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Abstract—this article describes the approach of a genetic 

algorithm for solving quality–related assembly line balancing 
problem. The algorithm was taken into account of the 
requirements of how to minimize the cost of operation and 
maximize the resources utilization, while simultaneously 
maintaining the quality of assembled products. Model of genetic 
algorithm with random-weighted-sum combination used in this 
study was analyzed the existing data of sample factory showing 
that significantly fewer resources would be required, better line 
efficiency was obtained, and the quality of assembled products 
was also maintained compared to existing performance. 

In addition, optimum genetic parameters were obtained by 
full-factorial experimental design. 
 

Index Terms—Assembly Line Balancing, Design and 
Experiment, Genetic Algorithm, Genetic Parameters  

I. INTRODUCTION 
The assembly line was first introduced by Henry Ford for 

producing the T-model car [1]. It has been widely applied for 
assembling automobiles, appliances, computers and other 
consumer products [2]. The goal of assembly line designed is 
to create a smooth, continuous flow along the assembly line 
with a minimum of idle time at each workstation. A 
well-balanced assembly line has the advantage of high 
personnel and facility utilization and equity among 
employees’ work loads. Its terminology is Assembly Line 
Balancing Problem (ALBP). The ALBP is how to group the 
assembly activities, which have to be performed in an 
assembly task, then, put them into workstations, so that the 
total assembly time required at each workstation is 
approximately the same [3]. The cycle time of the assembly 
line is determined by the workstation with maximum total 
assembly time. There are two versions of the problem. 
Assuming an identical line assembly workstations and a set 
of tasks to be processed, the Type I simple assembly line 
balancing problem (SALBP-I) consists in finding an 
assignment of tasks to workstations such that the required 
number of workstations is minimized. The problem is 
constrained by a set of precedence relations between the tasks 
and a given cycle time, corresponds to maximize work time 

available per workstations. The Type II simple assembly line 
balancing problem (SALBP-II) consists in allocating tasks to 
given number of workstations in order to minimize the cycle 
time, i.e. the maximum work time of any workstation [4]. 
SALBP was specified by the following assumptions: 1) all 
input parameters are known with certainty, 2) a task cannot 
be split among two or more stations, 3) tasks cannot be 
processed in arbitrary sequences due to technological 
precedence requirements, 4) all tasks must be processed, 5) 
all stations are equipped and manned to process any task, 6) 
task time is independent of station where they are performed 
and of the preceding task, 7) any task can be processed at any 
station, 8) the line is serial, 9) the line is designed for a unique 
model of a single product, 10) for Type-I, the line cycle time 
is given and fixed and for Type-II, the number of workstation 
is given and fixed. The ALBP is difficult to be solved 
because they are involved in complex combinatorial 
optimization. If n tasks are to be performed on m 
workstations, for instance, there are potentially (n!)m 
solutions, although many of these may be infeasible due to 
precedence constraint and the others [5]. So, ALBP was 
named the NP-hard class of combinational optimization 
problems, which implied that some heuristic methods should 
be used to solve large-scale ALBP [6]. However, there are 
many objectives in the real-world being extended from the 
traditional objectives, such as need to maintain the quality of 
assembled products and required to have fast computational 
algorithms etc [7]. So, nowadays, the intuition and judgment 
are still used to design the assembly line, especially in a small 
and medium manufacturer. Accordingly, the primary of this 
study was to propose a multi-objective model of genetic 
algorithm being taken into account the quality of assembled 
products, improvement of the production efficiency and 
reduction of production cost simultaneously. The 
full-factorial experimental design was used to determine 
significant genetic parameters and their suitable level.  
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II. GENETIC ALGORITHM ASSEMBLY LINE BALANCING 
PROBLEM  

A large variety of heuristic approaches to different version 
of ALBP have been proposed in last decades. While 
constructive procedures constructing one or more feasible 
solution(s) were developed until the mid nineties, 
improvement of procedures using meta strategies like tabu 
search and genetic algorithm have been in the focus of 
researchers [8]. However, it was found that the genetic 
algorithm performs better in all performance measures than 
the other heuristics [7].  
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Genetic algorithm (GA) is a general concept for solving 
complex optimization problems which is based on 
manipulating a population of solutions by genetic operators 
like selection, recombination, and mutation. It is started by 
encoding the problem to produce a list of genes. The genes 
are then randomly combined to produce a population of 
chromosomes, each of which represents a possible solution. 
Genetic operations are performed on chromosomes that are 
randomly selected from the population. This produces 
offspring. The fitness of these chromosomes is then 
measured and the probability of their survival is determined 
by their fitness. The genetic algorithms had been widely 
applied to assembly line balancing problem [3], [6], [7], [9]. 
Almost of these studies were conducted on multi-objective 
algorithms.  Y. K. Kim et al. [6] used a GA for assembly line 
balancing with various objectives. Firstly, minimizing 
number of workstations, Secondly, minimizing cycle time, 
Thirdly, maximize workload smoothness, Fourthly, 
maximizing work relation, and Lastly, a combination of third 
and fourth objectives. They also proposed the repair 
mechanism fixing an infeasible offspring so that the offspring 
became feasible. This significance of the repair method was 
that it allowed us to employ diverse genetic operators in 
solving an ALB problem. The results of this study was 
compared to the known heuristic algorithms, Kilbridge and 
Wester, minimum upper bound (MIN-UB), maximum task 
time divided by task upper bound (MAX-DUR/UB), 
maximum task time (MAX-DUR), largest set rule (LSR), and 
Rachamadugu and Talbot’s method (R&T).  It was shown 
that their approach had better results. S.G. Ponnambalam et al. 
[7] proposed a multi-objective to solve assembly line 
balancing problems. The performance criteria, the number of 
workstations, the line efficiency, and the smoothness index 
were the multiple objectives. In addition, they had compared 
the multi-objective genetic algorithm with other heuristic 
algorithms, ranked position weight, Kilbridge and Wester, 
for example. They found that GA performed better in all 
performance measures than the other heuristics, but the 
execution time of GA was longer than the others. R-S. Chen 
et al. [9] proposed a hybrid genetic algorithm which was 
taken into account minimizing cycle time, maximizing 
workload smoothness, minimizing the frequency of tool 
change, minimizing the number of tools and machines used, 
and minimizing the complexity of assembly sequences. The 
self-tuning method was also developed to enhance the 
effective schemata of chromosome during GA processing. As 
mentioned above [6], [7], [9], these studies were conducted 
in advance, however it did not consider the quality of 
assembled product being affected by the configuration of 
assembly line. Consequently, unique assembly line balancing 
genetic algorithm (ALBGA) model was developed for our 
sample factory as a case study.        

III. GENETIC ALGORITHM FOR THE QUALITY-RELATED 
ASSEMBLY LINE BALANCING PROBLEM 

As mentioned in the last section, the multi-objective was 
proposed in this research. The quality of assembled product, 
the cost of operation, and resource utilization were explored 
simultaneously. A repair process based upon precedence 
adjustment was used in order to rectify infeasible solution 

that could be produced by genetic operations [6]. The 
algorithm is illustrated in Fig.1.  

A. Representation and initial population 
The first step in construction a genetic algorithm is defining 

a genetic representation (encoding). The encoding scheme 
being employed herein is an integer encoding which was 
proposed by Y. Y. Leu et al. [10]. All tasks are sequentially 
listed in the order that the tasks are assigned to workstations, 
this principle was named is Sequence-oriented 
representation. An initial population is randomly generated, 
the number of chromosomes in the initial and subsequent 
populations is constant and is denoted by Popsize. Next 
provided is a method of generating one random and feasible 
sequence. It is a version of topological sorting transforming a 
partial ordering into a linear ordering. 

Step 1: form an initial available set of tasks having no 
predecessors, and create an empty string. Step 2: terminate, if 
the available set is empty. Otherwise, go to Step 3. Step 3: 
select a task from the available set at random, and append it to 
the string. Step 4: update the available set by removing the 
selected task and by adding every immediate successor of the 
task if all the immediate predecessors of the successor are 
already in the string. Go to the second. 

Note that in Step 4 the available set is updated with tasks 
satisfying precedence constraints so that it always ensures the 
generation of a feasible sequence. Fig. 2 is a sample 
precedence network being used to depict the encoding 
procedure of Table 1. 

 

 
Fig.1 The structure of GA for quality-related assembly line balancing 

 
 

 
Fig. 2 Sample Precedence Network 

 
TABLE 1 

EXAMPLE OF ENCODING METHOD 
Iteration Available set Random selection Append to string 

1 {1, 2} 1 (1) 
2 {2, 3, 4} 4 (1 4) 
3 {2, 3} 2 (1 4 2) 
4 {3, 5} 5 (1 4 2 5) 
5 {3, 7} 3 (1 4 2 5 3) 
6 {6, 7} 7 (1 4 2 5 3 7) 
7 {6} 6 (1 4 2 5 3 7 6) 
8 {8} 8 (1 4 2 5 3 7 6 8) 
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B. Genetic Operation 
After a population of chromosomes being generated, the 

genetic operation which is comprised of two operators; 
crossover and mutation operators, is described here below. 
1) Single- point crossover operation 

Crossover is a GA operation which attempts to generate 
two new chromosomes that may be better than their parents. 
Two parent chromosomes are randomly selected from the 
current population for mating. Two new chromosomes are 
called offspring, will be created by swapping some parts of 
the parent chromosomes. Crossover probability (Pc) indicates 
the number of chromosome pairs that will be involved in the 
crossover operation. For this study, a single-point crossover 
technique was considered. It is a simple one that combines 
two parent chromosomes to generate two offspring. To 
achieve this, the first section is directly copied into the child 
from the first parent; the remaining genes are obtained from 
the second one. The process is then repeated in reverse order 
to produce the second child (see Fig. 3). 

2) Reciprocal exchange mutation 
Mutation is a GA operation which creates new 

individuals by making changes in a single individual. The 
reciprocal exchange mutation is used. It starts by selecting 
two points at random and then swaps them. This is illustrated 
by Fig. 4 [11]. 

C. Repair process 
An assembly line balancing problem had been developed 

from bin-package problem. The precedence constraint was 
separated them into two categories (bin-package and 
assembly line balancing). When genetic operator had been 
directly performed, it might produce infeasible offspring, 
resulting to the precedence constraints violation. So, a repair 
mechanism was required to fixes it that made the offspring 
became feasible. The repair procedure of K. K. Yeo et al. [6] 
was simple but effective. It is the same way to generate an 
initial feasible sequence presented in section III.A, except for 
Step 3, which is replaced by the following; 

Step 3:  among the tasks in the available set, select the task 
that is placed at the earliest position in the infeasible 
offspring, and appends it to the string. 

The Table 2 shows the step-by-step results of the repair 
method. An example of infeasible offspring (2 7 1 4 5 3 6 8) 
is shown here below. 

 
Fig. 3 Single-point crossover 

 
Fig. 4 Reciprocal exchange mutation 

 
TABLE 2 

EXAMPLE OF REPAIR METHOD 
Iteration Available set Infeasible offspring Repaired string 

1 {1, 2} (2 7 1 4 5 3 6 8) (2) 
2 {1, 5} (2 7 1 4 5 3 6 8) (2 1) 
3 {3, 4, 5} (2 7 1 4 5 3 6 8) (2 1 4) 
4 {3, 5} (2 7 1 4 5 3 6 8) (2 1 4 5) 
5 {3, 7} (2 7 1 4 5 3 6 8) (2 1 4 5 7) 
6 {3} (2 7 1 4 5 3 6 8) (2 1 4 5 7 3) 
7 {6} (2 7 1 4 5 3 6 8) (2 1 4 5 7 3 6) 
8 {8} (2 7 1 4 5 3 6 8) (2 1 4 5 7 3 6 8) 
9 {}  (2 1 4 5 7 3 6 8) 

D. Decoding 
A sequence-oriented representation does not break 

precedence constraints. It is called a feasible sequence. The 
feasible sequence carries many possible task assignments 
rather than one fixed assignment. In order to determine the 
best assignment, the string should be properly decoded [6]. 
For SALBP-I, the cycle time was given. A workstation is 
created, and the tasks are assigned to the workstation in the 
order that they appear in a feasible sequence while not 
violating the cycle time constraint. It is repeated until all the 
tasks are allotted. The decoding method in this article is 
presented as follows. 

Step 1: create empty workstation j by set j=1. Step 2: 
calculate Tj+TMi of the earliest gene, where Tj is the sum of 
tasks time in workstation j, and TMi is execution time of task 
i. Step 3: if Tj+TMi of the earliest gene is less than 
predetermined cycle time, then go to step 4, otherwise go to 
step 6. Step 4: pack the earliest genes to workstation j, then 
update chromosome by removing the earliest gene, so the 
next gene becomes the earliest gene. Step 5: terminate, if the 
earliest genes is depleted. Otherwise, go to step 2. 6: set j = 
j+1 and go to step 1. 

E. Fitness evaluation of quality-related assembly line 
balancing problem 

In this article, the performance measures are considered by 
the labor cost, the balance delay, and the quality of assembled 
product would be considered further. Accordingly, it is 
multi-objective optimization problem. One of the simplest 
methods for combining multiple objective functions into a 
scalar fitness solution was the weighted-sum approach [11]. 
If there are q objective functions to be maximized, the 
combined fitness function z is represented by: 

 

∑
=

=
q

k
kk xfwz

1

)(                                                                             (1) 

 

If constant weights are used to calculate z, the search 
direction in the GA is also constant. Therefore, the random 
weighted approach is proposed. The wk is computed by (2) 

 

∑ =
=

q

j jkk rrw
1

/  , k=1, 2,…, q                                              (2) 
 

where rj is nonnegative random number. The q random real 
numbers generated for the weights wk are used to calculate 
the weighted sum z. The wk terms are varied, so the selection 
probability of each string is also varied. This results in 
various search directions in multi-objective genetic 
algorithm. 

Parent 1   [1 2 4 5 3 7 6 8] Child 1 [1 2 4 5 7 3 6 8] 

Parent 2   [2 1 4 5 7 3 6 8] Child 2 [2 1 4 5 3 7 6 8] 

[1 2 5 6 3 4 7 8] 

The equation (3) shown below is the objective function 
(fitness function) which is taken into account the labor cost, 
the balance delay, and the quality of assembled product 
which are the multi-objectives in this study. 

[1 4 5 6 3 2 7 8] 

 

)(_ rqrbrc QwBwCwzMax ++= ∑                          (3)                   
 

where, Cr is labor cost relative index, Br is balance delay 
relative index, Qr is total time between quality-related tasks 
relative index, wc is weight of parameter Cr, wb is weight of 
parameter Br, and wc is weight of parameter Qr. By the way, 
(wc+wb+wq)=1. The weights of each criterion (wc,wb,wq) 
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shown in (3) indicated their relative importance of the 
particular criteria which are predefined by (2). 
1) Relative Index 

The relative index is computed by (4). 
 

)/( QBCCCr ++= , )/( QBCBBr ++= , )/( QBCQQr ++=   
(4) 

2) Labor Cost (C) 
The equation (5) shown below is the labor cost index. 
 

%100)/)((_ ×−= tt NNNCostLabor                                     (5) 
 

where, Nt was the theoretical number of workstations which 
are computed as Nt = Total assembly time/predetermine cycle 
time, N is total number of workstations. So, if the computed 
workstations number is more than the theoretical one, the 
labor cost would be much more than it too. 
3) Balance Delay (B) 

The balance delay is the conversion value of the line 
efficiency. The equation (6) shown below is the 
computational method of the balance delay. 

 

%100)/)(( ×−= ttt NCTNCBD                                            (6) 
 

where, Tt is total assembly time. 
4) Total time between quality-related tasks 

To maintain the quality level of assembled products, the 
time between task number x and task number y are kept 
because of its quality constraint. The equation (7) shown 
below is the computational method of total time between 
quality-related jobs 

 

yx

b

aj
jyx TMTMTNT −−= ∑

=
−

                                         (7) 

 

where, Tx-y is the total time between task x and y, TNj is 
execution time of workstation j,  and a was the workstation of 
xth task, b was the workstation of yth task. TMx and TMy are 
execution time of task x, and y respectively. 

F. Selection process 
The Darwinian natural selection is the essential principle 

behind GA [11]. For this study, roulette wheel selection, 
proposed by Holland, is used as the main chromosome 
selection technique. It is an elitist approach in which the best 
chromosome has a highest probability to be selected for the 
new generation. The basic roulette wheel is a stochastic 
sampling with replacement. The higher evaluation function 
value a chromosome has, the greater potential and it will be 
selected as a member of the new generation. The new 
generation has the same population size as the previous one. 
With the elitist selection, the best chromosome is firstly 
selected for inclusion in the new generation. The selection 
probability pi is presented below.  

∑ =
−−=

popsize

j jii zzzzp
1 minmin )(/)(                           (8) 

where, zmin is the worst fitness value in the chromosome pool. 
The best chromosome is registered after the selection 

process. Then, update the gen value (gen=gen+1). Repeat 
GA procedure until gen=Maxgen. 

IV. CASE COMPUTATIONAL EXPERIMENTS 
The home electrical appliance manufacturer having a turn 

over more than 3 million US dollar per year was the case 

study. The assembly line was created by line leader and 
experienced worker. The line efficiency was neglected, the 
throughput was more emphasis. Therefore, the resource 
utilization was low and the quality of assembled product is a 
big problem. 

Fig. 5 shows the precedence diagram to assembly a home 
electrical kettle product (top product model), which is 
selected in this study. The 4th task (applying silicone) and the 
12th (setting a thermostat) are the two tasks which are related 
to a quality of assembled product. The total time between 
these tasks also become the interested factor because its 
quality is depended on silicone self-setting. 

 Table 3 shows the current assembly line; which was 
designed by production manager and line leader. From the 
data, the number of workstations is 17, the line efficiency is 
54.55%, and the time between task 4th and 12th is 55.74 sec. 
Also, the utilization of workstation is between 
23.74%-100%, only 4 of them are above 70%, 10 of them are 
below 50%. The daily output is 996 sets.  

A. Index Scalar 
Further to the brainstorming with production manager and 

line leader, the index value was defined. Table 4 presents the 
value of index C of computed workstation number which is 
more than the theoretical one. Table 5 and 6 present the value 
of index B and Q respectively. 

B. Analysis of Genetic parameters 
When applying GA, it is known that the quality of the 

solution and the effectiveness of GA are likely to be 
influenced by the setting parameters. A computational 
experiment is conducted to investigate on the effects of the 
initial population (Popsize), generation (Maxgen), crossover 
probability (Pc), and mutation probability (Pm). The level of 
each parameter was adopted from preliminary studies 
[12]-[14]. 

 
TABLE 3 

CURRENT ASSEMBLY PROCESS 
Workstation no. Tasks no. Utilization (%) 

1 4-2 46.02 
2 3 31.28 
3 6-7 47.06 
4 10 34.15 
5 8 52.91 
6 12 31.00 
7 9 52.25 
8 13-17 100 
9 1-5 23.74 
10 18-21-22 93.39 
11 11-14 47.92 
12 15-19-20 95.22 
13 16-23-24 99.10 
14 26 49.10 
15 25-29 40.24 
16 27-28-30 57.61 
17 31-32 26.30 

 
TABLE 4 

THE LABOR COST INDEX VALUE 
Labor Cost Index Value (C) Condition 

5 When the Labor_Cost is 0% 
4 When the Labor_Cost between 0.1-5.0% 
3 When the Labor_Cost between 5.1-10.0% 
2 When the Labor_Cost between 10.1-15.0% 
1 When the Labor_Cost is over than 15.0% 

 
TABLE 5 

THE BALANCE DELAY INDEX VALUE 
Balance Delay Index Value (B) Condition 

5 When BD is between 0-4.0% 
4 When BD is between 4.1-8.0% 
3 When BD is between 8.1-12.0% 
2 When BD is between 12.1-16.0% 
1 When BD is more than 16.0% 
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Fig. 5 Precedence diagram of the home electrical kettle (top product model)  

 
TABLE 6 

THE TOTAL TIME BETWEEN QUALITY-RELATED Tasks INDEX VALUE 
Total time between quality-related jobs Index Value (Q) Condition 

5 When the T4-12 is  more than 96.0 sec. 
4 When the T4-12 is between 72.1-96.0 sec. 
3 When the T4-12 is between 48.1-72.0 sec. 
2 When the T4-12 is between 24.0-48.0 sec. 
1 When the T4-12 is less than 24.0 sec. 

 
The experiment was designed as a full factorial experiment 

because it was more efficient and necessary to avoid 
misleading conclusion when interactions might be present. 
This technique allowed the effects of a factor to be estimated 
at several levels of the others, yielding conclusion was valid 
over the wide range [15], [16]. The experiment with four 
factors and three replicates is carried out. A dependent 
variable in this experiment is the maximum objective 
function (max_z). The number of levels (treatments) and the 
settings of each factor are shown in Table 7. There are in total 
of 360 runs. 

ding conclusion was valid 
over the wide range [15], [16]. The experiment with four 
factors and three replicates is carried out. A dependent 
variable in this experiment is the maximum objective 
function (max_z). The number of levels (treatments) and the 
settings of each factor are shown in Table 7. There are in total 
of 360 runs. 

V. RESULTS AND DISCUSSION  V. RESULTS AND DISCUSSION  

A two-step sequential experiment is adopted in this study. 
Firstly, it was aimed to initially investigate the appropriate 
setting of GA parameters by solving a case study of 
quality-related assembly line balancing problem. Its findings 
will be then applied in the next experiment that is aimed to 
design assembly line of sample factory. The development of 
simulation program is written by using Microsoft Visual 
Basic 6.0. All experiments are simulated on personal 
computer with CPU Intel Pentium 1.86 GHz and 512 MB of 
RAM. 

A two-step sequential experiment is adopted in this study. 
Firstly, it was aimed to initially investigate the appropriate 
setting of GA parameters by solving a case study of 
quality-related assembly line balancing problem. Its findings 
will be then applied in the next experiment that is aimed to 
design assembly line of sample factory. The development of 
simulation program is written by using Microsoft Visual 
Basic 6.0. All experiments are simulated on personal 
computer with CPU Intel Pentium 1.86 GHz and 512 MB of 
RAM. 

A. The results of genetic parameters analysis A. The results of genetic parameters analysis 
Analysis of Variance (ANOVA) is used to investigate the 

effects of the main factors and their interactions. Table 8 
shows the results of this analysis (the case study is case 
experiment).  For a given confidence level α, all factors or 
interactions with a value of p ≤ α are statistically significant, 
whilst other factors may be disregarded. 

Analysis of Variance (ANOVA) is used to investigate the 
effects of the main factors and their interactions. Table 8 
shows the results of this analysis (the case study is case 
experiment).  For a given confidence level α, all factors or 
interactions with a value of p ≤ α are statistically significant, 
whilst other factors may be disregarded. 

All of main factors have values of p ≤ 0.05 and are therefore 
statistically significant, within the ranges considered. The 
first main factor, which is the probability of crossover, has 
effect on objective function value. Probability of mutation is 
also significant but less important. The last two main factors, 
population size and the number of generation, are also 
significant. The results show the objective value for 
population of 30 is better than that with 10 (see Fig. 6). 

Likewise, 30 generations produces better results than 10. 
Moreover, these two factors also have interaction. 

All of main factors have values of p ≤ 0.05 and are therefore 
statistically significant, within the ranges considered. The 
first main factor, which is the probability of crossover, has 
effect on objective function value. Probability of mutation is 
also significant but less important. The last two main factors, 
population size and the number of generation, are also 
significant. The results show the objective value for 
population of 30 is better than that with 10 (see Fig. 6). 

Likewise, 30 generations produces better results than 10. 
Moreover, these two factors also have interaction. 

An interaction was the failure of one factor that produces 
the same effect on the response at different levels of another 
factor [16]. Table 8 and Fig. 6 show the interaction between 
the population size and the number of generation.  

An interaction was the failure of one factor that produces 
the same effect on the response at different levels of another 
factor [16]. Table 8 and Fig. 6 show the interaction between 
the population size and the number of generation.  

It can be explained that increasing the number of 
generations and population, both increasing will also 
increase the number of search that enables to improve 
solution quality. However, it was found that increasing the 
number of generations and population has significant effect 
to computational time. 

It can be explained that increasing the number of 
generations and population, both increasing will also 
increase the number of search that enables to improve 
solution quality. However, it was found that increasing the 
number of generations and population has significant effect 
to computational time. 

    
TABLE 7 TABLE 7 

FACTORS AND LEVELS OF THE FULL-FACTORIAL EXPERIMENT FACTORS AND LEVELS OF THE FULL-FACTORIAL EXPERIMENT 
Factors Factors Number of Levels Number of Levels Setting Setting 

Crossover Prob. (Pc) 5 0.1, 0.2, 0.3 , 0.8 , 0.9 
Mutation Prob. (Pm) 6 0.02, 0.05, 0.10, 0.20, 0.25, 0.30  
Initial population (Popsize) 2 10, 30 
Generation (Maxgen) 2 10, 30 

 
TABLE 8 

ANOVA TABLE OF CASE EXPERIMENT 
Source of Variance Degree of 

Freedom 
Sum of 
Squares 

Mean 
Square F0 p-value 

Pc 4 0.0112328 0.0028082 12.86 0.000 
Pm 5 0.0025205 0.0005041 2.31 0.045 
Popsize 1 0.0050400 0.0050400 23.10 0.000 
Maxgen 1 0.0253156 0.0253156 116.02 0.000 
Pc x Pm 20 0.0039703 0.0001985 0.91 0.575 
Pc x Popsize 4 0.0006770 0.0001693 0.78 0.542 
Pc x Maxgen 4 0.0001411 0.0000353 0.16 0.958 
Pm x Popsize 5 0.0009858 0.0001972 0.90 0.479 
Pm x Maxgen 5 0.0003118 0.0000624 0.29 0.921 
Popsize x Maxgen 1 0.0011628 0.0011628 5.33 0.022 
Error 309 0.0523607 0.0002182   
Total 359 0.1037195    
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Fig. 6 The main effect plots of GA parameters   
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B. The results of case simulation 
By decoding the chromosome of case simulation being 

executed by GA of which the parameters are as follows: Pc= 
0.3, Pm= 0.2, Popsize= 30, Maxgen= 30, the execution time 
of 139,250 ms. is satisfying. The GA results are shown in 
Table 9, and Table 10 shows the results comparison between 
GA approach and current performance. 

The number of workstations of 12 is obtained, the line 
efficiency is 89.47%, and the time between 4th and 12th tasks 
is 102.88 sec. In addition, the mentioned time above is an 
appropriate time because the self-setting of the silicone is 
perfectly complete. Also, the utilization of workstations is 
between 73.76%-100%, and the daily output is 1,152 sets. 

By comparing the computational results obtained under 
random-weighted-sum combination with current production 
status, number of workstation is significantly decreased from 
17 to 12 (see Table 10). By considering of the quality aspect 
generated from proposed GA model, it is shown that the 
quality of assembled product is better. Finally, cycle time of 
case study is less than the current one. 

Factory Management, then, decides to change the 
workstations according to GA’s results. It is also resulted to 
decrease the manpower from 17 to 12 and to increase daily 
output from 996 sets to 1,152 sets. 

VI. CONCLUSIONS 
The combination of GA model considering quality-related 

product together with full-factorial experimental design of 
genetic parameters is shown to be an effective approach to 
minimize production cost while keeping good product 
quality of sample assembly line. Management factory was 
satisfied on the overall result after its improvement. Finally, 
engineering management and other IE techniques would be 
further considered and investigated to achieve more 
performance. 
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TABLE 9 

COMPUTATIONAL RESULT OF GA APPROACH 
Workstation no. Tasks no. Utilization (%) 

1 3-1-5-11 97.60 
2 2-4-14-7 95.00 
3 6-16 84.80 
4 9-10 99.88 
5 8-19 100 
6 12-15 88.92 
7 20-13-18 92.96 
8 17 74.72 
9 21-22 75.08 
10 23-24-25 98.88 
11 26-29-27 91.40 
12 28-30-31-32 73.76 

 
TABLE 10 

RESULTS COMPARISON BETWEEN GA APPROACH AND CURRENT PERFORMANCE 
 Current 

performance GA results 

Objective Function - 0.38 
Number of Workstations 17 12 
Line efficiency (%) 54.55 89.47 
Total time between quality-related tasks (sec.) 55.74 102.88 
Cycle time (max. executed time workstation) (sec./set) 28.90 24.99 
Daily output (sets/day) 996 1,152 
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