
 
 

 

  
Abstract—Frequency domain adaptive filters are attractive 

in applications requiring a large number of coefficients such as 
acoustic echo cancellation (AEC). Our recent paper derived a 
not-so-restrictive fixed common step-size bound for the 
generalized multidelay adaptive filter (GMDF). Based on this 
bound, this paper introduces a new frequency-domain 
regularization for the GMDF algorithm. Extensive simulation 
results demonstrate the usefulness of our algorithm in the 
scenario of speech input signals. 
 

Index Terms—Acoustic echo cancellation, frequency domain 
adaptive filters, GMDF, regularization parameter.  
 

I. INTRODUCTION 
The normalized least-mean-square (NLMS) scheme has 

been the most popular adaptive filtering algorithm in many 
applications. It is well known that the NLMS and its variation, 
normalized block LMS (NBLMS) with block length N  , 
converge at the same rate and achieve the same 
misadjustment if the fixed step-size parameter of NBLMS is 
N   times as large as that of the NLMS [4]. However, both 
algorithms have the same convergence bounds for the 
step-size parameter. Therefore, even for a moderate block 
length N , the NBLMS has to employ a fairly small step-size 
parameter to meet the very restrictive convergence bound.  

Frequency-domain block LMS (FBLMS) adaptive filters 
are attractive alternatives for acoustic echo cancellation 
(AEC) partly because of the very low computational 
complexity that is due to the usage of fast Fourier transform 
(FFT). Soo proposed a variation of FBLMS, which was 
referred to as the multidelay frequency domain adaptive filter 
(MDF) to alleviate the delay problem associated with the 
large filter size [10]. MDF segments the filter into several 
partitions and employ as many sub-filters as well. The MDF 
belongs to the class of partitioned FBLMS (PFBLMS) 
algorithms. Moulines [9] proposed the generalized MDF 
(GMDF) that allows one to select FFT size and the block 
delay separately. This advantage is owing to the controlling 
of the overlap between the successive input blocks. The 
PFBLMS and GMDF can be implemented with 
normalization in each of the frequency bins. Some 
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researchers thought that the frequency-bin normalization 
procedure resolves the problem of slow modes of the NLMS 
algorithm and the resulting algorithm converges faster than 
the NLMS [2,6]. However, there were researchers reasoned 
that because of the restriction on the step-size bounds, the 
frequency domain algorithms actually do not perform better 
than the NLMS in convergence and tracking properties [1].  

Researchers have had different views on the convergence 
performance of PFBLMS, and the derivations of step-size 
bounds in the literature are not consistent [2,5,9]. Our recent 
paper [8] showed that bound of the fixed common step-size 
of the GMDF is N  times larger than that of the NBLMS. 
Because of this new analysis, we can choose proper step-size 
so that the well-designed GMDF can maintain good tracking 
and convergence performance and have great saving in 
computations as well. 

However, input signal is very often in low level in AEC 
application. Just like that for NLMS algorithms, a 
regularization parameter vector ( )δ n  has to be added in the 
normalization process to avoid divergence. There have been 
some regularized schemes presented to tackle this problem in 
time-domain NLMS [3,7] and frequency-domain adaptive 
filters as well. Based on our recent discovery of the step-size 
bound of the GMDF, we propose a new regularization that 
works well in the scenario of speech input signals. 

The rest of the paper is organized as follows. Section 2 
introduces the frequency-domain regularized GMDF 
algorithm. Extensive simulation results that demonstrate the 
usefulness of our filter are presented in Section 3. The 
conclusions are made in the last section of the paper. 

 

II. A NEW REGULARIZED GMDF 
Consider the GMDF with L  sub-filters, each is of 

order N  and FFT size  is 2N . Without loss of generality, we 
assume that M NL=  where M  is the filter order. The 
GMDF uses a positive integer α to control the overlap 
between the successive input blocks. Consequently, it 
updates the coefficients every /R N α=  samples. In the thk  
iteration, define reference input vector xk  and desired 
response vector dk , respectively, as 

[ ]( ), ( 1), , ( 1) T
k u kR u kR u kR N= + + −x  (1) 

[ ]( ), ( 1), , ( 1) T
k d kR d kR d kR N= + + −d  (2) 

Frequency-domain input vector for thl sub-filter, denoted as 
,l kX , 1, 2, ,l L=  is computed as 

, ( 1),
TT T

l k k l k lFFT − α − − α⎡ ⎤= ⎣ ⎦X x x  (3) 
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The corresponding frequency-domain coefficient vector 
,l kH  is defined accordingly as 

1, , ,H h 0 N

TT T
l k l kFFT ×⎡ ⎤= ⎣ ⎦  (4) 

where ,l kh  is the thl sub-filter’s time-domain coefficient 

vector. Filter output vector d̂k  is calculated as 

 1
, ,

1

ˆ  last N points of   

                           

k

L

l k l k
l

FFT −

=

=

⎡ ⎤
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⎣ ⎦
∑
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H X
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where ⊗ denotes element-wise multiplication. Frequency- 
domain error vector kE  is obtained as follows. 

ˆ
k k k= −e d d  (6) 

( 2 ) 1E 0 ,eN R

TT T
k kFFT − ×⎡ ⎤= ⎣ ⎦  (7) 

The frequency power of the thl  subfilter at thk  iteration is 
calculated as 

, , 1 , ,(1 )l k l k l k l k−= β + − β ⊗Z Z X X  (8) 

where ,l kX  denotes the complex conjugate of ,l kX , and β  is 

a forgetting factor. The coefficient vector ,l kH  is updated as 

, 1 , ,
2 GMDF

l k l k l kM+

μ
= +H H Φ , (9) 

where GMDFμ  is a fixed common un-normalized step-size 
parameter of the GMDF filter. In (9), ,l kΦ , the new 
information for updating, is obtained as 

, , ,
TT T

l k l kFFTΦ 0⎡ ⎤= φ⎣ ⎦  (10) 

where 

( )
( )

1
, ,

, 2 1

  first part of  E X

          Z 1

l k k l k

l k N

FFT −

×

⎡φ = ⊗⎣
⎤+ δ ⋅ ⎦

 (11) 

where  denotes element-wise division and δ  denotes the 
regularization parameter. 

We have recently derived a bound for the fixed common 
step-size parameter as [8] 

0 2GMDF Nμ< < . (12) 
This bound is obtained under the assumption that input signal 
is a white Gaussian process with zero mean and the variance 
is 2

uσ . Therefore, the expected value of averaged frequency 

domain power ,Zl k  can be approximated as 22 uNσ . Now 
consider situations that input signals are at very low level for 
some time, i.e., ( ) 0x n ≈ . So, ,Zl k  would be very small too. 
We choose a regularization parameter δ  to restrict the 
change of coefficient adjustment in (9) as 

2

2 2 20
(0 ) (2 )

GMDF

u

μ N
M M N

⋅
< <

+ δ σ
. (13) 

This implies that the regularization parameter δ  has to be 
greater than 2

u GMDFμσ . A workable and more conservative 
choice is  

23 GMDF uμ σ < δ . (14) 
 

III. SIMULATION RESULTS 
In this section, we present the results of several 

experiments that demonstrate the usefulness of the proposed 
regularization scheme of the GMDF algorithm. The adaptive 
filter was used to identify a 512-tap acoustic echo impulse 
response. We have compared the performance of our 
proposed to two other alternatives, i.e., NLMS and a GMDF. 
We have used the normalized squared coefficient error 
(NSCE) to evaluate the performance of the algorithms. The 
NSCE is defined as 

2

10 2

ˆ( ) ( )
( ) 10 log

( )

h h

h
o

o

n n
NSCE n

n

−
=  (15) 

where  ˆ ( )nh  is the filter coefficient vector. In order to make 
the comparison fair, the step-sizes NLMSμ  and GMDFμ   are 
chosen by the following relationship 

GMDF NLMS NLMS
NRμ μ μ
α

⎛ ⎞= ⋅ = ⋅⎜ ⎟
⎝ ⎠

. (16) 

A. AR and MA processes 
We have used AR processes and MA processes as the 

reference input signals. The acoustic echo impulse response 
was set to be time-varying from seconds 2.4 to 6.4. The 
evolution of coefficients is described by 

( ) ( )h ho on g n= + , (17) 

where ( )g n  is a white Gaussian noise with variance 310− . In 
these examples, the adaptive filter was run with the same 
structure and the same number of coefficients as the acoustic 
echo system. The additive noise is a white Gaussian process 
with variance 210− . The NSCE curves shown here are results 
of ensemble averages over 20 independent runs. The 
simulation results of the cases that GMDF employs 8L =  
and 4α =  are illustrated in Figures 1-4. For AR inputs, our  
filter exhibits better performance as shown in Figures 1 and 2 
for 8GMDFμ =  and 16GMDFμ = , respectively. For the 
relatively ill-conditioned MA inputs, our filter clearly 
outperforms the other two filters with fast convergence 
behavior and great tracking properties as well. The results are 
illustrated in Figures 3 and 4 for two different step sizes. 

B. Speech Signals 
In this experiment, the excitations are 8-second-long 

Chinese speech signals. A 512-tap time-invariant acoustic 
echo system is used in the experiments. We compared our 
filter with the ε-NLMS and the conventional regularized 
GMDF filters with 0.01δ =  and 1δ = . The results for 
Speech-I are given in Figures 5 and 6. GMDF with 1δ =  
performs slightly better than our filter after 5.5 second for the 
case  16.0GMDFμ =  as demonstrated in Figure 6. However, 
GMDF with 1δ =  performs poorly for the case 8.0GMDFμ =  
as shown in Figure 5. Results of Speech-II are shown in 
Figures 7 and 8. ε-NLMS does not perform well in the 
scenario of speech inputs. GMDF with 0.01δ = does not 
always exhibit better behavior than that of GMDF with 1δ = . 
Our filter does exhibits great performance for Speeches I and 
II, and for all other experiments we have conducted as well. 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



 
 

 

IV. CONCLUSIONS 
This paper introduced a new frequency-domain 

regularized GMDF filter. This regularization is based on our 
recent discovery of the step-size bound of the GMDF. 
Extensive simulation results of different types of inputs 
including AR processes, MA processes and speech signals 
showed that the proposed filter works well and outperforms 
the other competing techniques. 
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Fig. 1, NSCE curves of NLMS ( 0.5NLMSμ = ), GMDF ( 8.0GMDFμ = ), 

and our filter. AR input processes. 

 

 

 
Fig. 2, NSCE curves of NLMS ( 1.0NLMSμ = ), GMDF ( 16.0GMDFμ = ), 

and our filter. AR input processes. 
 
 

 
Fig. 3, NSCE curves of NLMS ( 0.5NLMSμ = ), GMDF ( 8.0GMDFμ = ), 

and our filter. MA input processes. 
 
 

 

Fig. 4, NSCE curves of NLMS ( 1.0NLMSμ = ), GMDF ( 16.0GMDFμ = ), 
and our filter. MA input processes. 
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Fig. 5, NSCE curves of NLMS ( 0.5NLMSμ = ), GMDF filters with 

0.01δ =  and 1δ = , respectively,  ( 8.0GMDFμ = ), and our filter. 
Speech input I. 

 
 
 
 
 

 

 
Fig. 6, NSCE curves of NLMS ( 1.0NLMSμ = ), GMDF filters with 

0.01δ =  and 1δ = , respectively,  ( 16.0GMDFμ = ), and our filter. 
Speech input I. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 7, NSCE curves of NLMS ( 0.5NLMSμ = ), GMDF filters with 

0.01δ =  and 1δ = , respectively,  ( 8.0GMDFμ = ), and our filter. 
Speech input II. 

 
 
 
 
 

 
 

Fig. 8, NSCE curves of NLMS ( 1.0NLMSμ = ), GMDF filters with 

0.01δ =  and 1δ = , respectively,  ( 16.0GMDFμ = ), and our filter. 
Speech input II. 
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