
Towards Logic-Based Question Answering under Time Constraints

Ingo Glöckner∗

Abstract—Using logic for question answering (QA)
promises more accurate answers and increased flexi-
bility of querying. However, the computational effort
for a deep linguistic analysis of the involved natural
language (NL) expressions and the subsequent logical
inferencing makes it difficult to leverage this power for
real-time QA. The paper attributes this difficulty in
part to the popular answer validation paradigm, and
it proposes a different solution which avoids parsing
of answers at query time. The novel approach, which
uses logic for assessing the relevance of extracted pas-
sages, allows better concurrency of QA subtasks since
logic-based passage filtering can run in parallel with
the answer extractors. Moreover the substitutions
found in the proofs can guide a direct answer genera-
tion. A first implementation of logical passage filter-
ing achieved 43% F-measure for factual questions of
CLEF07, with response times of only a few seconds.
These results are especially interesting since neither
aggregation (for better filtering) nor parallelization
(for reducing latency) were used in the prototype yet.

Keywords: real-time question answering, logic

1 Introduction

Question answering systems which extract precise an-
swers to natural language questions from a given docu-
ment collection have made rapid progress in recent years.
The PowerAnswer system [6], for example, answers 60%
of the factual questions in the TREC 2006 evaluation.
However, most QA systems still rely on shallow linguistic
processing and simplistic meaning representations (e.g.
bag-of-words models) which work reliably only when the
queried information is redundantly expressed in the doc-
ument collection (and with the same words). A logic-
based approch, by contrast, can exploit the available in-
formation more fully due to improved content analysis
(by deep linguistic processing), powerful reasoning meth-
ods beyond keyword matching, and modeling of back-
ground knowledge. In practice, logic is typically used for
building components for answer validation which check
the correctness of extracted answers as part of the fi-
nal answer selection. PowerAnswer is an example of a
QA system which implements this approach. A compari-
son of answer validators in the answer validation exercise
(AVE) 2006 [7] found that systems reported to use logic
generally outperformed those without logical reasoning.

∗Intelligent Information and Communication Systems Group
(IICS), University of Hagen, Germany. Email: iglockner@web.de.
Funded by DFG under contract HE 2847/10-1 (LogAnswer).

The starting point for this paper is the MAVE answer val-
idator [1], which achieved a 93% correct answer selection
rate in the CLEF07 AVE task. However, this excellent
result was only achieved at the cost of tremendous com-
putational effort and response time of a dozen minutes
per question. This did not matter for the AVE07 evalua-
tion, but in the real world, no one would like to wait that
long for a QA system to answer a question. Clearly the
problem cannot be solved by tuning individual system
components only. This brings us to the central question
of this paper: How can the (logic-based) QA process be
organized in such a way that the correct answers are also
found under time constraints?

The standard approach for incorporating logic in a QA
system, viz logical answer validation, is an obstacle in
this respect since it requires the logical representation
of the answers (or corresponding logical hypotheses) to
be available as a precondition for running the logic-based
entailment test. In a real-time QA setting, however, there
is simply no time for parsing the vast number of answer
candidates proposed by the answer extraction stage.

The paper thus favors a different approach to leverag-
ing logic for QA: Rather than trying to decide if a given
answer is logically justified from a supporting text pas-
sage, it focuses on the use of logic for passage filtering ,
i.e. deciding if a retrieved text passage contains a correct
answer to the question (or equivalently, if the question
can be answered from the considered passage). The main
benefit of logical passage filtering over validation is that
there is no need for parsing answers – the task consists
solely in proving the logical representation of the ques-
tion from that of the supporting passage. There is no
dependency on prior answer extraction, so that the logic-
based passage validation can start directly after retrieval
and run in parallel with extractors. But obviously, the
results of passage filtering can be used to improve the rele-
vance judgements for extracted answers candidates, since
an answer extracted from a candidate passage can only
be correct if the passage actually contains any answer to
the question. As an alternative to using separate answer
extractors, the results of the question-passage proofs (i.e.
bindings for the queried variable) can also be used for the
direct extraction or generation of corresponding answers.

The remainder of the paper is organized as follows. Sec-
tion 2 describes a system prototype built for demonstrat-
ing the feasibility of this approach. Section 3 explains

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

how the prover was optimized for finding most proofs in
a 10–20 milliseconds range. Section 4 presents an evalua-
tion of the approach based on factual questions of CLEF
2007. Finally, Section 5 summarizes the lessons learnt
and identifies issues for future research.

2 System description

This section describes the experimental system which was
implemented for testing the feasibility of logical passage
filtering for QA. The goal was that of getting some re-
alistic data on the actual processing times per question
and on the quality of results that can be achieved by the
proposed approach. The system comprises the following
main processing stages.

2.1 Question analysis

WOCADI [2], a robust parser for German, is used for
a deep linguistic analysis of the given question. The
syntactic-semantic analysis results in a semantic repre-
sentation expressed in the MultiNet formalism [3], a vari-
ant of semantic networks specifically suited for natural-
language processing. The parser handles intrasentential
coreference resolution and provides the necessary infor-
mation for the subsequent treatment of intersentential
anaphora. The question analysis module, which is part
of the IRSAW QA framework [4], further extracts query
terms, the expected answer type, and other information
of interest to subsequent processing stages.

2.2 Passage retrieval

The IRSAW framework also provided the retrieval mod-
ule used for finding candidate passages based on a regu-
lar (bag-of-words) IR approach, assuming a segmentation
into single-sentence passages for the moment. Using the
WOCADI parser, all documents are linguistically ana-
lyzed prior to indexing. In particular, there is no need
for parsing any documents at query time since the pre-
computed logical representation of each passage can be
retrieved from the database.

2.3 Query construction

The next step consists in translating the semantic net-
work representation of the question into the actual logi-
cal query to be proved from the passage representations.
To this end, the analysis of the question is turned into
a conjunctive list of query literals. The query construc-
tion step also involves a synonym normalization which
replaces all lexical concepts with canonical synset repre-
sentatives. This process is based on 48,991 synsets (syn-
onym sets) for 111,436 lexical constants. For example,
the question Wie hieß der Sänger von Nirvana?1 trans-
lates into the logical query:

1What was the name of the singer of Nirvana?

val(X1, nirvana.0), sub(X1, name.1.1), attr(X2, X1),

attch(X2, X3), sub(X3, gesangsolist.1.1),

subs(X4, heißen.1.1), arg1(X4, X3), arg2(X4, FOCUS)

based on the lexical concepts (word senses) nirvana.0
(Nirvana), name.1.1 (name), gesangssolist.1.1 (singer
soloist), and heißen.1.1 (be named). The example demon-
strates the synonym normalization technique since the
original lexical concept sänger.1.1 (singer) is replaced
with the canonical gesangssolist.1.1 (singer soloist). By
convention, the FOCUS variable represents the queried
information (the name of the person in this case).

2.4 Robust entailment test

The basic idea of the logic-based passage filtering is that
the passage contains a correct answer to the question if
there is a proof of the question from the passage rep-
resentation and the background knowledge.2 However,
in order to achieve more robustness against knowledge
gaps and errors of semantic analysis, the prover is ac-
tually embedded in constraint relaxation loop. To this
end, the literals of the query are sorted according to a
least-effort heuristics, i.e. literals with least alternatives
to be checked (highest likelihood of failure) come first. If
a proof fails, the longest provable prefix of the ordered
query is determined and the first non-provable literal is
removed from the query. By repeating this process, lit-
erals are skipped until a proof of the remaining query
succeeds. The number of skipped literals is then used
as robust indicator of entailment strength. For example,
consider the question for the lead singer of Nirvana, and
the following supporting text passage (translated from
German): Fans and friends of the lead singer of US-
American rock band Nirvana reacted with grief and dis-
may to the suicide of Kurt Cobain this weekend. Here
linguistic analysis fails to identify Kurt Cobain and the
Nirvana lead singer, i.e. there are two distinct entities
rather than a single one representing Kurt Cobain, the
lead singer of Nirvana. Therefore a perfect proof fails, but
the system finds a relaxation proof with two skipped liter-
als sub(X3, gesangsolist.1.1), attch(X2, X3), which binds
the FOCUS variable to the value for Kurt Cobain.

The relaxation approach is computationally very expen-
sive: a new proof is tried after each simplification of the
query. When a query with n literals cannot be proved
from the passage at all, this can waste n · t time where
t is the time limit for each attempted proof. It therefore
makes sense to restrict the maximal number of iterations
of the relaxation loop. However, if the relaxation pro-
cess is stopped before all query literals are either proved
or skipped, then there is uncertainty as to the number
of literals that would eventually be proved or skipped in
a complete relaxation proof. Thus, one can only spec-
ify upper and lower bounds on the number of provable

2The prototype uses the same sources of background knowledge
as the MAVE system described in [1].

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

literals, assuming the extreme cases that the remaining
literals are either all provable or all not provable.

2.5 Feature extraction

The classification of passages rests on the following logic-
based features which depend on the chosen limit on the
number of relaxation steps:

• skippedLitsLb Number of literals skipped in the re-
laxation proof

• skippedLitsUb Number of skipped literals, plus lit-
erals with unknown status (not in known provable
prefix of literal list)

• litRatioLb Relative proportion of actually proved lit-
erals compared to the total number of query literals,
i.e. 1− skippedLitsUb/allLits

• litRatioUb Relative proportion of potentially prov-
able literals (not yet skipped) vs. all query literals,
i.e. 1− skippedLitsLb/allLits

• boundFocus Signals that the queried variable was
bound in the relaxation proof. To gain robustness,
the partial proof of the longest proven prefix of the
current query fragment is used for determining the
binding when a proof fails in the last relaxation cycle

• npFocus Indicates that the queried variable was
bound to a constant which corresponds to a nom-
inal phrase (NP) in the text

• phraseFocus Signals that extraction of an answer for
the binding of the queried variable was successful.

A simplistic solution for answer extraction given the bind-
ing of the queried variable was used for computing the
phraseFocus feature. The method leverages information
on word alignment, as provided by the parser for nomi-
nal phrases (NPs), in order to find answer strings for the
bindings of the queried variable. This is done by cutting
verbatim text from the original text passage. Thus, in the
above relaxation example, the prover binds the FOCUS
variable to a constant, say c43. The parse provides the
information that an NP which corresponds to c43 can be
found at character positions 321–331 in the text, and the
exact answer Kurt Cobain is obtained by extracting the
specified substring from the passage.

In addition to the logic-based features, three ‘shallow’
features are used which depend only on morpho-lexical
analysis, i.e. these features do not require a deep parse
and can be computed without the help of the prover:

• failedMatch Number of lexical concepts and numer-
als in the question which cannot be matched with
the candidate document

• matchRatio Relative proportion of lexical concepts
and numerals in the question which find a match in
the candidate document

• failedNames Number of proper names mentioned in
question, but not in the passage.

The matching technique used to obtain the values of these
shallow features also takes into account lexical-semantic
relations (e.g. synonyms and nominalizations), see [1].

2.6 Passage classification using techniques
from Machine Learning

The Weka machine learning toolbench [8] was used for
learning the mapping from features of retrieved passages
to yes/no decisions concerning containment of a correct
answer to the question in the considered passage. The
low precision of the original passage retrieval step means
a strong disbalance between positive and negative exam-
ples in the data sets.3 In order to emphasize the results of
interest (i.e. positive results) and achieve sufficient recall,
cost-sensitive learning was applied. Thus, false positives
were weighted by 0.25 while lost positives (i.e. false neg-
atives) were given a full weight of 1. The Weka Bagging
learner was chosen for learning the classifier, using de-
fault settings (averaging over results of 10 decision trees
computed by the Weka REPTree decision tree learner).
It was wrapped in a Weka CostSensitiveClassifier to im-
plement the cost-sensitive learning.

3 Optimizing the prover for the task

Applying logic in a real-time QA setting only makes sense
if a very fast theorem prover is available. Experiments
with general-purpose provers revealed that a more spe-
cialized solution would be needed to approach the de-
sired time frame of only a few milliseconds per proof.
Therefore a dedicated prover for MultiNet representa-
tions (described in [5]) was used as the starting point
for this work. The prover was then systematically op-
timized both for speed and scalability by utilizing term
indexing, caching techniques, lazy computation (i.e. in-
dex strucures are only built on demand), by optimizing
the heuristics used for determining literal order, and by
identifying and removing performance bottlenecks with
the help of profiling tools. This process was guided by
a realistic benchmark for prover performance in a QA
context, which consists of the MultiNet analysis of a 100
sentence text (the German Wikipedia article about avi-
ation pioneer Amelia Earhart), 244 implicational rules
to support flexible querying, and a set of 172 example
questions. These changes achieved a speedup of prover
performance by a factor of 400 within one year of opti-
mizing against the benchmark. As shown by Fig. 1, 70%
of the questions can now be proved in 10 ms or less.

3In the experiment described in the next section, only 2.3% of
the retrieved passages contain a correct answer.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Figure 1: Effect of performance improvements of the
prover in the Amelia benchmark

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100

pe
rc

en
ta

ge
 o

f p
ro

of
s

fo
un

d

time/s

3/2006
5/2007

A second benchmark served to adjust the depth limit for
iterative deepening, and the time limit for each attempted
proof. It comprises 1,805 provable hypothesis fragments
which occurred in relaxation proofs for the second AVE07
run of the MAVE validator (see [1]). These problems
are better suited for fine-tuning of parameters than the
Amelia benchmark since they involve passage-size snip-
pets and exactly the same background knowledge as in
the present experiment. In order to determine a suitable
depth limit for iterative deepening, the distribution of ac-
tual proof depths for the AVE problems was computed,
see Table 1. A maximum depth limit of d = 2 was chosen
for the later experiments; this means only about 1.5%
loss of possible proofs judging from the test data. Based
on the actual proof times in the AVE benchmark, it was
further decided to use a maximum time of 100 ms per
proof for the present experiment, which corresponds to
about 7% loss of possible proofs due to the time limit.

4 Evaluation

This section presents an experimental evaluation of the
proposed model for logic-based passage filtering.

4.1 Test data for the filtering experiment

The questions of the CLEF07 QA track for German were
considered a suitable starting point for this experiment,
since they target at the document collections currently
supported by the IRSAW IR module (CLEF News and
Wikipedia).4 From the full set of 200 questions, a further
selection had to be made. First of all, the questions are
organized into topic groups, and follow-up questions can
contain anaphoric references to mentions in earlier ques-
tions of a group. These follow-up questions were elimi-
nated since discourse processing is not of relevance here.
Moreover all definition questions were deleted from the
remaining list of 116 topic-start questions, since knowing
the logical correctness of an answer is not sufficient for
deciding if the answer is also suitable as a definition. The

4See http://www.clef-campaign.org/2007.html

d count p-avg p-max l-avg l-max
0 512 1.9 ms 34 ms 0.34 ms 9.6 ms
1 1072 12.4 ms 761 ms 1.7 ms 69.2 ms
2 193 104.4 ms 1391 ms 25.3 ms 158 ms
3 27 230.0 ms 1615 ms 45.6 ms 202 ms
4 1 177.0 ms 177 ms 14.8 ms 14.8 ms

Table 1: Exact proof depths for AVE problems. Abbre-
viations: d (depth), p-avg (average time per problem), p-
max (maximum time for a problem), l-avg (average time
per literal), l-max (maximum time for proving a literal)

Figure 2: Number of questions with a given number of
valid supporting passages

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

#q
ue

st
io

ns

#passages with correct answer

remaining 96 factual questions were checked for parsing
quality and two questions5 for which construction of a
logical query failed were discarded. In the end, there were
94 questions left for the passage filtering experiment.

For each question, IRSAW retrieved up to 200 one-
sentence snippets from the pre-analyzed corpora, result-
ing in a total of 18,700 candidate passages (199 per ques-
tion). From the full set of candidate passages, all snip-
pets with a missing parse or chunk parse were eliminated.
These passages can be ignored since the logical filter-
ing approach is only applicable to passages with a full
syntactic-semantic analysis. The remaining 12,524 pas-
sages with a complete parse (133 per query) were anno-
tated for containment of a correct answer to the question,
starting from known CLEF07 annotations.

This annotation revealed very low accuracy of the origi-
nal passage retrieval. In fact, only 291 of the parseable
passages contain a correct answer (i.e. there are 3.1 valid
passages per query on average). Figure 2 visualizes the
number of questions with a given number of valid sup-
porting passages in the test set. For 62 of the 94 ques-
tions, there is at least one correct supporting passage, i.e.

5qa07 012: Welchen US-Präsidenten versuchte Francisco Du-
ran zu töten? and qa07 013: Der Sohn welches ehemaligen US-
Präsidenten wurde 1994 zum Gouverneur von Texas gewählt?”

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Figure 3: Relaxation steps vs. response time

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

tim
e/

s

max iterations of relaxation loop

n tq/s td/ms prec recall f-meas
0 2.4 18.1 0.37 0.41 0.39
1 5.5 41.0 0.44 0.39 0.41
2 9.5 71.5 0.41 0.41 0.41
3 13.1 98.6 0.42 0.43 0.43
4 17.3 130.2 0.41 0.40 0.40
5 20.2 151.6 0.40 0.41 0.41
6 22.4 168.3 0.39 0.42 0.41
7 24.5 184.2 0.38 0.41 0.39
8 25.0 187.8 0.42 0.41 0.42
9 28.1 211.0 0.40 0.39 0.39
* 0.3 2.1 0.35 0.38 0.36

Table 2: Quality of passage filtering as a function of al-
lowable relaxation steps n. Abbreviations: tq (time per
question), td (time per document), prec (precision), f-
meas (F-measure), * (shallow features only)

recall of the approach cannot exceed 0.66. The figure re-
veals that one question has an unusually high number of
37 correct supporting passages.6 It was eliminated from
the test set since it might otherwise dominate results.

4.2 Experimental results

The experiment is supposed to provide some data on the
effect of relaxation settings on processing times and the
achieved quality of passage filtering.7 As to observed re-
sponse times, Fig. 3 reveals a sublinear dependency on
the number of allowable relaxation steps, flattening out
for larger relaxation limits which exceed the number of
failed literals in most relaxation proofs. The average pro-
cessing times for questions and documents are also listed
in Table 2, along with the precision, recall, and F-measure
for each choice of the relaxation parameter. These results
were obtained by the cost-sensitive learning approach de-
scribed in Section 2.6, using 10-fold cross validation.

6qa07 160: Welcher Partei gehört Angela Merkel an?
7All experiments were run on a Linux system using an Intel

E6600 CPU at 2,4 GHz clock rate and 2 GB RAM.

Figure 4: Allowable relaxation steps vs. answer ex-
traction results: ‘bound-focus’ (proportion of correct
passages for which an answer binding is found), ‘ex-
act+inexact’ (useful answers found by the simple extrac-
tor), ‘exact’ (perfect answers found by the extractor)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9
max iterations of relaxation loop

bound-focus
exact+inexact

exact only

The table reveals a clear benefit of using logic: All results
obtained by using logic-based features are substantially
better than the baseline using only shallow features. The
best results were obtained for a limit of n = 3 relax-
ation steps. Allowing additional relaxation steps (n > 3)
did not further improve quality. In general, results were
not very sensitive to the relaxation settings. This sug-
gests using small values for n, especially in the scenario
where answer extraction is done externally, so that the
logic-based information is only needed for judging the
relevance of passages. However, the proofs might also
be of interest as a source of answer substitutions for sub-
sequent NL generation (or direct answer extraction as in
the prototype). In this case using more relaxation cycles
is potentially useful, even if doing so will not improve pre-
cision/recall scores: Since the number of proved literals
increases with the number of relaxation steps, more re-
laxation cycles mean a higher likelihood that the queried
variable will eventually be bound, and thus provide a
pointer to the actual answer. Fig. 4 illustrates this de-
pendency between the number of relaxation steps and the
percentage of correct passages for which the prover finds
a binding of the queried variable. For exact proofs, such
a binding (and thus potentially an answer) is found for
only 28.7% of correct passages, for n = 3 relaxation steps
the number increases to 76.0% of all passages containing
an answer, and for n = 4 even to 78.7%.

The same tendency is visible in the success rates for logic-
based answer extraction (also shown in Fig. 4) using the
basic extraction method of Section 2.5. The results refer
to perfect extracted answers (e.g. Bill Gates for Who is
the chairman of Microsoft?) and essentially correct but
inconcise extractions (Bill Gates, the chairman of Mi-
crosoft), compared to the number of all passages contain-
ing an answer. Most of the useful but imperfect answers
are complex NPs which contain the requested information
as a smaller NP but also some extra information.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

n 0 1 2 3 4 5 6 7 8 9

a) 2.4 5.5 9.5 13.1 17.3 20.2 22.4 24.5 25.0 28.1
b) 1.7 3.7 5.4 6.6 7.4 8.0 8.4 8.8 9.0 9.0
c) 0.0 1.2 2.8 2.8 2.4 2.4 2.0 2.4 1.6 2.8

Table 3: Effect of shallow pre-filter for n relaxation steps:
a) time per question in seconds (no pre-filter); b) response
time with pre-filter; c) percent points loss in recall

The speed and surprisingly good quality of the baseline
classifier which uses only shallow features suggests that
it might be useful for a pre-filtering of passages prior to
application of the deep, logic-based passage filtering. To
test this, the shallow features were used for training a
pre-filter classifier, again using bagging of decision trees
but setting the cost for false positives to 0.01 in order to
obtain a highly recall-preserving classifier. The resulting
shallow classifier achieves a recall of 85% while eliminat-
ing 7,333 of the 12,377 annotated passages. Since only
41% of the original passages pass the shallow pre-test,
cascading the fast pre-filter and the slower but more ac-
curate logic-based filter promises a considerable cut in
response times. The effect of combining the shallow pre-
filter with subsequent logic-based classifier is shown in
Table 3. Applying the pre-filter is indeed very effec-
tive, and the observed processing times drop to a 1.7–9.0
seconds range (depending on relaxation settings). Com-
pared to using the logic-based filter alone, cascading the
shallow and deep filters slightly reduced recall, but only
by about 2 percent points. This indicates a strong over-
lap between the lost positives of the logic-based approach
and the pre-test based on shallow features. Precision is
hardly affected by adding the pre-filter, with a slight de-
crease in the order of 1 percent point.

5 Conclusions and future work

The paper has argued that utilizing logic for QA needs
not contradict the requirement of answering questions in
real time. The proposed approach based on logical pas-
sage filtering is superior to logical answer validation in
this respect: It does not require any answers to be parsed
and can even run in parallel with answer extraction. The
paper has presented a prototypical implementation of this
approach and an evaluation based on factual questions
from CLEF07 in which the method for passage filtering
achieved up to 43% F-measure.8 The experiment revealed
a clear benefit of using logic. Relaxation had no strong
effect on filtering quality but proved to be important for
finding answer bindings. In the future, other relaxation
techniques and query decomposition will also be tested.
Moreover the retrieval stage will be reconsidered in or-
der to learn about the effect of passage size (sentences,
paragraphs, whole documents) on retrieval quality.

8Result for n = 3 relaxation cycles. On average the system then
accepts 2.7 passages per question, of which 1.2 are actually correct.

The prototype uses logical answer extraction in order to
determine the actual answer strings from computed bind-
ings of the queried variable. However, the alternative of
using external answer extractors (which might use pat-
tern matching, expected answer types, etc.) is also worth
trying, and additional experiments are needed to find out
which approach works best in practice.

Average response times of the prototype are currently in
the range of 1.7–9.0 seconds (depending on relaxation set-
tings), which is already close to the intended time frame
of perhaps 1 second or less. Distributing the prover work-
load by parallelization and improvement of the quick pre-
filter are obvious next steps to further reduce average la-
tency. However it is also important to fit response times
of logic-based filtering into a defined time slot with a
guaranteed maximum latency . A solution consists in first
sorting the passages according to the probability of rel-
evance determined from the shallow features only, and
subsequently applying the slower, logic-based classifier in
order of decreasing estimated relevance. The best results
considered so far can then be fetched at any time, in par-
ticular when processing exceeds the time limit.

References

[1] Ingo Glöckner. University of Hagen at QA@CLEF
2007: Answer validation exercise. In Working Notes
for the CLEF 2007 Workshop, Budapest, 2007.

[2] Sven Hartrumpf. Hybrid Disambiguation in Natural
Language Analysis. Der Andere Verlag, Osnabrück,
Germany, 2003.

[3] Hermann Helbig. Knowledge Representation and the
Semantics of Natural Language. Springer, 2006.

[4] Johannes Leveling. IRSAW – towards semantic anno-
tation of documents for question answering. In CNI
Spring 2007 Task Force Meeting. CNI, Phoenix, Ari-
zona, April 2007.

[5] Steffen Marthen. Untersuchungen zur Assimilation
größerer Wissensbestände aus textueller Information.
Master’s thesis, FernUniversität in Hagen, Hagen,
Germany, 2002.

[6] Dan Moldovan, Mitchell Bowden, and Marta Tatu. A
temporally-enhanced PowerAnswer in TREC 2006. In
Proc. of the 15th Text REtrieval Conference (TREC
2006), Gaithersburg, MD, 2006.

[7] Anselmo Peñas, Álvaro Rodrigo, Valentin Sama, and
Felisa Verdejo. Overview of the answer validation ex-
ercise 2006. In Working Notes for the CLEF 2006
Workshop, Alicante, Spain, 2006.

[8] Ian H. Witten and Eibe Frank. Data Mining. Practi-
cal Machine Learning Tools and Techniques. Morgan
Kaufmann, 2005.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

