
 
Abstract-The Newton-Raphson method is one of the most 

widely used methods for minimization. It can be easily 
generalized for solving non-linear differential equation 
systems. In this study, Generalized Predictive Controller 
(GPC) was applied to a 6R robot manipulator based on joint 
control. Newton-Raphson (N-R) method was used to minimize 
the cost function existing in the GPC that represents errors 
between reference trajectory and actual trajectory in the 
control of robot. The Newton-Raphson method requires less 
iteration numbers for convergence and reduces the calculation. 
This study presents a detailed derivation of the Generalized 
Predictive Control algorithm with Newton-Raphson 
minimization method. The results of angular path and position 
errors belonging to joints were examined and compared with 
Recursive Least Square (RLS) implemented Generalized 
Predictive Control. The simulation results showed that 
Newton-Raphson method improved control performance of the 
GPC. 

 
Keywords- Predictive control, generalized predictive control, 

cost function minimization. 
 

I. INTRODUCTION 
Predictive control algorithm was developed from the non-

parameter model predictive control algorithm including the 
Model Algorithm Control (MAC), the Dynamic Matrix 
Control (DMC) and so on, to the Model Predictive Control 
(MPC) algorithm on example of which is the Generalized 
Predictive Control (GPC) algorithm [1-4]. Because the GPC 
algorithm parameter model is shorter than the non-parameter 
model, it reduced the GPC algorithm calculation time, and 
enhanced performance of the control system. 

The GPC is used in the control of non-minimum phase 
plants, open-loop unstable plants and plants with variable or 
unknown dead time. It is also robust with respect to 
modeling errors, over and under parameterization, and 
sensor noise [5-6].  
The computational performance of a GPC implementation is 
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largely based on the minimization algorithm chosen for its 
CFM block. There are several minimization algorithms that 
have been implemented in GPC such as Non-gradient [7], 
Simplex, and Successive Quadratic Programming [8,9]. The 
selection of a minimization method can be based on several 
criteria such as; number of iterations to a solution, 
computational costs and accuracy of the solution. In general 
these approaches are iteration intensive thus making real-
time control difficult. Very few papers address real-time 
implementation or the they used plants with large time 
constant [8,9]. To improve the usability, a faster 
optimization algorithm is needed. The Newton-Raphson 
method is one of the most widely used methods for 
minimization. It is a quadratic algorithm converging better 
than others. It requires less iteration numbers for 
convergence and reduces the calculation. 

In this study, Generalized Predictive Control (GPC) was 
applied to 6R robot manipulator for joint control. Newton-
Raphson (N-R) method was used to minimize the cost 
function existing in GPC that represents errors between 
reference trajectory and actual trajectory in the control of 
robot. The results of angular path and angular velocity 
belonging to joints were examined and compared with 
results obtained from the Recursive Least Square 
implemented Generalized Predictive Control. Also, 
processing times of both algorithms were shown. 
 

II. GENERALIZED PREDICTIVE CONTROL 
   The Generalized Predictive Control (GPC) introduced 

by Clarke is a generalization of the model-based control and 
suitable for controlling of the processes with variable dead 
time and a plant which is simultaneously non-minimum-
phase and open loop unstable. Many research showed the 
effectiveness of this control algorithm [3]. 

   The GPC system for the robotic manipulator is given in 
Figure 1. It consists of three components, the robotic 
manipulator or its simulator, controller and parameter 
estimator. Where, torque, u, is the control input to the 
manipulator system, the trajectory, y, is the output, and yr is 
the reference output. 

 
Fig. 1 Block diagram of the GPC system for robotic manipulator 

 
The heart of a model-based predictive controller is the 

plant model. The Controlled Autoregressive Integrated 
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Moving Average (CARIMA) model is commonly used in 
the GPC, as it is applicable to many single-input single-
output plants: 
 

∆+−= −− /)()1()()()( 11 ttuqBtyqA ξ                       (1)                                                                               
 
Where, u(t), y(t) are the plant input and output. A and B are 
polynomials in the backward shift operator q-1: 
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Where, )(tξ , is an uncorrelated random sequence, and the 
use of the operator 11 −−=∆ q  ensures an integral control 
law.  

Equivalently to the procedure of Clarke [1] an optimal j-
step forward predictor is given by [2]: 
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The first term of equation (3) is called ‘free response’, as 
it represents the plant predicted output )( jty +) , when there 
is no future control action. The second term is called ‘forced 
response’, as it represents the output prediction due to the 
hypothetical future control actions u (t + j - 1), 1≥j  . 

To select a good control sequence, we would wish a 
minimal tracking error e(t+j) = )( jty +) - ry (t+j) over a 
certain output horizon. Furthermore, to prevent any 
‘explosion’ of the control action, a second term is generally 
added, so that the final performance index has a form similar 
to the following:  
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subject to: )( jtu +∆ = 0 for uNj ≥  
Where, N1 and N2 are the minimum and the maximum 
costing horizon, Nu is the control horizon and λ is a 
weighting factor for the control increment sequence to be 
calculated. Furthermore, the constraints that the control 
increments are forced to zero uNj ≥  provide a better 
convergence of the output to the set point.  

If we define the two following vectors formed with 
polynomial solutions of equation 3: 
       

[ ]TNtfNtff )()........( 21 ++= , the vector of the free 
response 
Additionally, if we denote: 
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And the matrix formed with the coefficients gi
j of the Gj 

polynomials, which in fact correspond to the step response 
values gi = gi

j : 
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The output prediction has the following form:  

fuGy += ~)                                                                  (8)                   
Now, equation (4) can be rewritten in a matrix form: 
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∂
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In this study, firstly, we used Recursive Least Square 
(RLS) for minimization of cost function in the GPC. In this 
method )( 1−qA  and )( 1−qB  parameters which are 
composing G  and f  are recalculated each of control 
steps. 

We define following formed with the CARIMA model 
solutions of equation 2 for used Recursive Least Square 
[10]. 
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)(ˆ tTΘ  is Nm× , )(tΦ and )(te are 1×N  polynomial 
matrix. We denote follows: 
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)(ˆ tTΘ parameter which is existing )( 1−qA and 

)( 1−qB parameters is updated for each of a control steps as 
follows: 
 

1. The equation of gain: 
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The gain is calculated used K(t). µ  is the target 
factor ( 95.0=µ ). )(tP  parameter is NN ×  
matrix. δ/)0( NP Ι=  for first step control. NΙ  

is unit matrix NN × , δ  as constant which is 
value 10-6. The calculation of )(tP  for others steps 
control uses follows equation.  
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2. The equation of error:  

)()1()()( tttyte T Φ−Θ−=                     (18)                                                              

Error is calculated by used this equation. 

3.  )(ˆ tTΘ is calculated the follows equation:  

TTT tKtett )()()1(ˆ)(ˆ +−Θ=Θ                   (19)                                                                                       
 

)( 1−qA  and )( 1−qB parameters are recalculated from 

)(ˆ tTΘ in the equation 19. Consequently, the parameters of 
GPC are updated by this process.   
 

III. COST FUNCTION MINIMIZATION by NEWTON-
RAPHSON METHOD 

The objective of the CFM algorithm is to minimize J in 
equation 4 with respect to [u(n+1), u(n+2), …,u(n+Nu)]T, 
denoted U. This is accomplished by setting the J in equation 
(4) to zero and solving for U. With Newton-Raphson used as 
the CFM algorithm, J is minimized iteratively to determine 
the best U. An iterative process yields intermediate values 
for J denoted J(k). For each iteration of J(k) an intermediate 
control input vector is also generated and is denoted as 
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The Newton-Raphson update rule for U(k+1) is: 
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where the Jacobian denoted as: 
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the Hessian as 

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

+∂
∂

+∂+∂
∂

+∂+∂
∂

+∂
∂

=
∂
∂

2

22

2

2

2

2

2

)()1()(

)()1()1(
)(

uu

u

Nnu
J

nuNnu
J

Nnunu
J

nu
J

k
U
J

L

MOM

L
                                                        

 
Solving equation (23) directly requires the inverse of the 

Hessian matrix. These processes could be computationally 
expensive. One technique to avoid the use of a matrix 
inverse is to use LU decomposition [11] to solve fort he 
control input vector U(k+1). This is accomplished by 
rewriting Equation (23) in the form of a system of linear 
equations, Ax=b. This result in 
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In this form Equation (23) can be solved with two 

routines supplied in [11] the LU (Lower/Upper Triangular) 
decomposition routine (ludcmp), and the system of linear 
equations solver (lubksb). 

After x is calculated, u(k+1) is solved by evaluating 
u(k+1) = x + u(k). This procedure is repeated until the 
percent change in each element of u(k+1) is less than some 
ε ( ε =10-7). When solving for x, calculation of each element 
of the Jacobian and Hessian is needed to each of Newton-
Raphson iteration. The hth element of the Jacobian is 
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The mth, hth element of the Hessian is: 

=
+∂+∂

∂
)()(

2

hnumnu
J  

( )∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+

+∂+∂
+∂

−
+∂
+∂

+∂
+∂2

1

)()(
)()(

)(
)(
)(

)(
)(2

2N

Nj
r jnynjny

hnumnu
jnyn

hnu
jnyn

mnu
jnyn  

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∂
−+∂

−
+∂
+∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∂
−+∂

−
+∂
+∂

+
uN

j hnu
jnu

hnu
jnu

mnu
jnu

mnu
jnuj

1 )(
)1(

)(
)(

)(
)1(

)(
)()(2 λ  

( ) ( )∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++−
+

+−++∂
+∂

+∂
+∂

+
uN

j jnuu
s

ujnu
s

hnu
jnu

mnu
jnu

1
3

max
3

min )()()(
)(

)(
)(2

εε
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The last component needed to evaluate u(k+1) is the 

calculation of the output of the plant, )( jnyn + , and its 
derivates. 
 

IV. DYNAMIC MODEL OF ROBOT MANIPULATOR 
A priori information needed for manipulator control 

analysis and manipulator design is a set of closed form 
differential equations describing the dynamic behavior of 
the manipulators. Various approaches are available to 
formulate the robot arm dynamics, such as Lagrange-Euler, 
Newton-Euler and Recursive Lagrange [12,13]. 

The configuration of the six joint robotic manipulator 
model and its Denavit-Hartenberg parameters can be seen in 
Figure 1 and Table I respectively [14]. In this study, 
Lagrange-Euler is used for dynamics modeling of the six 
joints robotic manipulator. Lagrange-Euler equation of the 
motion is, 
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where iτ  is generalized torque applied to the system from 
joint i, L is Lagrangian function (L = K – P,  K : total kinetic 
energy of the manipulator, P : total potential energy of the 
manipulator), iθ  is the angular position of the joint i, and 

i

.
θ  is the first order derivative of the iθ . 

Equations which were used for the calculation of the total 
kinetic energy of the manipulator are given in (27), (28), and 
(29).  
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Equations which were used for the calculation of the total 
potential energy of the manipulator are given in (30), (31), 
(32), and (33). 

 
Fig. 2 The Model of 6R Robot Manipulator 

                                                                                                                         
Table I. Denavit-Hartenberg Parameters of PUMA 560 Robot Arm 

i 
 

iα  
(degree) iθ  ia  

(meter) 
id  

(meter) 
1 -90 1θ  0 0 

2 0 2θ  0.4318 0.1491 

3 90 3θ  -0.0203 0 

4 -90 4θ  0 0.4331 

5 90 5θ  0 0 

6 0 6θ  0 0.056 
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Where im  is the mass of the limb i, g is the gravity vector, 
iA0  is the transition matrix. 2/8062.9 smg = . 

V. SIMULATION RESULTS 
In this paper, it was designed 6R (six-DOF) robotic 

manipulator control using Newton-Raphson (N-R) 
implemented Generalized Predictive Controller (GPC) 
algorithm based on joint control. It was compared with RLS 
(Recursive Least Square) implemented GPC according to 
the simulation results.  

Total simulation time is 10 second and total step number 
is 10000. In additionally, robot manipulator carries 5 kg load 
at the end-effecter.  
 
Table II. Some results of simulation robot manipulator by N-R and RLS 
implemented GPC 

Joints Algorithms 
Initial 
Angle 
(rad) 

Desired 
Angle 
(rad) 

Actual 
Angle 
(rad) 

Angular 
Path 
Error 
(rad) 

N-R 0.0000 0.1745 0.1744 0.0001 Joint 
1 RLS 0.0000 0.1745 0.1746 0.0001 

N-R -0.0872 0.0000 0.0004 0.0004 Joint 
2 RLS -0.0872 0.0000 0.0011 0.0011 

N-R 0.3490 0.5235 0.5237 0.0002 Joint 
3 RLS 0.3490 0.5235 0.5228 0.0007 

N-R -0.3490 -0.1745 -0.1745 0.0000 Joint 
4 RLS -0.3490 -0.1745 -0.1745 0.0000 

N-R -0.0872 0.3490 0.3491   0.0001 Joint 
5 RLS -0.0872 0.3490 0.3480 -0.0020 

N-R 0.0000 0.6981 0.6981  0.0000 Joint 
6 RLS 0.0000 0.6981 0.6980  0.0010 

 
For example, the results of angular path were given in 
Figure 3. Angular velocities and angular position errors 
were given belonging to robot arm joint 1, 2 and 5 in Figure 
4, 5 and 6 respectively. Additionally, initial- desired-actual 
angles, angular path errors were given in Table II and also 
squares of angular velocity error values were given in Table 
III. 

As seen in Table II, angle path errors are smaller in the N-
R than those in the RLS. On the other hand, the squares of 
angular velocity errors are proportional to the jerk. The less 
angular velocity errors at the joints lead to less jerks. With 
N-R controller happened fewer jolts at the joints.  

As seen in Fig. 3, N-R controller tracked to desired 
trajectory smoother and closer than RLS controller. In 
tracking performance, both algorithms were found to be 
satisfactory, according to simulation results of angular 
velocity given in Figs 4-6. Also, the differences of angular 
path errors are seen in same Figs. 
 
Table III. Some results of angular velocity errors (rad/sec2) 
 
 Joint1 Joint2 Joint3 Joint4 Joint5 Joint6 
N-R 0.0000 0.0193 0.0026 0.0000 0.0003 0.000 
RLS 0.0016 0.1940 0.0108 0.0004 0.0071 0.001 
 
Table IV. Position errors of robot arm and processing time (CPU’s time) of 
controllers 
 
 Position errors 

(mm) 
Processing Time 

(ms) 
 
N-R 

 
0.4772 

 
2625 

RLS 0.7681 3469 
 
The position errors of robot arm and processing times 

belonging to control algorithms were given in Table IV. The 
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position errors of the N-R controller are lesser than those by 
RLS. For processing time, simulation of the RLS had taken 
3469 ms, whereas the N-R controller has taken 2625 ms, for  

the given trajectory Figs 4-6. Newton-Raphson method 
reduced the time of cost function minimization and also 
reduced the processing time.  

 

        
                                              a.) N-R                                                                                            b.) RLS 

Fig. 3 Angular Path of Joint 2 by N-R and RLS implemented GPC 
 
 

                           

                          
                                                             a.) N-R                                                                                                                b.) RLS 

Fig. 4 Angular Velocity and Angular Position Errors for Joint 2 by N-R and RLS implemented GPC 
 
 

                         

                         
                                                             a.) N-R                                                                                                                b.) RLS 

Fig. 5 Angular Velocity and Angular Position Errors for Joint 1 by N-R and RLS implemented GPC 
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                                                               a.) N-R                                                                                                           b.) RLS 

Fig. 6 Angular Velocity and Angular Position Errors for Joint 5 by N-R and RLS implemented GPC 
 
 

In this paper, computationally efficient of cost function 
minimization in the GPC algorithms was examined. There is 
over computation in the minimization of the cost function. 
Newton-Raphson update method requires less iteration 
numbers for convergence and reduces the calculation 

In this application, Recursive Least Square (RLS) 
implemented GPC between Newton-Raphson implemented 
GPC controllers were applied to the 6R robot arm 
manipulator based on joint control. The results of angular 
path and angular velocity belonging to joints, position error 
of end-effecter and also processing time of controllers were 
compared. According to the simulation results, Newton-
Raphson implemented GPC reduced position errors and also 
processing time for robot manipulator control. This means 
that the Newton-Raphson improved control performance of 
the GPC. 
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