

Genetic algorithm approach to the quality-related
assembly line balancing problem

Choosak Pornsing, Arnat Wattanasungsuit*

Abstract—this article describes the approach of a genetic

algorithm for solving quality–related assembly line balancing
problem. The algorithm was taken into account of the
requirements of how to minimize the cost of operation and
maximize the resources utilization, while simultaneously
maintaining the quality of assembled products. Model of genetic
algorithm with random-weighted-sum combination used in this
study was analyzed the existing data of sample factory showing
that significantly fewer resources would be required, better line
efficiency was obtained, and the quality of assembled products
was also maintained compared to existing performance.

In addition, optimum genetic parameters were obtained by
full-factorial experimental design.

Index Terms—Assembly Line Balancing, Design and
Experiment, Genetic Algorithm, Genetic Parameters

I. INTRODUCTION
The assembly line was first introduced by Henry Ford for

producing the T-model car [1]. It has been widely applied for
assembling automobiles, appliances, computers and other
consumer products [2]. The goal of assembly line designed is
to create a smooth, continuous flow along the assembly line
with a minimum of idle time at each workstation. A
well-balanced assembly line has the advantage of high
personnel and facility utilization and equity among
employees’ work loads. Its terminology is Assembly Line
Balancing Problem (ALBP). The ALBP is how to group the
assembly activities, which have to be performed in an
assembly task, then, put them into workstations, so that the
total assembly time required at each workstation is
approximately the same [3]. The cycle time of the assembly
line is determined by the workstation with maximum total
assembly time. There are two versions of the problem.
Assuming an identical line assembly workstations and a set
of tasks to be processed, the Type I simple assembly line
balancing problem (SALBP-I) consists in finding an
assignment of tasks to workstations such that the required
number of workstations is minimized. The problem is
constrained by a set of precedence relations between the tasks
and a given cycle time, corresponds to maximize work time

available per workstations. The Type II simple assembly line
balancing problem (SALBP-II) consists in allocating tasks to
given number of workstations in order to minimize the cycle
time, i.e. the maximum work time of any workstation [4].
SALBP was specified by the following assumptions: 1) all
input parameters are known with certainty, 2) a task cannot
be split among two or more stations, 3) tasks cannot be
processed in arbitrary sequences due to technological
precedence requirements, 4) all tasks must be processed, 5)
all stations are equipped and manned to process any task, 6)
task time is independent of station where they are performed
and of the preceding task, 7) any task can be processed at any
station, 8) the line is serial, 9) the line is designed for a unique
model of a single product, 10) for Type-I, the line cycle time
is given and fixed and for Type-II, the number of workstation
is given and fixed. The ALBP is difficult to be solved
because they are involved in complex combinatorial
optimization. If n tasks are to be performed on m
workstations, for instance, there are potentially (n!)m
solutions, although many of these may be infeasible due to
precedence constraint and the others [5]. So, ALBP was
named the NP-hard class of combinational optimization
problems, which implied that some heuristic methods should
be used to solve large-scale ALBP [6]. However, there are
many objectives in the real-world being extended from the
traditional objectives, such as need to maintain the quality of
assembled products and required to have fast computational
algorithms etc [7]. So, nowadays, the intuition and judgment
are still used to design the assembly line, especially in a small
and medium manufacturer. Accordingly, the primary of this
study was to propose a multi-objective model of genetic
algorithm being taken into account the quality of assembled
products, improvement of the production efficiency and
reduction of production cost simultaneously. The
full-factorial experimental design was used to determine
significant genetic parameters and their suitable level.

Manuscript received November 9, 2007. This work was supported in part

by Silpakorn University.
Choosak Pornsing is a lecturer with Industrial Engineering and

Management Department, Faculty of Engineering and Industrial
Technology, Silpakorn University, Nakornpathom 7300, Thailand (e-mail:
choosak@su.ac.th).

Dr.Arnat Wattanasuangsuit is an associate professor with Industrial
Engineering and Management Department, Faculty of Engineering and
Industrial Technology, Silpakorn University, Nakornpathom 7300, Thailand
(corresponding author, phone: +66 34 254236; fax: +66 34 254236; e-mail:
arnat@gtmthailand.com).

II. GENETIC ALGORITHM ASSEMBLY LINE BALANCING
PROBLEM

A large variety of heuristic approaches to different version
of ALBP have been proposed in last decades. While
constructive procedures constructing one or more feasible
solution(s) were developed until the mid nineties,
improvement of procedures using meta strategies like tabu
search and genetic algorithm have been in the focus of
researchers [8]. However, it was found that the genetic
algorithm performs better in all performance measures than
the other heuristics [7].

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

Genetic algorithm (GA) is a general concept for solving
complex optimization problems which is based on
manipulating a population of solutions by genetic operators
like selection, recombination, and mutation. It is started by
encoding the problem to produce a list of genes. The genes
are then randomly combined to produce a population of
chromosomes, each of which represents a possible solution.
Genetic operations are performed on chromosomes that are
randomly selected from the population. This produces
offspring. The fitness of these chromosomes is then
measured and the probability of their survival is determined
by their fitness. The genetic algorithms had been widely
applied to assembly line balancing problem [3], [6], [7], [9].
Almost of these studies were conducted on multi-objective
algorithms. Y. K. Kim et al. [6] used a GA for assembly line
balancing with various objectives. Firstly, minimizing
number of workstations, Secondly, minimizing cycle time,
Thirdly, maximize workload smoothness, Fourthly,
maximizing work relation, and Lastly, a combination of third
and fourth objectives. They also proposed the repair
mechanism fixing an infeasible offspring so that the offspring
became feasible. This significance of the repair method was
that it allowed us to employ diverse genetic operators in
solving an ALB problem. The results of this study was
compared to the known heuristic algorithms, Kilbridge and
Wester, minimum upper bound (MIN-UB), maximum task
time divided by task upper bound (MAX-DUR/UB),
maximum task time (MAX-DUR), largest set rule (LSR), and
Rachamadugu and Talbot’s method (R&T). It was shown
that their approach had better results. S.G. Ponnambalam et al.
[7] proposed a multi-objective to solve assembly line
balancing problems. The performance criteria, the number of
workstations, the line efficiency, and the smoothness index
were the multiple objectives. In addition, they had compared
the multi-objective genetic algorithm with other heuristic
algorithms, ranked position weight, Kilbridge and Wester,
for example. They found that GA performed better in all
performance measures than the other heuristics, but the
execution time of GA was longer than the others. R-S. Chen
et al. [9] proposed a hybrid genetic algorithm which was
taken into account minimizing cycle time, maximizing
workload smoothness, minimizing the frequency of tool
change, minimizing the number of tools and machines used,
and minimizing the complexity of assembly sequences. The
self-tuning method was also developed to enhance the
effective schemata of chromosome during GA processing. As
mentioned above [6], [7], [9], these studies were conducted
in advance, however it did not consider the quality of
assembled product being affected by the configuration of
assembly line. Consequently, unique assembly line balancing
genetic algorithm (ALBGA) model was developed for our
sample factory as a case study.

III. GENETIC ALGORITHM FOR THE QUALITY-RELATED
ASSEMBLY LINE BALANCING PROBLEM

As mentioned in the last section, the multi-objective was
proposed in this research. The quality of assembled product,
the cost of operation, and resource utilization were explored
simultaneously. A repair process based upon precedence
adjustment was used in order to rectify infeasible solution

that could be produced by genetic operations [6]. The
algorithm is illustrated in Fig.1.

A. Representation and initial population
The first step in construction a genetic algorithm is defining

a genetic representation (encoding). The encoding scheme
being employed herein is an integer encoding which was
proposed by Y. Y. Leu et al. [10]. All tasks are sequentially
listed in the order that the tasks are assigned to workstations,
this principle was named is Sequence-oriented
representation. An initial population is randomly generated,
the number of chromosomes in the initial and subsequent
populations is constant and is denoted by Popsize. Next
provided is a method of generating one random and feasible
sequence. It is a version of topological sorting transforming a
partial ordering into a linear ordering.

Step 1: form an initial available set of tasks having no
predecessors, and create an empty string. Step 2: terminate, if
the available set is empty. Otherwise, go to Step 3. Step 3:
select a task from the available set at random, and append it to
the string. Step 4: update the available set by removing the
selected task and by adding every immediate successor of the
task if all the immediate predecessors of the successor are
already in the string. Go to the second.

Note that in Step 4 the available set is updated with tasks
satisfying precedence constraints so that it always ensures the
generation of a feasible sequence. Fig. 2 is a sample
precedence network being used to depict the encoding
procedure of Table 1.

Fig.1 The structure of GA for quality-related assembly line balancing

Fig. 2 Sample Precedence Network

TABLE 1

EXAMPLE OF ENCODING METHOD
Iteration Available set Random selection Append to string

1 {1, 2} 1 (1)
2 {2, 3, 4} 4 (1 4)
3 {2, 3} 2 (1 4 2)
4 {3, 5} 5 (1 4 2 5)
5 {3, 7} 3 (1 4 2 5 3)
6 {6, 7} 7 (1 4 2 5 3 7)
7 {6} 6 (1 4 2 5 3 7 6)
8 {8} 8 (1 4 2 5 3 7 6 8)

Initial population
(I1…In)

Crossover (z1,z2)

Mutation (z3,z4)

Repair process

Start

encoding

random selection

Fitness Evaluation
(z1,…,z4)

Stop

yes
no

 Roulette
Wheel

decoding

Terminate?
next generation

chromosome selection

Register the best
chromosome

genetic
operation

3 6

1

4

2
5

7

8

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

B. Genetic Operation
After a population of chromosomes being generated, the

genetic operation which is comprised of two operators;
crossover and mutation operators, is described here below.
1) Single- point crossover operation

Crossover is a GA operation which attempts to generate
two new chromosomes that may be better than their parents.
Two parent chromosomes are randomly selected from the
current population for mating. Two new chromosomes are
called offspring, will be created by swapping some parts of
the parent chromosomes. Crossover probability (Pc) indicates
the number of chromosome pairs that will be involved in the
crossover operation. For this study, a single-point crossover
technique was considered. It is a simple one that combines
two parent chromosomes to generate two offspring. To
achieve this, the first section is directly copied into the child
from the first parent; the remaining genes are obtained from
the second one. The process is then repeated in reverse order
to produce the second child (see Fig. 3).

2) Reciprocal exchange mutation
Mutation is a GA operation which creates new

individuals by making changes in a single individual. The
reciprocal exchange mutation is used. It starts by selecting
two points at random and then swaps them. This is illustrated
by Fig. 4 [11].

C. Repair process
An assembly line balancing problem had been developed

from bin-package problem. The precedence constraint was
separated them into two categories (bin-package and
assembly line balancing). When genetic operator had been
directly performed, it might produce infeasible offspring,
resulting to the precedence constraints violation. So, a repair
mechanism was required to fixes it that made the offspring
became feasible. The repair procedure of K. K. Yeo et al. [6]
was simple but effective. It is the same way to generate an
initial feasible sequence presented in section III.A, except for
Step 3, which is replaced by the following;

Step 3: among the tasks in the available set, select the task
that is placed at the earliest position in the infeasible
offspring, and appends it to the string.

The Table 2 shows the step-by-step results of the repair
method. An example of infeasible offspring (2 7 1 4 5 3 6 8)
is shown here below.

Fig. 3 Single-point crossover

Fig. 4 Reciprocal exchange mutation

TABLE 2

EXAMPLE OF REPAIR METHOD
Iteration Available set Infeasible offspring Repaired string

1 {1, 2} (2 7 1 4 5 3 6 8) (2)
2 {1, 5} (2 7 1 4 5 3 6 8) (2 1)
3 {3, 4, 5} (2 7 1 4 5 3 6 8) (2 1 4)
4 {3, 5} (2 7 1 4 5 3 6 8) (2 1 4 5)
5 {3, 7} (2 7 1 4 5 3 6 8) (2 1 4 5 7)
6 {3} (2 7 1 4 5 3 6 8) (2 1 4 5 7 3)
7 {6} (2 7 1 4 5 3 6 8) (2 1 4 5 7 3 6)
8 {8} (2 7 1 4 5 3 6 8) (2 1 4 5 7 3 6 8)
9 {} (2 1 4 5 7 3 6 8)

D. Decoding
A sequence-oriented representation does not break

precedence constraints. It is called a feasible sequence. The
feasible sequence carries many possible task assignments
rather than one fixed assignment. In order to determine the
best assignment, the string should be properly decoded [6].
For SALBP-I, the cycle time was given. A workstation is
created, and the tasks are assigned to the workstation in the
order that they appear in a feasible sequence while not
violating the cycle time constraint. It is repeated until all the
tasks are allotted. The decoding method in this article is
presented as follows.

Step 1: create empty workstation j by set j=1. Step 2:
calculate Tj+TMi of the earliest gene, where Tj is the sum of
tasks time in workstation j, and TMi is execution time of task
i. Step 3: if Tj+TMi of the earliest gene is less than
predetermined cycle time, then go to step 4, otherwise go to
step 6. Step 4: pack the earliest genes to workstation j, then
update chromosome by removing the earliest gene, so the
next gene becomes the earliest gene. Step 5: terminate, if the
earliest genes is depleted. Otherwise, go to step 2. 6: set j =
j+1 and go to step 1.

E. Fitness evaluation of quality-related assembly line
balancing problem

In this article, the performance measures are considered by
the labor cost, the balance delay, and the quality of assembled
product would be considered further. Accordingly, it is
multi-objective optimization problem. One of the simplest
methods for combining multiple objective functions into a
scalar fitness solution was the weighted-sum approach [11].
If there are q objective functions to be maximized, the
combined fitness function z is represented by:

∑
=

=
q

k
kk xfwz

1

)((1)

If constant weights are used to calculate z, the search
direction in the GA is also constant. Therefore, the random
weighted approach is proposed. The wk is computed by (2)

∑ =
=

q

j jkk rrw
1

/ , k=1, 2,…, q (2)

where rj is nonnegative random number. The q random real
numbers generated for the weights wk are used to calculate
the weighted sum z. The wk terms are varied, so the selection
probability of each string is also varied. This results in
various search directions in multi-objective genetic
algorithm.

Parent 1 [1 2 4 5 3 7 6 8] Child 1 [1 2 4 5 7 3 6 8]

Parent 2 [2 1 4 5 7 3 6 8] Child 2 [2 1 4 5 3 7 6 8]

[1 2 5 6 3 4 7 8]

The equation (3) shown below is the objective function
(fitness function) which is taken into account the labor cost,
the balance delay, and the quality of assembled product
which are the multi-objectives in this study.

[1 4 5 6 3 2 7 8]

)(_ rqrbrc QwBwCwzMax ++= ∑ (3)

where, Cr is labor cost relative index, Br is balance delay
relative index, Qr is total time between quality-related tasks
relative index, wc is weight of parameter Cr, wb is weight of
parameter Br, and wc is weight of parameter Qr. By the way,
(wc+wb+wq)=1. The weights of each criterion (wc,wb,wq)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

shown in (3) indicated their relative importance of the
particular criteria which are predefined by (2).
1) Relative Index

The relative index is computed by (4).

)/(QBCCCr ++= ,)/(QBCBBr ++= ,)/(QBCQQr ++=
(4)

2) Labor Cost (C)
The equation (5) shown below is the labor cost index.

%100)/)((_ ×−= tt NNNCostLabor (5)

where, Nt was the theoretical number of workstations which
are computed as Nt = Total assembly time/predetermine cycle
time, N is total number of workstations. So, if the computed
workstations number is more than the theoretical one, the
labor cost would be much more than it too.
3) Balance Delay (B)

The balance delay is the conversion value of the line
efficiency. The equation (6) shown below is the
computational method of the balance delay.

%100)/)((×−= ttt NCTNCBD (6)

where, Tt is total assembly time.
4) Total time between quality-related tasks

To maintain the quality level of assembled products, the
time between task number x and task number y are kept
because of its quality constraint. The equation (7) shown
below is the computational method of total time between
quality-related jobs

yx

b

aj
jyx TMTMTNT −−= ∑

=
−

 (7)

where, Tx-y is the total time between task x and y, TNj is
execution time of workstation j, and a was the workstation of
xth task, b was the workstation of yth task. TMx and TMy are
execution time of task x, and y respectively.

F. Selection process
The Darwinian natural selection is the essential principle

behind GA [11]. For this study, roulette wheel selection,
proposed by Holland, is used as the main chromosome
selection technique. It is an elitist approach in which the best
chromosome has a highest probability to be selected for the
new generation. The basic roulette wheel is a stochastic
sampling with replacement. The higher evaluation function
value a chromosome has, the greater potential and it will be
selected as a member of the new generation. The new
generation has the same population size as the previous one.
With the elitist selection, the best chromosome is firstly
selected for inclusion in the new generation. The selection
probability pi is presented below.

∑ =
−−=

popsize

j jii zzzzp
1 minmin)(/)((8)

where, zmin is the worst fitness value in the chromosome pool.
The best chromosome is registered after the selection

process. Then, update the gen value (gen=gen+1). Repeat
GA procedure until gen=Maxgen.

IV. CASE COMPUTATIONAL EXPERIMENTS
The home electrical appliance manufacturer having a turn

over more than 3 million US dollar per year was the case

study. The assembly line was created by line leader and
experienced worker. The line efficiency was neglected, the
throughput was more emphasis. Therefore, the resource
utilization was low and the quality of assembled product is a
big problem.

Fig. 5 shows the precedence diagram to assembly a home
electrical kettle product (top product model), which is
selected in this study. The 4th task (applying silicone) and the
12th (setting a thermostat) are the two tasks which are related
to a quality of assembled product. The total time between
these tasks also become the interested factor because its
quality is depended on silicone self-setting.

 Table 3 shows the current assembly line; which was
designed by production manager and line leader. From the
data, the number of workstations is 17, the line efficiency is
54.55%, and the time between task 4th and 12th is 55.74 sec.
Also, the utilization of workstation is between
23.74%-100%, only 4 of them are above 70%, 10 of them are
below 50%. The daily output is 996 sets.

A. Index Scalar
Further to the brainstorming with production manager and

line leader, the index value was defined. Table 4 presents the
value of index C of computed workstation number which is
more than the theoretical one. Table 5 and 6 present the value
of index B and Q respectively.

B. Analysis of Genetic parameters
When applying GA, it is known that the quality of the

solution and the effectiveness of GA are likely to be
influenced by the setting parameters. A computational
experiment is conducted to investigate on the effects of the
initial population (Popsize), generation (Maxgen), crossover
probability (Pc), and mutation probability (Pm). The level of
each parameter was adopted from preliminary studies
[12]-[14].

TABLE 3

CURRENT ASSEMBLY PROCESS
Workstation no. Tasks no. Utilization (%)

1 4-2 46.02
2 3 31.28
3 6-7 47.06
4 10 34.15
5 8 52.91
6 12 31.00
7 9 52.25
8 13-17 100
9 1-5 23.74
10 18-21-22 93.39
11 11-14 47.92
12 15-19-20 95.22
13 16-23-24 99.10
14 26 49.10
15 25-29 40.24
16 27-28-30 57.61
17 31-32 26.30

TABLE 4

THE LABOR COST INDEX VALUE
Labor Cost Index Value (C) Condition

5 When the Labor_Cost is 0%
4 When the Labor_Cost between 0.1-5.0%
3 When the Labor_Cost between 5.1-10.0%
2 When the Labor_Cost between 10.1-15.0%
1 When the Labor_Cost is over than 15.0%

TABLE 5

THE BALANCE DELAY INDEX VALUE
Balance Delay Index Value (B) Condition

5 When BD is between 0-4.0%
4 When BD is between 4.1-8.0%
3 When BD is between 8.1-12.0%
2 When BD is between 12.1-16.0%
1 When BD is more than 16.0%

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

3.66

1

Fig. 5 Precedence diagram of the home electrical kettle (top product model)

TABLE 6

THE TOTAL TIME BETWEEN QUALITY-RELATED Tasks INDEX VALUE
Total time between quality-related jobs Index Value (Q) Condition

5 When the T4-12 is more than 96.0 sec.
4 When the T4-12 is between 72.1-96.0 sec.
3 When the T4-12 is between 48.1-72.0 sec.
2 When the T4-12 is between 24.0-48.0 sec.
1 When the T4-12 is less than 24.0 sec.

The experiment was designed as a full factorial experiment

because it was more efficient and necessary to avoid
misleading conclusion when interactions might be present.
This technique allowed the effects of a factor to be estimated
at several levels of the others, yielding conclusion was valid
over the wide range [15], [16]. The experiment with four
factors and three replicates is carried out. A dependent
variable in this experiment is the maximum objective
function (max_z). The number of levels (treatments) and the
settings of each factor are shown in Table 7. There are in total
of 360 runs.

ding conclusion was valid
over the wide range [15], [16]. The experiment with four
factors and three replicates is carried out. A dependent
variable in this experiment is the maximum objective
function (max_z). The number of levels (treatments) and the
settings of each factor are shown in Table 7. There are in total
of 360 runs.

V. RESULTS AND DISCUSSION V. RESULTS AND DISCUSSION

A two-step sequential experiment is adopted in this study.
Firstly, it was aimed to initially investigate the appropriate
setting of GA parameters by solving a case study of
quality-related assembly line balancing problem. Its findings
will be then applied in the next experiment that is aimed to
design assembly line of sample factory. The development of
simulation program is written by using Microsoft Visual
Basic 6.0. All experiments are simulated on personal
computer with CPU Intel Pentium 1.86 GHz and 512 MB of
RAM.

A two-step sequential experiment is adopted in this study.
Firstly, it was aimed to initially investigate the appropriate
setting of GA parameters by solving a case study of
quality-related assembly line balancing problem. Its findings
will be then applied in the next experiment that is aimed to
design assembly line of sample factory. The development of
simulation program is written by using Microsoft Visual
Basic 6.0. All experiments are simulated on personal
computer with CPU Intel Pentium 1.86 GHz and 512 MB of
RAM.

A. The results of genetic parameters analysis A. The results of genetic parameters analysis
Analysis of Variance (ANOVA) is used to investigate the

effects of the main factors and their interactions. Table 8
shows the results of this analysis (the case study is case
experiment). For a given confidence level α, all factors or
interactions with a value of p ≤ α are statistically significant,
whilst other factors may be disregarded.

Analysis of Variance (ANOVA) is used to investigate the
effects of the main factors and their interactions. Table 8
shows the results of this analysis (the case study is case
experiment). For a given confidence level α, all factors or
interactions with a value of p ≤ α are statistically significant,
whilst other factors may be disregarded.

All of main factors have values of p ≤ 0.05 and are therefore
statistically significant, within the ranges considered. The
first main factor, which is the probability of crossover, has
effect on objective function value. Probability of mutation is
also significant but less important. The last two main factors,
population size and the number of generation, are also
significant. The results show the objective value for
population of 30 is better than that with 10 (see Fig. 6).

Likewise, 30 generations produces better results than 10.
Moreover, these two factors also have interaction.

All of main factors have values of p ≤ 0.05 and are therefore
statistically significant, within the ranges considered. The
first main factor, which is the probability of crossover, has
effect on objective function value. Probability of mutation is
also significant but less important. The last two main factors,
population size and the number of generation, are also
significant. The results show the objective value for
population of 30 is better than that with 10 (see Fig. 6).

Likewise, 30 generations produces better results than 10.
Moreover, these two factors also have interaction.

An interaction was the failure of one factor that produces
the same effect on the response at different levels of another
factor [16]. Table 8 and Fig. 6 show the interaction between
the population size and the number of generation.

An interaction was the failure of one factor that produces
the same effect on the response at different levels of another
factor [16]. Table 8 and Fig. 6 show the interaction between
the population size and the number of generation.

It can be explained that increasing the number of
generations and population, both increasing will also
increase the number of search that enables to improve
solution quality. However, it was found that increasing the
number of generations and population has significant effect
to computational time.

It can be explained that increasing the number of
generations and population, both increasing will also
increase the number of search that enables to improve
solution quality. However, it was found that increasing the
number of generations and population has significant effect
to computational time.

TABLE 7 TABLE 7

FACTORS AND LEVELS OF THE FULL-FACTORIAL EXPERIMENT FACTORS AND LEVELS OF THE FULL-FACTORIAL EXPERIMENT
Factors Factors Number of Levels Number of Levels Setting Setting

Crossover Prob. (Pc) 5 0.1, 0.2, 0.3 , 0.8 , 0.9
Mutation Prob. (Pm) 6 0.02, 0.05, 0.10, 0.20, 0.25, 0.30
Initial population (Popsize) 2 10, 30
Generation (Maxgen) 2 10, 30

TABLE 8

ANOVA TABLE OF CASE EXPERIMENT
Source of Variance Degree of

Freedom
Sum of
Squares

Mean
Square F0 p-value

Pc 4 0.0112328 0.0028082 12.86 0.000
Pm 5 0.0025205 0.0005041 2.31 0.045
Popsize 1 0.0050400 0.0050400 23.10 0.000
Maxgen 1 0.0253156 0.0253156 116.02 0.000
Pc x Pm 20 0.0039703 0.0001985 0.91 0.575
Pc x Popsize 4 0.0006770 0.0001693 0.78 0.542
Pc x Maxgen 4 0.0001411 0.0000353 0.16 0.958
Pm x Popsize 5 0.0009858 0.0001972 0.90 0.479
Pm x Maxgen 5 0.0003118 0.0000624 0.29 0.921
Popsize x Maxgen 1 0.0011628 0.0011628 5.33 0.022
Error 309 0.0523607 0.0002182
Total 359 0.1037195

M
ea

n
of

 z

0.90.80.30.20.1

0.370

0.365

0.360

0.355
0.300.250.200.100.050.02

3010

0.370

0.365

0.360

0.355
3010

Pc Pm

Maxgen Popsize

Main Effects Plot (data means) for z

Fig. 6 The main effect plots of GA parameters

2

3

6

4

5

7

8

9

10 12

13

17

18

21 22 23

25 29

24

26

27

28

30 31 32

5.36

9.04

7.94

3.20

15.29

8.50

5.10 9.87

15.10

8.96

10.22

18.68

8.47

8.95 9.82 10.23

8.78 2.85

5.71

5.81

14.19 11 16

5.47

5.37 3.85 3.75

i
TMi

where,
i is task 1,2,…,M
TMi is execution time of task i
Tt is total assembly time = 268.24 sec.

14

8.50 12.70

5.35 9.70

15 20

19

13.27 4.55

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

B. The results of case simulation
By decoding the chromosome of case simulation being

executed by GA of which the parameters are as follows: Pc=
0.3, Pm= 0.2, Popsize= 30, Maxgen= 30, the execution time
of 139,250 ms. is satisfying. The GA results are shown in
Table 9, and Table 10 shows the results comparison between
GA approach and current performance.

The number of workstations of 12 is obtained, the line
efficiency is 89.47%, and the time between 4th and 12th tasks
is 102.88 sec. In addition, the mentioned time above is an
appropriate time because the self-setting of the silicone is
perfectly complete. Also, the utilization of workstations is
between 73.76%-100%, and the daily output is 1,152 sets.

By comparing the computational results obtained under
random-weighted-sum combination with current production
status, number of workstation is significantly decreased from
17 to 12 (see Table 10). By considering of the quality aspect
generated from proposed GA model, it is shown that the
quality of assembled product is better. Finally, cycle time of
case study is less than the current one.

Factory Management, then, decides to change the
workstations according to GA’s results. It is also resulted to
decrease the manpower from 17 to 12 and to increase daily
output from 996 sets to 1,152 sets.

VI. CONCLUSIONS
The combination of GA model considering quality-related

product together with full-factorial experimental design of
genetic parameters is shown to be an effective approach to
minimize production cost while keeping good product
quality of sample assembly line. Management factory was
satisfied on the overall result after its improvement. Finally,
engineering management and other IE techniques would be
further considered and investigated to achieve more
performance.

ACKNOWLEDGMENT
The authors would like to express our gratitude to

employees of sample factory for their kind collaboration, and
Dr. Pupong Pongcharoen, assistant professor, Naresuan
University, Thailand, for his useful suggestion.

TABLE 9

COMPUTATIONAL RESULT OF GA APPROACH
Workstation no. Tasks no. Utilization (%)

1 3-1-5-11 97.60
2 2-4-14-7 95.00
3 6-16 84.80
4 9-10 99.88
5 8-19 100
6 12-15 88.92
7 20-13-18 92.96
8 17 74.72
9 21-22 75.08
10 23-24-25 98.88
11 26-29-27 91.40
12 28-30-31-32 73.76

TABLE 10

RESULTS COMPARISON BETWEEN GA APPROACH AND CURRENT PERFORMANCE
 Current

performance GA results

Objective Function - 0.38
Number of Workstations 17 12
Line efficiency (%) 54.55 89.47
Total time between quality-related tasks (sec.) 55.74 102.88
Cycle time (max. executed time workstation) (sec./set) 28.90 24.99
Daily output (sets/day) 996 1,152

REFERENCES
[1] Jay Heizer, Barry Render, Operation Management, New Jersey:

Pearson Prentice Hall, 2006, pp. 355-359.
[2] Ronald G. Askin, Jeffrey B. Goldberg, Design and Analysis of Lean

Production Systems, New York: John Wiley & Sons, 2001, pp.
395-399.

[3] J. Rubinovitz, G. Levitin, “Genetic algorithm for assembly line
balancing,” International Journal of Production Economics, vol.41,
Issue 1-3, pp. 343-354, Oct 1995.

[4] R. Brahim, D Alexandre, D. Alain, and B. Antoneta, “State of Art of
Optimization methods for Assembly Line design,” Annual Reviews in
Control, vol. 26, pp. 163-174, 2002.

[5] P. Pongchareon, C. Hicks, P.M. Braiden, and D.J. Stewardson,
“Determining optimum Genetic Algorithm parameters for scheduling
the manufacturing and assembly of complex products,” International
Journal of Productions Economics, vol. 78, pp. 311-322, 2002.

[6] K. K. Yeo, J. K. Yong, and K. Yeongho, “Genetic Algorithms for
Assembly Line Balancing with Various Objectives,” Computer&
Industrial Engineering, vol. 30, Issue 3, pp. 397-409, 1996.

[7] S.G. Ponnambalam, P. Aravindan, and G. Mogileeswar Naidu, “A
Multi-Objective Genetic Algorithm for Solving Assembly Line
Balancing Problem,” The International Journal of Advanced
Manufacturing Technology, vol. 16, pp. 341-352, 2000.

[8] S. Armin, B. Christian, “State-of-the-art exact and heuristic solution
procedures form simple assembly line balancing,” European Journal of
Operation Research, vol. 168, pp. 666-693, 2006.

[9] R-S. Chen, K-Y. Lu, and S-C. Yu, “A hybrid genetic algorithm
approach on multi-objective of assembly planning problem,”
Engineering Applications of Artificial Intelligence, vol. 15,
pp.447-457, 2002.

[10] Y. Y. Leu, L. A. Matheson, and L. P. Rees, “Assembly line balancing
using genetic algorithms with heuristic-generated initial populations
and multiple evaluation criteria,” Decision Sciences, vol. 25, Issue 4,
pp. 581-606. 1994.

[11] M. Gen, and R. Chen, Genetic Algorithms & Engineering
Optimization. New York: John Wiley & Sons, 2000, pp. 124-131.

[12] E. J. Anderson, M. C. Ferris, “Genetic Algorithms for Combinatorial
Optimization: The Assembly Line Balancing Problem,” Journal of
Computing, vol. 6, No. 2, pp. 161-173. 1994.

[13] K. Asaarungsaengkul, and S. Nanthavanij, “A Genetic Algorithm
Approach to selection of Engineering Controls for Optimal Noise
Reduction,” ScienceAsia, vol.33, pp. 89-101, 2007.

[14] P. Pongchareon, W. Chainate, and P. Thapatsuwan, “Exploration of
Genetic Parameters and Operators through Traveling Salesman
Problem,” ScienceAsia, vol. 33, pp. 215-222, 2007.

[15] P. Pongchareon, C. Hicks, and P.M. Braiden, “The development of
genetic algorithms for the finite capacity scheduling of complex
products, with multiple levels of product structure,” European Journal
of Operational Research, vol. 152, pp. 215-225, 2004.

[16] D. Montgomery, Design and Analysis of Experiment, New Jersey: John
Wiley & Sons, 2005, pp.160-197.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

	I. INTRODUCTION
	II. Genetic Algorithm Assembly Line Balancing Problem
	III. Genetic Algorithm for The quality-related assembly line balancing problem
	A. Representation and initial population
	B. Genetic Operation
	1) Single- point crossover operation
	2) Reciprocal exchange mutation

	C. Repair process
	D. Decoding
	E. Fitness evaluation of quality-related assembly line balancing problem
	1) Relative Index
	2) Labor Cost (C)
	3) Balance Delay (B)
	4) Total time between quality-related tasks

	F. Selection process

	IV. CASE COMPUTATIONAL EXPERIMENTS
	A. Index Scalar
	B. Analysis of Genetic parameters

	V. Results and Discussion
	A two-step sequential experiment is adopted in this study. Firstly, it was aimed to initially investigate the appropriate setting of GA parameters by solving a case study of quality-related assembly line balancing problem. Its findings will be then applied in the next experiment that is aimed to design assembly line of sample factory. The development of simulation program is written by using Microsoft Visual Basic 6.0. All experiments are simulated on personal computer with CPU Intel Pentium 1.86 GHz and 512 MB of RAM.
	A. The results of genetic parameters analysis
	B. The results of case simulation

	VI. Conclusions

