
Functional Verification of USB Mass Storage

Xiaobin Chu, Tiejun Lun, Yu Zong

Abstract—This paper presents a functional

verification of USB2.0 Card Reader, which includes
verification environment, functional coverage model
design and course of debug. This system not only finds
bugs in the DUT, but also verifies the compliance between
hosts and device. The methods of the verification and
coverage model design facilitate the verification of USB
Mass Storage project which need to be accelerated into
market. The system of verification has advantage of being
portable to other USB Mass Storage devices.

 Index Terms—functional verification, USB mass
storage

I. INTRODUCTION

With the development of IC manufacture process
and enhancement of its design complexity, the
verification requirement to IC is much higher. The
methods of pure directed testcase verification is not
adapted to the verification of complex SOC. Modern
verification includes assertion-based verification,
functional coverage, constrained-random testing,
coverage-driven verification, dynamic-formal
verification and more. Each method has particular
feature in verification flow. In the practical project,
maybe more than one verification methods with
different features are employed in the project to reduce
the time of verification.

This paper describes the verification environment
for the USB2.0 Card Reader, discusses the strongpoint
of the architecture and the details of design coverage
model which is central engine in the verification flow,
and offers a method to debug USB Mass Storage. The
conclusion at the end of the paper, discusses the
general verification methods for USB Mass Storage.

Manuscript received October 16, 2007
Xiaobin Chu is with Beijing Microelectronics Technology

Institute, CO 100076 China (e-mail:chxibin@163.com).
 Tiejun Lun was with Xi'an Microelectronics Technology

Institute, he is now with Beijing Microelectronics Technology
Institute, CO 100076 China (email:lu_tie_jun@163.com).

Yu Zong was with LanZhou University, he is now with Beijing
Microelectronics Technology Institute, CO 100076 China (e-
mail:zongyv@sina.com).

II. ABOUT THE DUT (DESIGN UNDER TEST)

A mass-storage device can provide access to data for
just any purpose. Every time you load an application or
save a file on a PC, you are using a mass-storage
device. In a USB mass storage device, the hardware or
firmware must perform the following functions:
(1).Detect and respond to generic USB requests and
other events on the bus.
(2).Detect and respond to USB mass storage requests
for information or actions from the device.
(3).Detect and respond to SCSI command received in
USB transfers. These industry-standard commands
read and write blocks of data in the storage media,
request status information, and control device
operation.

Our DUT is a USB mass storage Device (USB2.0
6-in-1 Card Reader IC), it integrates the component of
SIE, 8051 CPU core, DMA, MSCI, ECC, etc. The SIE
and 8051 CPU core are third part IP cores.

III. VERIFICATION ENVIRONMENT

Figure 1 shows architecture of the verification
environment. The verification environment is
composed of three levels. The top level is the stimulus
generator which generates the random testcases and
the directed testcases. The second level is the
functional level containing the driver which translates
the generator test to USB format, the USB protocol
monitor which detects the USB bus, MMC/SD card or
other storage model and functional coverage model.
The lowest level is signal level which contains the host
PHY model, device PHY model and DUT. The host
PHY and device PHY are simulate circuits in real ship.
The two PHY models of the environment imitating the
function of simulate circuits can reduce the gap
between the real working environment and verification
environment. Functional coverage, derived from the
explicit functional specification of the design, is
widely acknowledged as a central technique for
measuring the thoroughness of verification. According
to the condition of our project which contains IP cores
in the DUT, we don’t know the details of internal
signal in the IP cores, also the DUT is so complex that

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

we don’t have enough time to learn the specification of
DUT to design the functional coverage model, it is
impossible that we collect the functional coverage
from the DUT. Another method of defining functional
coverage model is derived from the stimulus, because
the stimulus set is equivalence to the functional set of
DUT. If we test enough possible cases from the host to
the device, and the coverage collected from the
stimulus arrives at the objective we expect, we can be
confident to our DUT. The verification environment
would be to verify DUT to make it compliant with
different operation system like WIN-XP, WIN-2000,
WIN-98. We will describe the compliance in the
section of Functional Coverage Model Design.

generator

USB
monitor

MMC/SD
card or
other

storage
model

DUTDevice phyHost phy

driver Functional
coverage

Figure 1.Verification Environment

IV. FUNCTIONAL COVERAGE MODEL DESIGN

Simulation-based verification is the principle means
of verification well accepted in the industry due to the
tractability and usability of simulation progress.
Simulation-based verification involves several steps,
such as test generation and response evaluation, but
coverage models are central to all steps in the
simulation process. Functional coverage serves not
only to reflect the quality of testing, but also to steer
the verification resources towards areas of insufficient
testing, and to provide a measurable indicator of the
progress of the verification. The definition of coverage
tasks is derived from manual interpretation of the
specification. To design functional coverage model for
USB mass storage device, we interpret the following
specifications:
(1).USB2.0 specification
(2).USB Mass Storage Class Bulk-Only Transport
(3).Information technology-SCSI Block Commands-2
(SBC-2)
(4).Information technology-SCSI Primary Commands-
3 (SPC-3)
(5).Information technology-Multimedia Commands-4
(MMC-4)

To enable communication, a mass storage device
should implement the minimum USB command and
SCSI command, the minimum USB command:

Get Descriptor
Set Address
Set Configuration
Clear Feature
The minimum SCSI command:
Inquiry
Read Capacity (10)
Read (10)
Request Sense
Test Unit Ready
Write (10)
To guarantee the device working normally, we

should add other commands that host sends these
possibly in some cases.

Functional
coverage

High speed Full speed

Collect pointsCorner casesIncorrect
commands

Correct
commands

SCSI
commands

USB
commands

 Figure 2.Functional Coverage Model

Figure 2 shows the architecture of hierarchical
functional coverage model. Device should support two
speed modes that high speed and low speed. The node
of high speed branching four lines which are “correct
commands”, “incorrect commands”, “corner cases”
and “collect points” is the same with the node of full
speed. The “correct commands” contain the USB
standard commands and SCSI commands. The
“incorrect commands” contain wrong commands that
don’t comply with the specification like commands
that don’t have valid CBW or meaningful CBW which
defined in USB Mass Storage Class Bulk-Only
Transport specification. The “incorrect commands”
also contain the correct commands that the device
don’t support. The “corner cases” are the thirteen cases
that defined in the specification of USB Mass Storage
Class Bulk-Only Transport spelling out how the host
and device should behave after the host sends a
command in each of thirteen cases. Above three
functional coverage models are derived from
specification manually. The “collect points” which are
not derived from specification are used to verify the
compliance between host and device. In practice, the
compliance is much important as the device would be

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

working in different PC hosts with different system
operation. The fast way designing the compliant
functional coverage point is to capture the signal from
the different real PC and device via USB2.0 protocol
analyzer. Though investment of USB2.0 protocol
analyzer is hug, it can reduce the time of verification
and guarantee the function of DUT.

Attribute descriptor Value
behave operation Clear Feature,

Get Configuration
Get Descriptor
Get Interface
Get Status
Set Address
Set Configuration

initiator Who is
initiator

 USB host

response result ACK
 NAK
 STALL
 NYET
 DATA (according to
the command)

 Table 1: Attributes of USB command model

status command
Default status

Get Descriptor
Set Address

Address status Get Descriptor
Set Address
Clear Feature
Get Configuration
Get Status
Set Configuration

Configured
status

Clear Feature
Get Configuration
Get Descriptor
Get Interface
Get Status
Set Configuration

 Table 2: Restriction for USB command

Table 1 shows an example of the attributes and their
values for USB command functional coverage model
of correct model. Table 2 shows an example of
restriction for USB command. The crucial issue for the
functional coverage metrics is to find the right
granularity. If the metrics are too details, they will
almost define testcases and so it is equivalent to
manual writing of testcases.

 How do we collect the coverage from the
verification environment? From the attributes of USB
command model, we can define the verification task
that a pair of <command, response >, where the
command is any the possible USB commands and the
SCSI commands, where the response is one of the
possible responses (ACK, NAK, STALL, NYET) for
the USB commands and (00h, 01h, 02h in
bCSWStatus of Command Status Wrapper) for the
SCSI command. Functional coverage model detects the
“driver” which sends USB commands or SCSI
commands, and “USB monitor” detects the response
from the USB bus. Functional coverage model collects
the information about both of command and response.
We can aggregate the holes from commands and
responses to check which attributes are not covered,
then analyze the holes and modify the “generator” to
cover the holes.

Based on the feature of the functional coverage, we
design the random test to verify the “correct
commands” and “incorrect commands” and the
directed test to verify the “corner cases” and “collect
point”.

V. DEBUG AND COVERAGE ANALYSIS

A mass storage device must have one IN endpoint
and one OUT endpoint in addition to endpoint zero.
Endpoint zero which is the default endpoint used for
control transfer is bidirectional. We start to verify the
DUT from endpoint zero of high speed which transfers
the USB command and the response data if needed.
We take the random test method to cover the
functional coverage model. Figure 3 shows the
coverage curve via random test. At the beginning of
the random test, the curve ascends at a very fast rate.
As the verification of processes, the rate decreases and
the curve nearly keep horizontal level. As the coverage
of tests has been measured, the next step in the
verification process is to analyze the coverage data to
find out the uncovered functional points. For example,
it is much more information to report that the “NYET”
response never occurred. The USB2.0 specification
describes that if the endpoint instead responses to the
OUT/DATA transaction with a NYET handshake, this
means that the endpoint accepted the data not have
room for another wMaxPacketSize data payload. So
host should sends many wMaxPacketSize data to let
the device respond with “NYET”.

Coverage isn’t improved using random test long
time. Through analyzing the coverage, we find that the
“corner cases” and “collect points” are not covered.
The reason is that using the random test is difficult to

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

trigger the device into the states which is defined in the
thirteen cases and the “collect point” of functional
coverage is captured from real PC and device, the
fixed order of commands is not easily covered via
random test. So we take the directed test for the
“corner cases” and “collect points” of functional
coverage model. Figure 4 shows the directed test
improving the functional coverage to nearly 99% after
the random test. The figures demonstrate that the
combination of random test and directed test applied to
the verification of USB mass storage is feasible.

 Figure 3.random test

Figure 4.random test and directed test

VI. CONCLUSION

In this paper, we have presented an approach for the
functional verification of USB2.0 card reader
including the verification environment, the design of
functional coverage model, debug and coverage
analysis. Not only be the approach of verification
applicable to USB2.0 card reader, but also fit for other
USB mass storage.

REFERENCES

[1] Universal Serial Bus Specification Revision 2.0, USB 2.0
Transceiver Macrocell InterfaceSpecification, Universal
Serial Bus Mass Storage Specification http://www.usb.org
[2] Information technology-SCSI Primary Commands -2
(SPC-2), Information technology-SCSI Block Commands-2
(SBC-2), Information technology Multimedia Commands -4
(MMC-4),http://www.t10.org
[3] A. Piziali. Functional Verification Coverage
Measurement and Analysis. Kluwei Academic Publisher.
2004.
[4] Srikanth Vijayaraghavan, Meyyappan Ramanathan. A
Practical Guide for SystemVerilog Assertions. Springer Ltd
Publisher. 2005
[5] O Lachish, E.Marus, S.Ur, A.Ziv. Hole Analysis of
Coverage Data, 39th DAC
[6] B.Beizer. Software Testing Techniques, Second Edition.
Van Nostrand Reinhold. 1990
[7] J.Bergeron. Writing Testbenches: Functional Verification
of HDL Models. Kluwer Academic Publishers. 2000. ISBN:
0-7923-7766-4
[8] Hans van der Schoot, Janick Bergeron, Transaction-level
Functional Coverage in SystemVerilog. The proceeding of
Design&Verification Conference DVC on 2006.
[9] Systemverilog Assertion Homepage (2003). http:
//www.eda.org/sv-ac/
[10] Property Specification Language: Reference Manual.
Version 1.1. Accellera June 2004.
[11] Oded Lachish, Eitan Marcus, Shmuel Ur, Avi Ziv. Hole
Analysis for Functional Coverage Data. DAC 2002.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

