
 
 

 

  
Abstract—This paper proposes a robust and simple 

controller design for the Duffing-Holmes chaotic system. The 
control system is robust against parametric uncertainties and 
external disturbances. The control input consists of a 
continuous nominal control part and a discontinuous switching 
control input. Illustrative example is given. Simulation results 
show the promise of the proposed method. Input chattering is 
remarkably eliminated. Trajectory tracking is effectively 
achieved. 
 

Index Terms—Robust control, Sliding mode control, Stability, 
Tracking.  
 
 

I. INTRODUCTION 

Robust stabilization of uncertain systems is an important 
topic in the field of control. Many approaches account for the 
uncertainties under various hypotheses. Sliding mode control 
(SMC) is one of the popular strategies to deal with uncertain 
control systems [1-5]. The main feature of SMC is the 
robustness against parameter variations and external 
disturbances. Various applications of SMC have been found, 
such as robotic manipulators, aircrafts, DC motors, chaotic 
systems, and so on.  

Chaos exists in many engineering systems such as 
electronic circuits, power converters, chemical systems, and 
so on [6]. A fundamental characteristic of a chaotic system is 
its extreme sensitivity to initial conditions; that is, small 
differences in the initial state can lead to extraordinary 
differences in the system state. Chaos control has been of 
broad interest since the early 1990s. Since the pioneering 
work of Ott, et al. proposed the well-know OGY control 
method [7]. The OGY method was modified by Shinbort et al. 
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to reduce the length of necessary time for stabilizing the 
target orbit [8]. Later, the control of chaos in a 
Bonhoeffer-van de Pol oscillator using a feed-forward 
backpropagating neural network trained on two different 
control schemes, via., the OGY control algorithm, and the 
Pyragas method of delayed continuous feedback control was 
demonstrated [9]. Recently, various methods have been 
proposed to control chaotic systems, such as neural network, 
fuzzy control, adaptive control, sliding mode control, etc 
[9-12].  

In this paper, a robust sliding mode control for 
Duffing-Holmes chaotic system is presented. The goal is to 
achieve system robustness against parameter variations and 
external disturbances. The control input consists of a 
continuous nominal control part and a discontinuous 
switching control part. The former is the equivalent control 
for the nominal system and latter deals with the parametric 
variation and disturbance. To reduce the high frequency 
chattering in the controller, the boundary layer technique was 
used [13]. Theoretical analysis and numerical simulations 
verify the effectiveness of the proposed method. Another 
advantage of proposed method is that the input chattering 
does not appear. 

This paper is organized as follows. Section 2 describes the 
robust controller design for Duffing-Holmes chaotic system. 
Section 3 shows simulation results of proposed method. 
Finally, conclusion is given. 

 

II. ROBUST STABILIZATION DESIGN 

The Duffing-Holmes chaotic system is considered. In 1918, 
Duffing introduced a nonlinear oscillator [14], with a cubic 
stiffness term, to describe the hardening spring effect 
observed in many mechanical problems. Duffing’s equation 
has been modified in different manners afterwards such as 
Moon and Holmes. In the present paper, to be more general 
we consider a modified Duffing equation of the form is 
named Duffing-Holmes. Consider the Duffing-Holmes 
chaotic system [15] described as  
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where 25.01 =p , 12 −=p , 3.0=q , and 11 =w . The 
sampling time is equal to 0.001 sec. This Duffing-Holmes 
chaotic system displays chaotic behavior without control 
input as shown in Fig. 1 for the initial condition 2)0( =x  and 

2)0( =x& . 

In order to solve this problem, consider a chaotic system 
described by the following time-varying second-order 
differential equation with uncertainties and disturbances: 
 
 )),()(()()( 21 xtdutbxtaxtax +=++ &&& , (2) 

 
where Rx ∈  denotes the system state, Ru ∈  is the system 
input, and ),( xtd  is the disturbance or unmodeled dynamics. 
Assume that the upper and lower bounds of the uncertain 
system parameters )(1 ta , )(2 ta  and )(tb , and the 
disturbance )(td  are specified as 
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In the following, the robust suppression method is 
developed. The design procedure is divided into two steps. 
The first step is to define a sliding surface function such that 
in the sliding mode the system behaves equivalently as a 
linear system. The second step is to determine a control law 
such that the system will reach and stay on the sliding surface 

0=s . 

First, define the sliding surface function as 
 

 cees += & , (4) 
 

where  
 
 rxe −= . (5) 
 

The symbol e  is the tracking error, r  is the desired path, and 
c  is a positive constant. 

In order to satisfy the sliding condition, 0<ss& , let the 
control input u  be 
 
 so uuu += , (6) 

 
where ou  is the continuous nominal control, and su  is the 
discontinuous switching control. The former is the equivalent 
control for the nominal system and the latter deals with the 
parametric variation and disturbances. Let )(1 tb− , 

)()( 1
1 tatb− , and )()( 2

1 tatb−  be divided into two parts: 

nominal part )ˆ,ˆ,ˆ( 21 ααβ  and uncertain part ),,( 21 ααβ ΔΔΔ , 
and 
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The control law ou  and su  are formulated as 
 
 rcrxxcuo &&&& ββαβα ˆˆˆ)ˆˆ( 21 +++−= . (8) 
 
 )(sgn)( 21 sxDxcrcrxxus +−+Δ+Δ+Δ−= &&&&& βαα  (9) 
 
where 
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Taking derivative of (4) yields 
 

),()()())(()( 21 xtdtbrcrxtaxtacutbs +−−−−+= &&&&& . (11) 
 
Substituting (8)-(10) into the equation of (11) and 
multiplying with s yields, 
 

rcsrsxsxcstbss &&&&& ββαβα ˆˆˆ)ˆˆ()[( 21 +++−=   
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0< .  (12) 

 

Thus, the control law given by (8)-(10) guarantees the 
reaching and sustaining of the sliding mode. 
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In general, the inherent high-frequency chattering of the 
control input may limit the practical application of developed 
method. We further replace )sgn(s  in (9) by the function 

)(sat
δ
s , i.e., 
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where δ  is the width of the boundary layer. With this 
replacement, the sliding surface function s  with an arbitrary 
initial value will reach and stay within the boundary layer 

δ≤s . 

 

III. SIMULATION RESULTS 

In order to verify the proposed method, the following 
uncertain Duffing-Holmes chaotic system [15] is considered, 
 
 ufdtwqxxpxpx +++−+−−= )cos( 1

3
21 &&& . (14) 

 

Assume that the parameter uncertainty f and disturbance 

d satisfy xf 1.0≤  and 2.0≤d , respectively. The 

sampling time is equal to 0.001 sec. The initial condition is 
=)0(x 2)0( =x& . The aim is to control the uncertain 

Duffing-Holmes chaotic system to follow the trajectory 
)1.1sin( tr = . According to (8), (9), and (13), the control law 

is chosen to be 
 

 rrxxu &&&& 375.2 ++−−= )01.0/(15 ssat− , (15) 
 
where the sliding surface function is ees 3+= & . 

Simulation results show that the proposed robust sliding 
mode control can effectively reduce input chattering as 
plotted in Fig. 2. The trajectory of the system in the 
phase-plane is shown in Fig. 3. The state tracking response is 
shown in Fig. 4. The error time response of the proposed 
sliding mode control converges to zero as shown in Fig. 5. As 
shown in Fig. 6, the sliding surface function using the 
proposed robust suppression SMC does not chatter in the 
sliding mode. 
 

IV. CONCLUSIONS 

In this paper, a schematic robust suppression sliding mode 
control design for chaotic systems is proposed. The control 
law consists of a continuous nominal control part and a 
discontinuous switching control input. The high frequency 
chattering in the control input is eliminated. System stability 

is assured. The uncertain Duffing-Holmes chaotic system is 
examined. The advantages of the proposed method are the 
simple design procedure, good tracking performance, 
insensitive to uncertainties, and effectiveness in eliminating 
the input chattering. Therefore, this method can be easily 
applied to many mechanical systems.  
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Fig. 1. The phase-plane plot of unforced Duffing-Holmes 
chaotic system with 2)0( =x  and 2)0( =x& . 
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Fig. 2. The time response of control input. 
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Fig. 3. The phase-plane plot of controlled Duffing-Holmes 
chaotic system. 
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Fig. 4. The time response of the state. 
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Fig. 5. The time response of the trajectory error. 
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Fig. 6. The time response of the sliding surface function. 
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