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Abstract – Impact acoustic is an effective non-destructive 
evaluation (NDE) method for many applications especially for 
inspecting the bonding quality of mosaic tile-walls.  However, 
the audio noise can affect the power spectrum density (PSD) 
distribution of an acquired signal seriously. So, the traditional 
method of using PSD as the main identification tool is not 
sufficient.  This paper proposes an evaluation method based 
on wavelet packet decomposition (WPD).  Using WPD, the 
PSD of the signal is allocated into certain component fields. 
Investigation on the component PSD indicates it can reveal 
the bonding quality even in a noisy environment. An artificial 
neural network (ANN) is chosen as a classifier to simplify the 
evaluation system and makes it more effective and efficient. 
The performance of the proposed approach is evaluated 
experimentally.  It is verified that this WPD approach can be 
applied to impact acoustic method to enhance its evaluation 
capability in a noisy environment. 
 
Index Terms— impact acoustic, de-noising, wavelet packet, NDE 
 

I.   INTRODUCTION 
For inspecting the bonding condition of structure or 

composite material, various non-destructive evaluation 
(NDE) methods have been developed [1][2][3][4].  
Comparing to other classical detection methods using 
ultrasound-echo, impact-echo, etc., the impact acoustic 
approach has many advantages because it does not need a 
physically good contact between the sensor and the 
specimen and it is relatively low cost for practical 
implementation.  It has been adopted for practical 
applications with considerable performance [5][6]. 

Wavelet transform has become a prevalent method in 
advance signal processing that people often refer to the 
technology to reveal the underlying characteristic of a 
given signal. For NDE applications, when an inspection 
device is working in unstructured or chaotic environments, 
the acquired signal is usually contaminated with noise. In 
the past decade, the wavelet-based de-noising method was 
verified to be effective, and has been adopted widely [7]. 
The main idea of the method lies on the decomposition of 
raw signal by using wavelet transformation.  Based on the 
information in wavelet domain, we propose a 

characteristic-extracting method using wavelet packet 
decomposition for impact acoustic non-detective evaluation. 
In next section, the basics of impact acoustic and wavelet 
packet transform will be introduced briefly. The impact 
acoustic NDE experimental system will be described in 
section III. The performance of method is illustrated in 
Section IV, and a conclusion will be drawn in section V. 

II.   THEORETICAL BASIS 

A.   Impact Acoustic 
Impact acoustic inspection method is based on the 

sound signal generated by a small hard object impacting 
the surface of the specimen.  This impact actually causes 
the underlying structure of the sample to vibrate.  So, this 
sound signal could contain information about the integrity 
of the sample. F. Tong [5] analyzed the impact process 
using a mass-spring model and A.P. Christoforou [8] 
studied the impact response with the energy distribution. 
H.D. Wu [9] defined the ratio of the power of the lower 1/3 
frequency range to that of the overall frequency range in 
impact sounds spectrum as the power accumulation ratio 
(PAR) factor. All those studies presume that the signals 
were obtained from noise-free environments. However, 
noise in the acquired signal can distort the original PSD 
distribution pattern seriously. As a result, detection 
methods which just depend on the PAR can be weakened 
significantly by the noise.  

In the proposed method, the sound signal is sampled 
and stored as a discrete digital sequence, {x(n), n=0,1,…,N-
1}, with the length N. Suppose that the signal x(n) is 
contaminated with the additive noise v(n). According to the 
linearity property of Fourier transform, the actual PSD of 
the resultant signal y(n)=x(n)+v(n) that can be calculate by, 

|)(||)(|2|)(||)(||)(|)(2 222 kVkXkVkXkYkp ⋅++==⋅π , 
k=0,1,…,N-1        (1) 

where Y(k) and V(k) refer to the FFTs of y(n) and v(n), 
respectively. The PSD distribution pattern can be defined 
as, 
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For the noise having proportional distribution in 
frequency domain (e.g. white noise), from Eq.1, it just 
increases the overall PSD of the raw signal to a certain 
level without affecting the pattern of ρ(k). Therefore, the 
proposed approach focuses on the reduction of the 
frequency-limited noise, which have affected the pattern of 
ρ(k) in the finite frequency band.  As a result, the majority 
of ρ(k) is retained and distortion is suppressed. 
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Normally, multi-band filters group is considered. The 
whole band will be divided into M subbands and ρ(k) is 
fallen into L components ρj(k) (j=0,1,…,M-1). Suppose that 
the noise just contaminates the J-th sub-band and leaves 
other subbands free of noise, the other M-1 components of 
PSD distributions ρj(k) (j≠J and j=0,1,…,M-1) will still 
contain the majority of information reflecting the bonding 
quality. 

B.   Wavelet Packet Decomposition 
The wavelet transform is the most recent technique in 

advance signal processing. It is defined in term of basic 
function obtained by compression or dilatation, and 
translation operations of mother wavelet. In view of signal 
filtering, it uses a series of orthogonal filter to sample the 
input signal. The orthogonal high- and low-pass filters are 
used to extract one sample from two and decompose the 
signal into a series of constituent parts in time domain. Due 
to its orthogonal property, the wavelet transform can 
extract time–frequency features effectively and keep the 
signal information "unaffected" during the decomposition 
process. So, the wavelet is suitable for the analysis of non-
stationary signals. 

The wavelet packet can be used to discompose the 
signal over the full frequency band [10]. It has the same 
process as the wavelet transform, the only difference is that 
the wavelet packet transform further decomposes both the 
approximate and detail components while the wavelet 
transform just decomposes the former. Figure 1 shows the 
L-level wavelet packet decomposition. From the 
decomposition process, it can be regarded as performing 
through a serial of filters with scale and translation 
parameters. It is fit to combine the wavelet packet 
decomposition with the component PSD distribution. The 
L-th wavelet packet decomposition has 2L component, so 
M equals to 2L. Through the wavelet transform, the time 
signal is mapped into wavelet domain. From Figure 1, we 
will get M=2L component PSD distribution patterns after L 
levels decomposition.  
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Figure 1 Wavelet Packet Decomposition 

So, the wavelet packet coefficients of the signal s(t) 
can be computed via 
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(3) 
Now, the power of signal is mapped into the wavelet 

packet node. We can define the power of the node as 

∑=
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,ρ                                       (4) 

which is the signal power in some specific frequency 
band indexed by parameter j and m. In fact, according to 
energy conservation law, the sum of the node power in the 

same level is equal to the power of signal: |s(t)|=∑ρj
m, in 

which the node(m) powers are contained in the l-th level of 
wavelet packet decomposition. 

The wavelet thresholding technique is adopted in de-
noising processing according to the rules proposed by 
Donoho and Johnstone [11][12] using the following 
equation.  
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where, the parameter λ is the threshold in wavelet domain. 

III.   EXPERIMENTAL RESULTS 

A.  Experiment Setup 
The NDE experimental system is illustrated in Figure 2. 

The apparatus adopted includes: a controlled impactor 
which is a rigid steel ball of 12mm diameter activated by a 
solenoid, a pre-amplifier module, an A/D converter with 
40KHz sampling rate and a highly directional microphone. 
Such an impacting system provides a reliable and simple 
method to excite the test structure to generate sounds which 
contain information about the integrity of the structure. 

Two type sample slabs are prepared in the experiment: 
one is of good bonding property; another contains an 
ø280mm circle-shaped void at the concrete substrate layer 
at the center location. The dimension of the slabs is 400mm 
× 400mm × 150mm. We call them ‘solid’ and ‘void’ for 
short respectively. 

 

A/D card
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Processor
Concrete
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Figure 2 Experimental System 

B.  PSD Distribution from Different Specimens 
The PSD distribution of impact acoustic has been 

investigated in detail as discussed in [5]. In noise-free 
environment, extracting the characteristics of impact sound 
in frequency domain by PSD can be implemented easily 
since the PSD patterns of impact response is different 
among different bonding qualities. Figure 3(a) shows the 
normalized PSD of the impact sound from ‘solid’ slab, and 
Figure 3(b) is from ‘void’ slab. From those two figures, it 
can clearly identify the difference between a ‘solid’ and 
‘void’ slab. 

 
Although microphone has a highly direction property, 

it would be contaminated by noise inevitably while putting 
in a chaotic, mussy site. It can absorb any audible sound. 
We picked up a short speech signal recording from outdoor 
as the noise whose temporal waveform and PSD plotting in 
Figure 4(a). We found that although its small amplitude 
locates in temporal domain evenly, it has distinct PSD 
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Figure 3 Impact Response from ‘solid’ And ‘void’ Slab 

characteristics which are similar to the ‘solid’ type (Figure 
3(a)).  

 

 
 

 

 

Figure 4 Impact Response Contaminated by Additive Noise 

Supposed the speech noise is additive, the 
contaminated signals obtained from ‘solid’ and ‘void’ slab 
are plotted in Figure 4(a) and Figure 4(b) respectively. 
Evidently, from Figure 4(b), the noise distorts the PSD 

pattern of ‘void’ slab badly.  In fact, this PSD pattern is 
more close to the PSD obtained from the ‘solid’ slab (see 
Figure 3(a) for comparison). So, we will get wrong 
judgement just from the PSD pattern when the signals are 
contaminated with noise. 

As the noise has the same spectrum of the signal, any 
filter in temporal or frequency domain would not be 
feasible. 

C.  Component PSD 
Under the noisy environment, the spectrum method on 

PSD does not work efficiently to distinguish the ‘void’ 
slabs from the solid slabs. However, through the wavelet 
packet decomposition to get component PSD pattern in 
special frequency bands, it is possible to develop a method 
to identify the health condition of the test sample in noisy 
conditions.  The system diagram is shown in Figure 5. 
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Figure 5 System Diagram with WPD 

The impact response is translated in Data Acquirement 
module to digital data, sequentially put through a threshold 
filter module in temporal domain to remove stochastic 
noise. Then, WPD operation is implemented with wavelet 
packet node coefficients from which the component PSD is 
generated. For the simplicity of system, 2-level wavelet 
packet decomposition is adopted (Figure 1). After that, 
filters are implemented according to the Eq.5 to remove the 
noise in wavelet domain in order to extract further the 
nature of the PSD pattern of the signal. Finally, the pattern 
is fed to an artificial neural network module to classify. 
Result of experiment is showed in Figure 6. 
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Figure 6 Component PSD of Wavelet Packet Decomposition 

In experiment, we use the 2-level wavelet packet 
decomposition generating 4 node coefficient sequence: 
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1,k, w4
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1,k. The wavelet is of arbitrary choice, 
and the ‘db3’ wavelet is used in the experiment. The 
powers of them are computed as ρ2

1, ρ3
1, ρ4

1, ρ5
1, 

respectively, to forming the component PSD.  
In the experiment, 400 specimens (including 200 solid 

slabs and 200 void slabs) are investigated. Through 2-level 
wavelet packet decomposition, the power of raw signal 
allocates into 4 component fields. In Figure 6(a), it shows 
that the component PSD distribution of the noise-free raw 
signal. And Figure 6(b) stands for the one of noised signal. 
The first half 200 specimens are the impact responses of 
solid slabs and the second half 200 specimens the one of 
void slabs. Comparing the two figures, we find that the 
noise distorts the PSD distribution of raw signal. But the 
outline of component PSD pattern is not damaged which 
reflects the major characteristics of bonding quality. 

D.   Artificial Neural Network(ANN) 
Now, the nature component PSD pattern of the signal 

is obtained. ANN is used as an efficient method for signal 
classification [13]. A 3-layer neural network of classical 
structure is used in our experiment including a 4-neuron 
input layer, one hidden layer and one output layer. The 
error backup propagation (BP) method with a momentum 
updating algorithm is chosen to train the ANN. 

IV.  PERFORMANCE 
To verify the method, the performance of various SNR 

levels is simulated. It meets the normal signal detection 
principle. The performance is improved with the increase 
of the SNR. As shown in Figure 7, when SNR is greater 
than 15dB, the successful detection rate reaches 100%. 
Even with the SNR reduced to 2dB, the successful 
detection rate is still as high as 80%. 
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Figure 7 Performance with SNR 

V.   CONCLUSION 
According to the characteristic of impact response, a 

novel method based on the wavelet packet and neural 
network is proposed to evaluate the bonding quality. In the 
investigation, the audible noise mixed with the impact 
response distorts the PSD distribution; however, it does not 
damage the outline of component PSD pattern. Through the 
2-level wavelet packet decomposition and the ANN, the 
evaluation reaches a good result.  

In practice, for simplifying the implementation, we use 
just 2 levels of wavelet packet decomposition and 3 
neurons in the hidden layer of the ANN. The more levels of 
wavelet packet decomposition will result to the more detail 

of PSD component pattern. The more neurons are in the 
hidden layer of ANN, the better is the classification 
performance. However, this will increase the processing 
time exponentially. 
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