
 
 

  
Abstract— The visual navigation of mobile robots rely mostly 

on road edge detection from images taken from onboard 
camera. The algorithms used to detect road edges give globally 
satisfactory results if the scene variability is limited. However, 
sometimes even if the road edges are properly detected from the 
input image, the robot guidance task still fails. In this context, 
this paper investigates the subjective interaction between the 
scene model and the world model, and we propose a visual 
control scheme for robot guidance that minimizes the model 
error induced by processing raw image data. The involved 
control system includes the fuzzy approach at two levels: a fuzzy 
perception system which detects efficiently the road edges from 
the perception-domain image, and a fuzzy control system which 
uses the knowledge base information and the scene model to 
control the robot motion. On the other hand, the fuzzy control 
system is finely tuned through feed-backing mean square errors 
between the scene model parameters and the knowledge-base 
data. Hence, a road configuration from a preprocessed image is 
compared with a fuzzy template made from the fuzzy 
membership function based on the knowledge base module. 
Finally, the fuzzy controller uses results of this calculation to 
guide the robot on the planned path. This paper shows the 
principle of this system and the simulation results confirming 
the feasibility of the approach even in the presence of several 
image artifacts, such as sparse shadows and lighting changes.. 
 

Index Terms— Fuzzy Control, Road Edge Detection, Vision 
System, Visual Robot Navigation.  
 

I. INTRODUCTION 
  Most of the research efforts in the visual guidance of 

autonomous mobile robots have been concentrated on road 
edge detection. However, less attention has been paid to the 
after-detection process, especially the physical interpretation 
of what had been detected. In fact, there is a wide gap 
between the scene model built based on image processing 
algorithms and the physical model of the environment where 
the mobile robot progress. The problem of guiding 
autonomously a mobile robot in a real environment has 
attracted many researchers during the last decade [1], [2], [3], 
[4]. This problem is directly involved with the quality of 
information provided by mounted sensors which are in reality 
not perfect. In fact, the quality of edge detection is limited by 
the raw contents of the image and the edge detecting 
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programs processing this image. As a human being, an 
experimenter knows there is an edge because he is using 
knowledge in addition to what is contained in the image. 
How to use such knowledge about the real world in the 
process of general edge detection is a huge topic that is still 
under investigation. For example, if the program identifies a 
road edge and it is likely that it will continue on the other side 
of a tree branch, then it may have a chance to detect the edge 
of each and every visible part of a road behind a tree; 
otherwise, some small and not so obvious pieces of the edge 
may remain undetected. Consequently, an edge detector may 
be tailored to take advantage of the domain knowledge. In 
this context, fuzzy logic allows us to take into account the 
sensor imperfections. Thus, by using fuzzy measures we can 
introduce a confidence degree on every source and between 
sources. Several techniques of data fusion have been 
proposed to improve the precision of information often 
perturbed by additive noise, and to reduce the incoherence 
rate [5], [6]. Furthermore, the choice of any technique is 
strongly dependent on the environment, sources of 
information and real time needs. The vision system to find 
real road edges must be able to operate robustly under a wide 
variety of environmental conditions including large amount 
of scene clutters. The clutters can be due to shadows, surface 
wears, tire skid marks, oil drops, occlusion by other objects, 
etc. It is difficult to select true edges corresponding to real 
edges while removing the edges corresponding to irrelevant 
clutters. A road edge algorithm has been proposed by 
Nourine et al [7] destined to painted or unpainted road. In this 
algorithm color cues were used to conduct image 
segmentation and remove the shadow of the road. Assuming 
that the roads are normally long and smooth curves, then its 
can considered as straight lines within a reasonable range for 
safety. The road edges were detected using Radon 
transformation applied to the edge image. In the road 
following phase, a temporal correlation is assumed between 
successive images. Specifically this algorithm is based on 
automatic extraction of road position during driving 
scenarios. Geometrics constraints are assumed on the road 
contours in order to reduce the search space. Moreover, 
temporal constraints were assumed in the form of a dynamic 
focus-of-attention windows in Radon space. 

In this paper, we discuss the guidance process for a 
vision-based autonomous navigation using a fuzzy control 
approach. As a testing platform we will use a robotic 
wheelchair system developed for indoor and outdoor use. 
The robotic wheelchair is equipped with a camera, ultrasound 
and infrared sensors as illustrated by Figure 1. The 
development of this robotic wheelchair is part of a research 
project supported by KACST. 
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Figure 1: Robotic Wheelchair as testing Platform 
 
The development of the robotic wheelchair aims at 

improving independent mobility of multi-disabled 
individuals, and this project focuses on integrating sensory 
information and human-machine interaction 

II. VISUAL NAVIGATION AND SERVOING  
The autonomous navigation of mobile robotic systems is 

actually the objective of a number of research works. The 
navigation ability in the environment is strictly related to the 
quality of environment perception. The latter depend on the 
quantity, quality and reliability of sensors and actuators. The 
robotic navigation based on visual servoing needs proper 
image processing algorithms, for connecting actions to visual 
information. In fact, sensorial processes and motor processes 
evolve together, by undertaking respectively perceptions and 
actions, which are considered inseparable, ordered and aimed 
to the whole cognitive system growing. 

Several vision-based road detection and tracking systems 
uses a model in order to do reliable recognition.  The use of 
models simplifies the detection process, by limiting the 
search area on specific image-zones and restricted intervals 
of model parameters. However, many of model-based 
systems establish some constraints on the environment in 
order to have a unique solution in the boundaries detection 
process. In our case,  we made the following constraints on 
the road structure: 

• The robot is moving on a flat straight road or with slow 
curvature (intersections are processed separately). 

• The road boundaries are assumed locally parallel. 
• The road boundaries are continuous in the image plane, 

which implies their continuity in the physical world. 
This constraint makes the prediction of a missing 
boundary possible (when the boundary detection 
technique fails). 

 Moreover, the robot motion is supposed to be “regular”, 
without abrupt accelerations, which implies generally a 
temporal correlation between two successive images. 

Under such circumstances, we have previously proposed a 
modular vision system for outdoor autonomous mobile robot 
navigation [9]. This system uses a visual servoing in which 
the control incorporates directly the visual feedback in order 
to guide the robot by detecting the road edges from the image 
space. The knowledge base module uses the acquired and 
predicted data to construct a scene model. This model is the 
main product of the vision system since it reflects the 
perception of the road edges necessary to a robust and secure 

guidance. We have noticed experimentally that relying 
simply on this model is not sufficient since its derivation was 
based on an analytical approach. Accordingly, the resulting 
analytical model involves approximations and 
simplifications to ensure a solution. Here we introduce a 
fuzzy system to control the robot motion by considering the 
scene model parameters as fuzzy variables. The fuzzy 
parameters such as membership functions of the involved 
fuzzy variables are consequently tuned according to the 
knowledge base information. The basic configuration of the 
developed visual servoing technique is depicted in Figure 2. 
The approach is specified in terms of regulation in the image 
frame of the camera. Our application involves the motion 
control and specifically mobile robot guidance through 
roadways. This task requires a reliable road edge extraction 
algorithm which is ensured by the fuzzy perception system. 
The parameters of the visually perceived features constitute 
the elements of the state vector which enables to elaborate a 
fuzzy control model based on the state space representation. 
This representation is  based on the 2D model of both the 
robot and the perceived scene. It takes into account the visual 
features of the scene and the modeling of the mobile robot. 
To realize a servoing technique, the knowledge base 
establishes a predicted scene model which should be taken as 
a reference. Hence, Rf* represents a reference target image to 
be reached in the image space, Pi the perceived information, 
K the gain vector, Is the system input parameters, and finally 
Os the outputs characterizing the behavior of the robot. 
 
 
 
 
 

 

Figure 2: Visual Servoing System 

The fuzzy controller uses as input the mean square errors 
between the parameters of the perceived scene model and 
those of the corresponding predicted model. The prediction is 
performed in collaboration between the scene prediction 
module, the environment map and the knowledge base [8]. 
To minimize the matching error, a fine tuning of the fuzzy 
system through feed-backing the mean square errors is 
performed. Consequently, the knowledge-based control of 
the mobile robot motion is considered as a hierarchical 
process involving road edge perception and guidance along a 
planned path. Most of the processing time is spent with the 
fuzzy perception module which is based mostly on image 
transforms. This module operates in two modes: the initial 
phase which includes all the processing applied to the first 
image acquired in order to initiate the navigation, and the 
continuous following mode which handles the processing of 
subsequent images taken at the end of each blind distance. 
This distance is linearly proportional to the total processing 
time. Moreover, the navigation security increases as the blind 
distance decreases. 

III. FUZZY MAPPING AND SCENE MODEL 
 The perception of the road edges constitutes the most 
essential feature for the autonomous navigation of the robot. 
The main idea in our approach is to extract the edges from 
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the perception-domain image. This domain is defined by 
applying a mapping function on the gradient orientation 
image. The parameters of the mapping function enabled us 
to enhance and detect the edges having a specific orientation 
on the image plane. A prior rough knowledge of the road 
edge orientation makes it easy to detect it even under 
uneven conditions. In our work [9],[10], the problem of 
road edge detection is viewed as a phenomena of perceiving 
gradient direction levels and then tracing the locus of the 
vectors which correspond to dominant linear features. We 
have noticed experimentally that the dominant characteristic 
of the road edge was its direction since it varies very slowly 
through the sequence of the input images. Moreover, it is 
less sensitive to noise than the amplitude of the edge, thus 
making the fuzzy road edge perception more practical. 
Accordingly, in order to enhance pixels belonging to the 
desired intervals of both road edges, we apply a mapping 
function on the orientation image. This mapping represents 
a perception of such phenomenon as edge dominance 
around a predicted direction. Consequently, the detection of 
the road edges requires a bi-level thresholding around the 
dominant directions. To determine the thresholds we 
proceed by measuring the fuzziness of the orientation image 
using the Yager’s measure[11]. Thus; the minimization of 
this measure enables to determine the appropriate thresholds 
levels [12], [13]. The detection of the road edges permits the 
establishment of the scene model Ms as illustrated by Figure 
3. 
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Figure 3: The Scene Model Parameters 

 
According to this configuration, we express the theoretical 
aspects of the scene modeling. The output scene model 
composed of a right and a left road edge may be described by 
four parameters Ms (F,φ,δ,λ) as shown Figure 3. The physical 
parameters Δ and Φ (relative to δ and φ of the scene model) 
necessary to the robot guidance are determined by the vision 
system and involved with an uncertainty. Consequently, 
these parameters  may be considered as fuzzy variables, and a 
fuzzy control system is hooked in the visual servoing system 
[9]. 

IV. THE FUZZY CONTROL SYSTEM 
 The scene is described by the mathematical model Ms 

(F,φ,δ,λ). It seems convenient to take care of the fuzzy 
variables involved in the model through introducing a fuzzy 
system [16]. A rule base is established by the operator 
according to a prior knowledge. Nevertheless, the fuzzy 
parameters such as membership functions of the involved 
fuzzy variables must be tuned according to the knowledge 
base information; i.e., predicted data samples. The vanishing 
point F is defined by its Cartesian coordinates (xv, yv). 
Moreover, fuzziness of variables F, φ, δ and λ is expressed by 
membership functions established by the operator as 

illustrated by Figure 4. The fuzzy system inputs are as 
follows: 

- Inputs 1 and 2 are x and y that specifies F.  
- Input 3 and input 5 define the fuzzy variables λ and 
δ respectively.  
- Input 4 stands for angle φ.  Its universe of discourse is 
variation Δφ around  a central value φ0. 

The universes of discourse of  x, y, δ, and λ are normalized to 
1 in order to accommodate any situation. The fuzzy system is 
then tuned using data of the knowledge base, according to a 
gradient descent algorithm scheme. Because of the 
feed-forward structure of the fuzzy systems, the 
back-propagation algorithm can be used in the same way as 
for feed-forward multi-layer neural networks. [3]. 

  

  

  

  

 
Figure 4: Membership plots of variables F (x and y), λ, φ, and 

δ  respectively 
 

The established rules are expressed by the following form: 
 

Rj:  If  x1  is Am ... AND  xk   is An   AND..... THEN   yi = Sij 
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Sij represents the fuzzy singleton of output i in the  j-th rule. 
Hence, the output is expressed by the following: 
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Where we designate the outputs, the  fuzzy rules, and the 
inputs by the indices i,j, and k, respectively. And μjk (xk) is 
the membership grade of the input k in the j-th fuzzy rule. To 
derive the above model, the following fuzzy operations are 
used: 

- The max-product inference scheme is used for 
evaluating the overall output fuzzy set. 
- The output fuzzy sets are distinct singletons. 
- The centroid defuzzification scheme is used to 

produce a single numerical output from the resulting 
output fuzzy set.  

The membership functions are Gaussian functions:  
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Where mjk  and σjk are the mean and standard  deviation, 
respectively. 
The error measure of interest is the sum squared errors 
between the desired parameter T provided by the knowledge 
base at any instant, and that produced by the fuzzy system (y) 
over all the training pairs (Yp,Tp). This error is given as 
follows:  
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Where yi
p  is the i-th output generated by the fuzzy system for 

the p-th input. 
The back-propagation algorithm is used to adjust the fuzzy 
system parameters such that the error measure E is 
minimized: This is done by the following: 
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Performing the above partial derivatives, we obtain:  
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which represents the normalized activation of rule j, and ηs , 
ηm  and ησ denote the learning rates of the respective fuzzy 
parameters. The determination of the normalized activation 
Φj  can be regarded as a procedure for selecting suitable 
features. The self-tuning architecture of the fuzzy system is 
given by Figure 5. 

The predicted model Mp produced by the knowledge base 
is used by the geometrical reasoning module in order to 
obtain a 3-D interpretation necessary to the pilot module. 

This interpretation reflects the predicted orientation error Φp  
and the predicted shift error Δp. On the other hand, the fuzzy 
perception system provides the measured scene model Ms . 
The fuzzy systems are constructed and tuned so to match the 
system model of the knowledge base (predicted) with the 
system model Ms (measured). The Fuzzy systems 1 and 2 tune 
the control variables Φ and Δ by back propagating the mean 
square errors between Ms and Mp. The iteration process of the 
controller halts when the estimated error reaches its minimal 
acceptable value generally prefixed by the operator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Tuning schema of the fuzzy system through 
feed-backing mean square errors εΔ and εΨ. 

 
 The error variations through the tuning process are shown 
by Figure 6. Up to 100 epochs, the overall fuzzy system is 
supposed well tuned and εΨ and εΔ reach εΨmin= 2.10-3 and 
εΔmin= 10-5

   respectively. The resulting membership functions 
after fine tuning using back propagation are illustrated by 
Figure 7.  
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Figure 6: Tuning process through error curves 
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Figure 7 : Membership functions after fine tuning using 

back-propagation. 
 

 This controller is supposed to generate control values Φ 
and Δ with a high degree of accuracy even in presence of 
uncertain measured model parameters. The rule base is 
constructed by the expert (upon a prior knowledge). In 
general, there are 35 possible rules. For illustration, only 
relevant rules are chosen so to infer output control values Φ 
and Δ. as shown in Figures 8 and 9 for the normalized outputs 
Δ and Φ respectively. These surface views are very useful 
especially during the calibration phase since they enable to 
determine easily the different parameters minimizing the 
output guidance parameters. One may easily notice from 
Figure 8 that minimizing the parameter Δ would correspond 
to x=y=0.5 (which corresponds to a vanishing point centered 
on the image plane) with δ approaching zero. The same 
conditions would be true for minimizing Φ but with φ 
approaching zero (see Figure 9). 

   

 
Figure 8: Some Surface views of normalized output Δ 

produced by the fuzzy controller. 
 

   

 
Figure 9: Some surface views of output Φ produced by the 

fuzzy controller. 
 
 More, with the help of the used data structures and the 
representation of the membership functions in continuous, 
we obtain a O(n) calculation (with n the number of fuzzy 
partitions) that fit the sense of the real time objective fixed. 
 

V. EXPERIMENTAL RESULTS 
In order to evaluate the effectiveness of this approach, a 

series of 250 images (indoor and outdoor scenes) were 
tested. These images taken by a CCD camera are 256x256 
in size with 256 gray levels. In case no vanishing point Fi is 
found, the supervisor identifies this situation as a complete 
failure and asks for a modification of the parameters of the 
camera-robot configuration. These relations may also be 
used for the calibration of the camera. Using the Parameters 
of the robot-camera configuration and considering a set of 
80 images describing a real trajectory in the robot 
environment, the parameters of the scene model Ms and 
world model Mp were given by the fuzzy controller. The 
error on orientation parameter Θ were evaluated to be less 
than 5.31% as shown on Figure 10. Another set of 80 
images were chosen were the road axis shift error Δ is 
predicted to be zero, the fuzzy controller minimizes the 
error down to 2.7% (see Figure 11). Finally, for the road 
width Λ Figure 12 shows the results on 80 images where the 
road width is predicted to be 3.3m, the error on that 
assumption is about 6.06%. 

 
Figure 10: error estimation on Θ 
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          Figure 11: error estimation on Δ 

 

 

 

 

 

 

 

 

Figure 12: error estimation on Λ 

VI. CONCLUSION 
In this paper a scheme is proposed for the control of mobile 

robot motion using visual guidance. The involved control 
system includes the fuzzy approach at two levels: a fuzzy 
perception system which detects efficiently the road edges 
from the perception-domain image, and a fuzzy control 
system which uses the knowledge base data and the scene 
model to produce an efficient control model with minimized 
errors for guiding the robot. More attention has been focused 
on the after-detection process which uses a fuzzy system to 
minimize the error between the physical and predicted 
models. The efficiency of the proposed scheme leads to the 
enhancement of the ability and the adaptability of the mobile 
robot guidance in real complex environment. This has been 
shown through the encouraging practical results obtained in 
the indoor and outdoor autonomous navigation of our robotic 
wheelchair.  
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