 K⎡ ⎤− = θ⎢ ⎥τ τ⎣ ⎦
 (15) 

 
By using this equation, parameters of Gij transfer function are 
calculated. At the end of the experiments, elements of 
system’s transfer function matrix are found as below. 
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For comparison, the simulated step responses of the transfer 
functions obtained by the real-time identification and 
experimental step-responses of the system are shown in Fig. 
5. 
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Fig.5 Comparison of experimental step-responses and 
transfer functions obtained by real-time identification 

 
As shown in Fig. 5, G11, G12, and G22 transfer functions that 
are found by parameter estimation are fairly close to real 
system attitude. G21 transfer function does not reflect the real 
system’s attitude. Because, the real system dynamics is not of 
a first order dynamics and it is a nonminimum phase system. 
Thus, G21 transfer function is chosen as indicated. 
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Then, parameters are re-calculated after adding an integrator 
to the interface in MATLAB. The new transfer function for 
G21, which express the relation between the input U1 and the 
output Y2 is found. 
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221 ++
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Simulated step-response obtained from G21 is compared to 
experimental step-response. Results indicate that the 
simulation and experimental results follow very closely each 
other (Fig. 6). 
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Fig.6 Comparison of G21 simulated step-response with the 

experimental result. 

System’s transfer function matrix is found as below 
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For comparison of the identified model with the real system, 
a MATLAB/Simulink model is formed and tested under 
various inputs. Fig.7. shows the responses of the system to 
unit-step applied at both system inputs. Results indicate that 
the proposed real-time identification method can capture the 
dynamic behavior of the experimental pressure-liquid level 
control system successfully. 
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Fig.7. Comparison of simulated system models and 
experimental unit-step responses 

IV. CONCLUSIONS 

In this paper a real-time parameter estimation method for a 
class of linear MIMO systems is developed. The method is 
applied to an experimental pressure-level process. The prior 
knowledge of the form of input/output dynamic relations 
exists. Results indicate that the method can capture the 
dynamics of the moderately complex dynamic processes with 
a good accuracy. Easy implementation and less 
computational burden required make the proposed method a 
viable alternative to more complicated multivariable system 
identification methods. 
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