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Abstract—This paper considers a H∞ control
problem of a class of linear uncertain time-varying
switched system via controllability approach. We
show that the solution of this problem can be veri-
fied by the global null-controllability of linear control
systems. The feedback stabilizing controllers for the
problem are constructed via the solutions of certain
Riccati differential equations.
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1 Introduction

In the last decade, the H∞ control problem for linear un-
certain systems has attracted increasing attention, and
still many questions remain unsolved. The standard H∞
control problem is to find conditions that guarantee the
existence of a feedback controller stabilizing given system
and satisfies a prescribed γ−suboptimal level on peturba-
tions/uncertainties. In the H∞ control problem for linear
autonomous systems, the appropriate methods make use
of Lyapunov-Krasovskii function approach and the suffi-
cient conditions are obtained via solving either linear ma-
trix inequalities (LMIs), or algebraic Riccati-type equa-
tions. However, this approach may not be readily applied
to time-varying systems due to the difficulties of solving
time-dependent LMIs. For linear time-varying systems,
the investigation of the stability and control problem be-
comes more complicated. For instance, in contrast to lin-
ear autonomous systems, the stability (and instability) of
linear time-varying systems may not be determined from
the spectral property of their system matrix A(t). It was
shown that the real parts of eigenvalues of system matrix
A(t) for every t are negative does not imply the asymp-
totic stability, and there is a linear time-varying system
stable with positive eigenvalues. In spite of this, for lin-
ear time-varying systems, in the literature to date, there
are several papers dealing with stability and control prob-
lem. Stabilization problem of linear time-varying systems
is also of great interest recently. In order to find H∞ con-
troller for linear time-varying systems, the state-space ap-
proach might be used as well as via Riccati differential
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equations. However, the problem of existence of solutions
of Riccati differential equations is still under active inves-
tigations. One of the efficient approaches to this problem
is the controllability approach introduced by Kalman [4].
Some sufficient conditions for global stabilization of lin-
ear time-varying systems using controllability assumption
are given in [3, 8]. The controllability approach was also
used in [2, 6] as a systematic method for solving the so-
lution of partial differential equations. To the best of our
knowledge, surprisingly few conditions have so far been
established for the H∞ control of uncertain linear time-
varying systems. Therefore, finding new conditions for
the problem is of interest.

Recently, the study of stability and control of switched
systems has become a very popular topics. The main
reason is there are many physical models which are gov-
erned by more than one dynamical systems and these
systems are changed depending on time and the state of
the system. In other words, a switched system consists of
a family of differential equations (or difference equations)
and a switching rule which will determine which system
is to be switched on certain time intervals. There are
many approaches to study analysis of switched systems.
An effective approach is the use of multiple Lyapunov
functions.

Based on the above stated reasons, the study of H∞ con-
trol problem for switched systems has attracted many
researchers recently.

In this paper, we propose a controllability approach for
studying the H∞ control problem of linear uncertain
time-varying switched systems. The feature of our pa-
per is twofold. Firstly, we show that the solution to this
problem can be verified by the global null-controllability
of linear control systems. Then, we construct feedback
stabilizing controllers for the problem via the solutions
of Riccati differential equations (RDE).

The paper is organized as follows. Section 2 introduces
the main notations, definitions and some auxiliary propo-
sitions needed for the proofs. The main result and an
illustrated example of the result are given in Section 3.
The paper ends with conclusions and cited references.
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2 Preliminaries

The following notations will be used throughout this pa-
per. R+ denotes the set of all non-negative real num-
bers; N denotes the set of all positive integers; for
each k ∈ N , Ik denotes the set {1, 2, . . . , k}; Rn de-
notes a n−dimensional Euclidean space with the norm ‖.‖
and the inner product 〈., .〉; L2([t,+∞), Rn) denotes the
set of all strongly measurable L2−integrable Rn−valued
functions on [t,+∞); I denotes the identity matrix. A
matrix Q ∈ Mn×n is called positivetive semi-definite
(Q ≥ 0) if 〈Qx, x〉 ≥ 0, for all x ∈ Rn. If for some
c > 0, 〈Qx, x〉 ≥ c‖x‖2 for all x ∈ Rn, then Q is called
positive definite (Q > 0). A ≥ B means A − B ≥ 0;
A matrix function Q(t) is uniformly positive definite (
Q(t) À 0) if

∃c > 0 : 〈Q(t)x, x〉 ≥ c‖x‖2, ∀(t, x) ∈ R+ ×Rn.

Matrix A is called symmetric if A = AT . It is well known
that, if the matrix A is symmetric positive definite, then
there is a matrix B such that A = B2 and the ma-
trix B is usually defined by B = A

1
2 . BM+(0, +∞)

denotes the set of all symmetric non-negative definite
matrix functions, which are continuous and bounded on
R+; BMU+(0, +∞) denotes the set of all symmetric uni-
formly positive definite matrix functions, which are con-
tinuous and bounded in t ∈ R+. Denote a partition of
R+ by τ = {0 = t0 < t1 < . . . , limi→+∞ ti = +∞} .

Consider the following uncertain linear time-varying
switched system with respect to a partition τ of R+

ẋ(t) = Aαi(t)x(t) + Bαi(t)uαi(t) + B1αi(t)wαi(t), (1)
z(t) = Cαi(t)x(t) + Dαi(t)uαi(t), x(0) = x0,

where t ∈ [ti−1, ti), i ∈ N , x ∈ Rn is the state;
uαi (t) ∈ Rm is the control; wαi (t) ∈ Rp is the
uncertain input, z (t) ∈ Rq is the observation out-
put; αi (t) : [ti−1, ti) → IN = {1, 2, . . . , N} is con-
stant switching signal for each i ∈ N . For each
αi ∈ IN , Aαi(t), Bαi(t), B1αi(t), Cαi(t), Dαi(t) ∈
Rn×n are given state matrix functions continuous and
bounded on R+. For a preassigned partition τ of R+,
the state matrices are activated at each ti in ac-
cordance with a preassigned switching sequence q =
{(s0, t0) , (s1, t1) , . . . , (si, ti) , . . . : si ∈ IN and αi (t) =
si, t ∈ [ti−1, ti) , i ∈ N}. For each j ∈ IN , let Nj (t)
denote the number of times the subsystem j is acti-
vated on [0, t). We say that the controls uj(t), j ∈ IN ,
are admissible if uj(t) ∈ L2([0, +∞), Rm), and the un-
certainty wj(t) is admissible if wj(t) ∈ L2([0, +∞), Rp)
and

∑+∞
i=1

∫ ti

ti−1
‖wαi(t)‖2dt < +∞. For every initial state

x0 ∈ Rn, for every admissible controls uj(t), and admis-
sible uncertainties wj(t), j ∈ IN , linear control system

(1) has a solution given by

x(t) = Uαi(t, ti−1)x (ti−1)

+
∫ t

ti−1

Uαi(t, s)[Bαi(s)uαi(s) + B1α(i)(s)wαi(s)]ds,

where t ∈ [ti−1, ti), Uαi(t, s) is the fundamental matrix
solution of the linear time-varying system

ẋ(t) = Aαi(t)x(t), t ∈ [ti−1, ti).

Definition 2.1. The switched system (1) is asymptoti-
cally stable if there exists δ > 0 such that if ‖x (0)‖ < δ,
then limt→+∞ ‖x (t)‖ = 0.

Definition 2.2. Linear control switched sys-
tem (1), where wj(t) = 0, j ∈ IN , is
stabilizable if there exist a partition τ =
{0 = t0 < t1 < . . . , limn→+∞ tn = +∞} of R+, a switch-
ing sequence q = {(s0, t0) , (s1, t1) , . . . , (si, ti) , . . . : si ∈
IN and αi (t) = si, t ∈ [ti−1, ti) , i ∈ N}, admissible
feedback controls uj(t) = hj(x(t)), j ∈ IN , where
hj(.) : Rn → Rm are feedback control functions, such
that the zero solution of the closed-loop system

ẋ(t) = Aαi(t)x(t) + Bαi(t)hαi(x(t)), (2)

is asymptotically stable.

The standard H∞ control problem for the switched sys-
tem (1) is concerned with a stabilization problem and
the existence of a γ−suboptimal level problem. In this
paper, we consider the following H∞ control problem,
which guarantees the existence of a γ−suboptimal con-
troller under the nonzero initial condition.

Definition 2.3. Given γ > 0. The H∞ control problem
for the switched system (1) has a solution if there are
feedback controls uj(t) = hj(x(t)), j ∈ IN , such that

(i) The closed-loop system (2) is asymptotically stable,
namely, the control switched system (1), where wj(.) = 0,
j ∈ IN , is stablizable.

(ii) There is a number c0 > 0 such that

sup

∫ +∞
0

‖z(t)‖2dt

c0‖x0‖2 +
∫ +∞
0

‖w(t)‖2dt
≤ γ, (3)

where w (t) = wαi (t), t ∈ [ti−1, ti) and the supremum
is taken over all initial states x0 and non-zero admissible
uncertainties wj(t), j ∈ IN . In this case we say that the
feedback controls uj(t) = hj(x(t), j ∈ IN stabilize the
system (1).

In the sequel, we recall the concept of global controlla-
bility, which is concerned with the possibility of steering
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any state to an another state of the system in finite time.
Consider the following linear time-varying control system,
briefly denoted by [A(t), B(t)],

ẋ(t) = A(t)x(t) + B(t)u(t), t ∈ R+.

Definition 2.4. System [A(t), B(t)] is globally null-
controllable (GNC) in a finite time t > +∞ if for every
initial state x0, there is an admissible control u(t) such
that

U(T, 0)x0 +
∫ T

0

U(T, τ)B(τ)u(τ)dτ = 0.

The following controllability criterion given in [5] will be
used later.

Proposition 2.2. Assume that the matrix functions
A(t), B(t) are analytic on R+. The system [A(t), B(t)]
is GNC in some finite time if

∃t0 > 0 : rank[M1(t0),M2(t0), ...,Mn(t0)] = n, (4)

where

M1(t) = B(t), Mk(t) = −A(t) +
d

dt
Mk−1(t),

k = 2, ..., n − 1. Associated with the control system (2),
we consider the following RDE

Ṗ (t)+AT (t)P (t)+P (t)A(t)−P (t)B(t)BT (t)P (t)+Q(t) = 0.
(5)

Proposition 2.3. [7] If system [A(t), B(t)] is globally
null-controllable in some finite time, then for any ma-
trix Q ∈ BM+(0, +∞), the RDE (5) has a solution
P ∈ BM+(0,+∞).

Proposition 2.4 For any matrix function A(t) bounded
on R+, there exists Q ∈ BM+(0, +∞) such that Q(t) −
A(t) ≥ 0.

Proof. By the same arguments used in the proof of Propo-
sition 2.4 in [8], the matrix Q(t) is chosen as

Q(t) = diag{q1(t), q2(t), ..., qn(t)},
where qi(t) ≥ max{|q0

i (t)|, 0} and

q0
i (t) = aii(t) +

1
4

n∑

j 6=i

a2
ij(t) + n− 1, i = 1, 2, ..., n.

We conclude this section with the following well-known
technical results for later use.

Proposition 2.5. Let Q,S are symmetric matrices of
appropriate dimensions and S > 0. Then

2〈Qy, x〉 − 〈Sw, w〉 ≤ 〈QS−1QT x, x〉, ∀(x, y, w).

Proposition 2.6. The matrix A =
(

a b
b c

)
, where

a > 0 or c > 0, is positive definite if b2 < ac.

3 Main result

In this section, sometimes for the sake of brevity, we will
omit the variable t of matrix functions, if it does not cause
any confusion.

Consider linear control system (1). For the sake of tech-
nical simplification, without loss of generality, as in [1, 9]
we assume that

DT
j (t)[Cj(t) Dj(t)] = [I 0], j ∈ IN , t ∈ R+.

Given γ > 0. Let us set

Aγj(t) = Aj(t) +
1
γ

B1j(t)BT
1 (t)−Bj(t)BT

j (t),

Bγj (t) =
(

Bj(t)BT
j (t)− 1

γ
B1j(t)BT

1j(t)
) 1

2

, j ∈ IN .

The following assumption will be used in the proof of the
main theorem.

A. Bj(t)BT
j (t)− 1

γ B1j(t)BT
1j(t) > 0, t ∈ R+, j ∈ IN .

We first prove the following technical lemma.

Lemma 3.1. Let

τ =
{

0 = t0 < t1 < . . . , limn→+∞ tn = +∞,
τ1 := supi∈N {ti − ti−1} < +∞

}

be a partition of R+ and let

q =
{

(s0, t0) , (s1, t1) , . . . , (si, ti) , . . . : si ∈ IN

and αi (t) = si, t ∈ [ti−1, ti) , i ∈ N

}

be a switching sequence satisfying the following two con-
ditions:

(i) For each j ∈ IN , there exist matrix functions Xj(t) ∈
BMU+(0,+∞), Rj(t) ∈ BMU+(0,+∞), such that

Ẋαi
+ AT

αi
Xαi

+ Xαi
Aαi

+ CT
αi

Cαi
+ Rαi

−Xαi
[Bαi

BT
αi
− 1

γ
B1αiB

T
1αi

]Xαi ≤ 0, (6)

t ∈ [ti−1, ti) , i ∈ N. (ii) There exist α ∈ (0, 1) and s ∈
IN such that the dwell-time τ0 := infi∈IN

{ti − ti−1} ≥
λ1
ε ln λ1

αλ2
and β :=

∑+∞
i=1 αNs(ti−1) < +∞ ,

where 0 < ε < minj∈IN
{inft∈R+ λmin (Rj(t))},

λ1 := maxj∈IN
{supt∈R+ λmax (Xj(t))}, and λ2 :=

minj∈IN
{inft∈R+ λmin (Xj(t))} .

Then, under partition τ and switching sequence q, the
H∞ control problem for the switched system (1) has a so-
lution, where the admissible feedback controls are chosen
as

uj(t) = −BT
j (t)Xj(t)x(t), j ∈ IN . (7)
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Proof. Using the feedback control (7), for each j ∈ IN ,
we consider the following Lyapunov functions for the
closed-loop system (2) when wj(t) = 0 and hj(x(t)) =
−BT

j (t)Xj(t)x(t) :

Vj(t, x) = 〈Xj(t)x, x〉.
Since Xj(t) ∈ BMU+(0, +∞), the condition (i) of Propo-
sition 2.1 holds. To verify the condition (ii), taking the
derivative of Vj(t, .) along the solution x(t) of the closed-
loop system, we easily get

V̇j(t, x(t)) = 〈(Ẋj + AT
j Xj + XjAj)x(t), x(t)〉

−2〈XjBjB
T
j Xjx(t), x(t)〉.

Using RDI (6), we have

V̇j(t, x(t)) ≤ − 1
γ
〈XjB1jB

T
1jXjx(t), x(t)〉

−〈XjBjB
T
j Xjx(t), x(t)〉

−〈CT
j Cjx(t), x(t)〉 − 〈Rjx(t), x(t)〉.(8)

Since

〈CT
j Cjx(t), x(t)〉 ≥ 0, 〈XjBjB

T
j Xjx(t), x(t)〉 ≥ 0,

〈XjB1jB
T
1jXjx(t), x(t)〉 ≥ 0, t ∈ R+, j ∈ IN

and by assumption, 〈Rjx(t), x(t)〉 ≥ ε‖x(t)‖2 which , by
(8), gives

V̇j(t, x(t)) ≤ −〈Rj(t)x(t), x(t)〉 ≤ −ε‖x(t)‖2, t ∈ R+.
(9)

Note that (9) gives that, for each j ∈ IN , V̇j(t, x(t)) ≤
−ε‖x(t)‖2 . Next, suupose that the system switches
from state j to state i at the time τ ∈ {ti}i∈N , namely,
α (τ−) = j and α (τ+) = i. Then, we have

Vi

(
τ+, x

(
τ+

))
= 〈Xi(τ)x (τ) , x (τ)〉
≤ λ1 ‖x (τ)‖2

=
λ1

λ2
λ2 ‖x (τ)‖2

≤ λ1

λ2
〈Xj(τ)x (τ) , x (τ)〉

=
λ1

λ2
Vj

(
τ−, x

(
τ−

))
.

Similarly, one may show that

λ2

λ1
Vj

(
τ−, x

(
τ−

)) ≤ Vi

(
τ+, x

(
τ+

))
(10)

Now, if ν ∈ {ti}i∈N , is the time when the system switches
from some state k to state j, then from (9), we obtain

V̇j(t, x(t)) ≤ −ε‖x(t)‖2

≤ −ε
1
λ1

Vj(t, x(t)).

Thus,

1
Vj(t, x(t))

dVj(t, x(t)) ≤ − ε

λ1
dt. (11)

By integrating (11) from ν to τ , we obtain

Vj(τ−, x(τ−)) ≤ Vj(ν+, x(ν+))e−
ε

λ1
(τ−ν). (12)

By using (12) and the estimation (10) as Vi (τ+, x (τ+)) ≤
λ1
λ2

Vj (τ−, x (τ−)) obtained above, we have

Vi

(
τ+, x

(
τ+

)) ≤ λ1

λ2
Vj(ν+, x(ν+))e−

ε
λ1

(τ−ν)

≤ λ1

λ2
Vj(ν+, x(ν+))e−

ε
λ1

τ0

≤ λ1

λ2
Vj(ν+, x(ν+))

αλ2

λ1

where we use assumption (ii) in the last inequality.
Therefore,

Vi

(
τ+, x

(
τ+

)) ≤ αVj(ν+, x(ν+)). (13)

Let N (t) denote the number of times the system is ac-
tivated on [0, t). (Without loss of generality, we may
assume that limt→+∞Nj (t) = +∞ for each j ∈ IN ).
Then, limt→+∞N (t) = +∞. Suppose that α (0) = i0
and α (t) = i, then by taking (13) into account, we get

λ2‖x(t)‖2 ≤ Vi (t, x (t)) ≤ αN(t)Vi0 (0, x (0)) . (14)

This implies that, for any x (0) ∈ Rn,

lim
t→+∞

‖x(t)‖ → 0.

Therefore, the switched system (1) is asymptotically sta-
ble. Note that from (14), and condition (ii) of the theo-
rem, we obtain

λ2

∫ +∞

0

‖x(t)‖2 ≤
∫ +∞

0

αNs(t)Vi0 (0, x (0)) dt

≤ Vi0 (0, x (0))
+∞∑

i=1

αNs(ti−1) (ti − ti−1)

< τ1βVi0 (0, x (0)) < +∞.

Hence, x (t) ∈ L2([0, +∞), Rn) and so does z(t). To com-
plete the proof of the theorem, it remains to show the
γ−suboptimal condition (3). To this end, we consider
the relation
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∫ tk

0
[‖z(s)‖2 − γ‖w(s)‖2]ds

=
∫ tk

0

[
‖z(s)‖2 − γ‖w(s)‖2 + V̇ (s, x(s))

]
ds

−
∫ tk

0

V̇ (s, x(s))ds,

=
k∑

i=1

∫ ti

ti−1

[
‖z(s)‖2 − γ‖w(s)‖2 + V̇α(i)(s, x(s))

]
ds

−
k∑

i=1

∫ ti

ti−1

V̇αi(s, x(s))ds,

=
k∑

i=1

∫ ti

ti−1

[
‖z(s)‖2 − γ‖w(s)‖2 + V̇αi(s, x(s))

]
ds

−
k∑

i=1

[Vαi (ti, x (ti))− Vαi (ti−1, x (ti−1))]

≤
k∑

i=1

∫ ti

ti−1

[
‖z(s)‖2 − γ‖w(s)‖2 + V̇αi(s, x(s))

]
ds

+Vα1 (t0, x (t0))− Vαk
(tk−1, x (tk−1))

+
k−1∑

i=1

[
Vαi+1 (ti, x (ti))− Vαi (ti, x (ti))

]

≤
k∑

i=1

∫ ti

ti−1

[
‖z(s)‖2 − γ‖w(s)‖2 + V̇αi(s, x(s))

]
ds

+Vα1 (t0, x (t0)) +
k−1∑

i=1

(
1− λ2

λ1

)
Vαi (ti, x (ti))

−Vαk
(tk−1, x (tk−1)) by (3.5)

≤
k∑

i=1

∫ ti

ti−1

[
‖z(s)‖2 − γ‖w(s)‖2 + V̇αi(s, x(s))

]
ds

+Vα1 (t0, x (t0)) +
k−1∑

i=1

(
1− λ2

λ1

)
λ1‖x(ti)‖2

−Vαk
(tk−1, x (tk−1))

≤
k∑

i=1

∫ ti

ti−1

[
‖z(s)‖2 − γ‖w(s)‖2 + V̇αi

(s, x(s))
]
ds

+Vα1 (t0, x (t0))− Vαk
(tk−1, x (tk−1))

+
k−1∑

i=1

(
1− λ2

λ1

)
λ1

λ2
αNs(ti)Vi0 (0, x (0)) ,

(15)

where we use (14) in the last inequality. Now, by taking
the estimation of V̇j(t, x(t)) as

V̇j(t, x(t)) ≤ −ε‖x(t)‖2 − 〈CT
j Cjx(t), x(t)〉

− 〈XjBjB
T
j Xjx(t), x(t)〉

− 1
γ
〈XjB1jB

T
1jXjx(t), x(t)〉

+ 2〈XjB1jw(t), x(t)〉 (16)

and by substituting

‖z (t)‖2

= 〈[CT
αi

(t)Cαi(t) + Xαi(t)Bαi(t)B
T
αi

(t)Xαi(t)]x(t), x(t)〉,

t ∈ [ti−1, ti) into inequality (16), we obtain
∫ tk

0
[‖z(s)‖2 − γ‖w(s)‖2]ds

≤
k∑

i=1

∫ ti

ti−1

[
[−ε‖x(s)‖2 − 1

γ
〈XαiB1αiB

T
1αi

Xαix(s), x(s)〉

+2〈XαiB1αiw(s), x(s)〉 − γ〈w(s), w(s)〉
]
ds

+Vi0 (t0, x (t0)) +
k−1∑

i=1

(
1− λ2

λ1

)
λ1

λ2
αNs(ti)Vi0 (0, x (0))

−Vαk
(tk−1, x (tk−1)) . (17)

By Proposition 2.5, we have

2〈XαiB1αiw(s), x(s)〉−γ〈w, w〉 ≤ 1
γ
〈XαiB1αiB

T
1αi

Xαix, x〉.

Then, from (15) and (17), we obtain
∫ tk

0
[‖z(s)‖2 − γ‖w(s)‖2]ds

≤ −ε

∫ tk

0

‖x(s)‖2ds + Vi0 (t0, x (t0)) +

k−1∑

i=1

(
1− λ2

λ1

)
λ1

λ2
αNs(ti)Vi0 (0, x (0))

−Vαk
(tk−1, x (tk−1)) .

By letting k → +∞, we finally obtain
∫ +∞
0

[‖z(t)‖2 − γ‖w(t)‖2]dt

≤ Vi0 (0, x (0))
(

1 + τ1β

(
λ1

λ2
− 1

))

and since Vi0 (0, x (0)) ≤ ‖Xi0 (0)‖ ‖x (0)‖2, we get
∫ +∞
0

[‖z(t)‖2dt

≤ γ





∫ +∞
0

‖w(t)‖2dt

+
‖Xi0 (0)‖‖x(0)‖2

(
1+τ1β

(
λ1
λ2
−1

))

γ



 .

Setting c0 =
‖Xi0 (0)‖

(
1+τ1β

(
λ1
λ2
−1

))

γ in the last inequality
we obtain

∫ +∞
0

‖z(t)‖2dt

c0‖x (0) ‖2 +
∫ +∞
0

‖w(t)‖2dt
≤ γ,

where
∫ +∞
0

‖w(t)‖2dt =
∑+∞

i=1

∫ ti

ti−1
‖wαi

(t)‖2dt,

for all x (0) and non-zero admissible wj(t) ∈
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L2([0, +∞), Rp), j ∈ IN . This completes the proof
of the lemma.

Based on Lemma 3.1, we obtain the following main result.

Theorem 3.1. Assume that the condition A holds
and linear control systems [Aγj(t), Bγj(t)] , j ∈ IN ,
are GNC in some finite time. Let τ be a partition
of R+ and q a switching sequence such that the dwell-
time τ0 := infi∈N {ti − ti−1} ≥ λ1

ε ln λ1
αλ2

where ε > 0,
α ∈ (0, 1) satisfying β :=

∑+∞
i=1 αNs(ti−1) < +∞ for

some s ∈ IN , and τ1 := supi∈N {ti − ti−1} < +∞
where λ1 := maxj∈IN

{supt∈R+ λmax (Pj(t))}, λ2 :=
minj∈IN {inft∈R+ λmin (Pj(t))}. Then, under partition τ
and switching sequence q, the H∞ control problem for
the switched system (2.1) has a solution . Moreover, the
feedback stabilizing controls are

uj(t) = −BT
j (t)[Pj(t) + I]x(t), t ∈ R+, j ∈ IN

where Pj(t) ∈ BM+(0,+∞) is a solution of RDE
Ṗj(t)+AT

γj(t)Pj(t)+Pj(t)Aγj(t)−Pj(t)Bγj(t)BT
γj(t)Pj(t)

+Qj(t) = 0,
t ∈ R+, j ∈ IN and Qj(t) ≥ 0 is a matrix function
satisfying

Qj(t) ≥ Aj(t)+AT
j (t)+CT

j (t)Cj(t)+εI, t ∈ R+, j ∈ IN .

Remark 3.1. Note that the problem of solving Ric-
cati differential equations is in general still complicated,
however some various efficient approaches to solving this
problem can be found.

The following simple procedure can be applied to solve
the H∞ control problem for the switched system (1).

Step 1. Given γ > 0, find the matrices Aγj(t), Bγj(t),
j ∈ IN .

Step 2. Check the assumptions A, conditions (i) and (ii)
of Lemma 3.1.

Step 3. Check the global null-controllability of linear sys-
tems [Aγj(t), Bγj(t)], j ∈ IN , by Proposition 2.2.

Step 4. Find solutions Pj(t), j ∈ IN of RDE given in
Theorem 3.1 and the feedback stabilizing controls are
given by

uj(t) = −BT
j (t)[Pj(t) + I]x(t), t ∈ R+, j ∈ IN .

4 Conclusions

In this paper, we have shown that the H∞ control con-
ditions for linear time-varying switched systems has a
solution if some appropriate linear control systems are
globally null-controllable. The feedback stabilizing con-
trollers are designed via the solutions of a Riccati differ-
ential equations. Numerical example is given to illustrate
the effectiveness and validity of our main results.
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