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Abstract—The defect inspection station is one of the major 

processes in module assembly stage of TFT-LCD panel 
manufacturing. Because this process is usually examined 
manually through human vision, its cycle time estimation is 
more uncontrollable and therefore could easily affect the 
customer response time. Hence, this study would like to apply 
Bayesian networks approach to establish a reliable cycle time 
prediction model for this key procedure. Our initial model 
includes work-in-process, throughput, yield, and number of 
product mixes as the possible explanatory drivers of defect 
inspection cycle time. To validate the applicability of proposed 
model, structural and parameter learning is further performed 
through the data of a TFT-LCD manufacturing plant. Our 
findings not only demonstrate the feasibility of Bayesian 
approach in cycle time estimation but also prove its prediction 
quality by comparing to the results from discriminant analysis. 
 

Index Terms—Cycle time, Bayesian networks, Discriminant 
analysis.  
 

I. INTRODUCTION 
Due to the growing demand of light, thin, and 

power-saving electronic products, the development of 
TFT-LCD (Thin Film Transistor - Liquid Crystal Display) 
industry is prosperous in today’s digital broadcasting age. 
According to the study of DisplaySearch, global LCD 
television shipments exceed 54 million sets in 2006. As more 
countries switch off analog broadcasting services in the near 
future, the explosive needs of TFT-LCD panels can be 
expected. Generally speaking, TFT–LCD panel is primarily 
used as a display instrument for computers or consumer 
electronics. Meanwhile, its flat panel displays (FPD) could 
also be applied in other technology solutions [2]. Comparing 
to the traditional cathode ray tube (CRT) technology, 
TFT-LCD panel is light and small in size. In addition, it 
flickers less, consumes less power, and does not produce 
electromagnetic radiation. Principal TFT-LCD components 
include polarizing filter, glass substrate, transparent 
electrodes, alignment layer, liquid crystal, spacer, color filter, 
backlighting, etc [11]. Its manufacturing requires 
sophisticated upstream industries including glass substrate, 
backlight module, color filter, polarizer, flexible print circuit, 
driver IC, printed circuit board, and chemical to support the 
whole TFT-LCD supply chain [8].  

The manufacturing of TFT-LCD is basically composed of 
three key processes: array, cell, and module. In the module 

assembly process, panels go through crucial procedures such 
as chip on glass, printed circuit board (PCB), PCB inspection, 
silicon dispenser, assembly, and defect inspection to 
complete the final products. Among the above mentioned 
processes in module assembly, defect inspection is likely 
becoming the bottleneck for customer response time due to 
its characteristics of manual operations.  Operators in defect 
inspection station commonly have to visually examine the 
electrical specifications, appearance specifications, and 
outside dimension of panels. For example, there should be 
less than 8 bright dots and 8 dark dots under the panel 
inspection of electrical specifications. Besides, the total dots 
defects should be less than 12 dots [3]. Operators have to use 
naked eyes through the assistance of neutral density filter to 
discriminate display mura from the samples based on the 
agreement between the manufacturer and customer [10]. 
Moreover, operators have to examine active area, bezel, label, 
solder, screw, white sheet, connector, and flexible print 
circuit board for appearance specification and dimension, 
weight, display tolerance, and panel gap for outside 
dimension check. Although there have been developed 
machine-operated methods for specific types of panel defects 
[10][12][15][20], most manufacturers still ask the operators 
to use the images produced from pattern generator, video 
board, or luminance colorimeter to visually detect panel 
flaws. As a result, cycle time estimation of defect inspection 
is unlikely to be provided by manufacturing execution system 
and is generally determined by experienced practitioners. 
However, their cycle time estimates on defect inspection are 
generally unreliable and could cause delay on delivery 
response time. Hence, this study would like to investigate 
how to develop a dependable prediction model for this 
particular manual- operated procedure to avoid the 
drawbacks of human assessment.  

The approach of Bayesian networks (BNs) was applied to 
construct the cycle time estimation model because of its 
modeling advantages in graphical representation and learning 
capability. Because Bayesian network model requires the 
specifications of dependent variables for defect inspection 
cycle time, related variables are explored in section 2. Details 
of model construction from BNs methodology is then 
described in section 3. To validate the applicability of our 
proposed model, a TFT-LCD panel factory was selected as 
our case study. Based on the data collected from this sample 
factory, results of structural learning, parameter learning and 
statistical inference are later investigated in section 4. 
Prediction quality of BNs is also compared with the findings 
from discriminant analysis. In the final section, conclusions 
about BNs approach for defect inspection cycle time in 
TFT-LCD industry are addressed. 
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II. PREDICTORS OF CYCLE TIME ESTIMATION 
Although studies regarding the estimation of defect 

inspection cycle time are limited, we tried to understand the 
potential predictor variables of our research interest through 
the literature review of cycle time prediction in the electronic 
industry. For example, Srivarsan and Kempf [18] described 
an effective approach to throughput time modeling in a 
semiconductor wafer fabrication facility. They found out that 
process time, transport time, variable availability of resource, 
machine and operator dedications, non-product lots, batching 
and setups, work-in-process (WIP) management policies, lots 
on hold and rework lots are significant contributors to factory 
throughput time. Zargar [21] developed an equation that is 
composed of machine setup time, number of wafers in a lot, 
process time, rework time, and probability that a wafer fails 
to compute the expected lot cycle time. Raddon and Grigsby 
[16] constructed an estimation model for throughput time. 
They considered utilization over availability, theoretical 
throughput time, number of tools, and number of steps in line 
as the potential factors of throughput time. Besides, they also 
approximated step cycle time by the variability of arrival and 
processing time, average step cycle time, utilization, and 
number of machines. Lee et al. [14] introduced a linear 
programming model for wafer production planning in 
semiconductor wafer fabrication. The objective of this model 
is to optimize the behaviors of cycle time and the level of 
WIP in order to satisfy the due dates of demand under the 
capacity constraints of capacitated loading procedure. 
Through the understanding of their planning model, factors 
like capacity, WIP, and cycle time are critical in the 
consideration of wafer production planning. Study from 
Sivakumar and Chong [17] applied a data driven discrete 
event simulation model to discuss the relationship between 
input variables and output variables in semiconductor 
backend manufacturing system. Features like preventative 
maintenance schedules, yield information, rework, units per 
hour, batch process time, down time, shift pattern, set-up 
time matrix and product mix variety are taken into account in 
their model. Findings of this study can help to control input 
variables for cycle time reduction. 

Additionally, Haberle and Graves [5] investigated the 
cycle time estimation models for design stage, resource 
planning stage, and manufacturing stage of printed circuit 
board. Variables of redesign, in-circuit test, and board type 
are used for the prediction of design phase cycle time. 
Meanwhile, they considered board type, number of signal 
layers, and part lead form as the potential drivers of cycle 
time in resource planning phase. In the stage of 
manufacturing, board function and number of layers are 
correlated to cycle time assessment. Their mathematical 
model of total cycle time includes board function, component, 
redesign, and in-circuit test as the predictor variables. Hung 
and Chang [7] experimented exponential smoothing method 
and iterative empirical curve approach to predict flow time in 
dispatch rules. Findings indicate that the hours of a small 
time period, number of machine in work station, the total 
workload arrival to work station, the queue amount of work 
station, the capacity of work station, and the loading rate of 
work station are highly related to the flow time prediction 
under the iterative empirical curve approach. Chung and 

Huang [4] analyzed the characteristics of material flow for a 
wafer fab and then developed its corresponding algorithms 
for cycle time estimation. Findings show that their algorithm 
is able to provide reliable cycle time estimations with or 
without existing engineering lots. Haller, Peikert, and Thoma 
[6] discussed how to manage cycle time through WIP control 
and monitoring. Findings implied that yield, product 
qualification, and equipment qualification could be directly 
influenced by cycle time. Finally, Beeg [1] also describes 
how to predict future wafer fab cycle time. Related data such 
as equipment uptime, equipment utilization, number of 
process steps running in the work center, process speed, 
theoretical fastest cycle time per step, current cycle time per 
step, number of tools, and number of processed wafers are 
used for cycle time estimation. According to the above 
literature review, various factors of cycle time predictions are 
examined in different situations of manufacturing processes. 
Although there are little studies addressed the issue of defect 
inspection cycle time, the above mentioned variables could 
be the potential drivers of our research interest. Hence, next 
section will describe how to select the suitable explanatory 
variables for the cycle time estimation model of defect 
inspection. 

III. CONSTRUCTION OF BAYESIAN MODEL 
Instead of using the techniques such as data-driven 

(activity-based), simulation, queuing theory, regression 
analysis, or hybrid approach mentioned in section 2, we 
applied Bayesian networks methodology to construct an 
estimation model for defect inspection cycle time. BN is a 
reasoning approach that has many advantages that other 
techniques do not have. For example, we can use observed 
knowledge to validate the graphical representation of BN 
model even if we were unsure about the relationships among 
variables. Conditional probabilities can be also updated 
through the collection of new data even if the prior beliefs are 
unreliable. Besides, BN is able to handle incomplete data or 
different data types without further assumptions or 
adjustments. As some of the cycle time estimation methods 
mentioned above may need detailed information on 
corresponding procedures and parameters, Bayesian 
networks on the other hand can handle those problems 
through parameter learning or structural learning from 
accumulating data. Because we do not have strong prior 
knowledge regarding model structure or conditional 
probabilities, BN approach is suitable for our research 
situations. 

Formally, BN is composed of qualitative and quantitative 
configurations. A directed acyclic graph with nodes and 
directed arcs has to be specified at qualitative stage of BN 
construction. Nodes in BN models denote variables of 
interests. Arcs between nodes imply conditional dependences 
among variables. At quantitative level, beliefs are 
represented by conditional probability distributions. Here in 
this section, we start with the discussion of qualitative 
construction of BN model. Then the development of 
quantitative specification and statistical inference based on 
the data collected from a TFT-LCD panel factory is discussed 
later in section 4. 

In order to depict the qualitative structure of BN model, 
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factors that might affect the defect inspection cycle time have 
to be identified first. Due to the manual operation nature of 
defect inspection in TFT-LCD manufacturing, cycle times of 
individual inspection procedures are generally short and 
operator-dependent. Data for corresponding activities within 
defect inspection station is therefore hard to collect. To 
resolve this situation, data of preceding stations that can be 
retrieved from manufacturing execution systems becomes the 
candidates of cycle time predictors. Under the assumptions 
that the outputs of operators have no significant differences, 
the volume and complexity of products before entering the 
defect inspection station may affect the performance of 
inspection. Hence, according to the literature review in 
section 2, estimation model of this study only includes WIP 
in previous period, throughput in previous period, yield in 
previous period, and number of product mixes in current 
period as the predictor variables of defect inspection cycle 
time. Weekly data is considered in order to be consistent with 
the interval of scheduling and planning in TFT-LCD plants. 
Consequently, direct arcs are drawn from these predictor 
nodes to the node of cycle time in our graphical model. These 
arcs illustrates that cycle time is dependent on predictor 
variables WIP, throughput, yield and product mixes. Figure 1 
demonstrates the initial relationships among variables based 
on our model assumptions. This conceptual model is used to 
estimate the defect inspection cycle time from the 
perspectives of Bayesian theories. Although there is no prior 
knowledge regarding these relationships, structural learning 
of BNs can be adopted for further removal or addition of 
corresponding arcs. Algorithm of necessary path condition 
(NPC) was applied for structural learning in this study [19]. 
Because probabilities are used to encode beliefs or uncertain 
events in BNs at quantitative level, we also applied 
expectation-maximization (EM) algorithm [13] to use 
collected data to estimate the conditional probability 
distributions of our estimation model. To make inference 
through BN model, this study utilized the probability 
updating algorithm from Jensen, Lauritzen, and Olesen [9] to 
compute the conditional probabilities of variables given the 
evidence on other variables. Because conditional 
probabilities are used to make inference from Bayesian 
perspectives, the conditional probabilities of explanatory 
variables given the evidences of cycle time and the 
conditional mean of cycle time given the evidences of 
explanatory variables are computed in this study to analyze 
the behavior of defect inspection cycle time.  

 

 
Figure 1: Bayesian Model for Cycle Time Estimation 

IV. PRACTICAL APPLICATION 
Based on the proposed model described in section 3, 

model applicability was tested against a TFT-LCD 
manufacturing plant. A total of 91 weekly data regarding 
cycle time, work-in-process, throughput, yield, and number 
of product mixes was retrieved from manufacturing 
execution systems of the plant. Each variable is categorized 
into 4 conditions for practical explanation. For example, 
cycle time is classified into (1) less than 6 hours, (2) between 
6 hours and 12 hours, (3) between 12 hours and 18 hours, and 
(4) more than 18 hours. The other predictor variables are 
categorized into (1) low, (2) medium-low, (3) medium-high, 
and (4) high. These definitions of classifications are specified 
by plant engineers to accord with on-site requirements. In the 
following discussion, findings of structural learning and 
parameter learning of our BN model based on the data of six 
seasons are described first in subsection A. After completing 
the qualitative and quantitative specifications of BN model 
through data learning, results of inference and estimation are 
discussed in subsection B. We applied one season of data to 
analyze the prediction quality of BN approach. Estimation 
results of BN model were also compared with the ones from 
discriminant analysis. 

A. Structural and Parameter Learning 
In order to construct a reliable model for estimation, 

learning mechanism was applied upon the original 
conceptual model. According to NPC algorithm, result of 
structural learning is depicted in Figure 2, where original arcs 
are still remained in the new model. It indicates that our 
initial dependent assumptions regarding cycle time and 
predictor variables are consistent with actual observations. 
Besides, an additional arc drawing from “Product Mix” to 
“Yield” after structural learning represents the conditional 
dependent of “Yield” on “Product Mix” from accumulating 
data. This minor adjusted model is later used for parameter 
learning and cycle time prediction. 

 
Figure 2: Bayesian Model after Structural Learning 

 
After constructing the qualitative level of BN model, EM 

algorithm was applied to perform parameter learning for 
updating probabilities. Because joint probabilities are 
difficult to represent in tabular format, marginal probabilities 
after parameter learning are shown in Table 1. In terms of 
mathematical expression, cells in Table 1 demonstrate the 
results of probabilities P(Variable = i | Data of 6 seasons), 
where i = 1,2,3,4. For example, the marginal probabilities of 
cycle time = i given the data of 6 seasons are 0.3396, 0.3717, 
0.1626 and 0.1259 for i = 1, 2, 3, and 4 respectively. It means 
that around 70% of defect inspection cycle time is less than 

Throughput WIP 

Yield 

Cycle Time 

Throughput WIP

Cycle Time 

Yield Product Mix

Product Mix 
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12 hours. Meanwhile, the posterior marginal probability of 
WIP = “Medium-Low” is 0.5385, which is significantly 
higher than the other conditions of WIP. For the predictor 
variables of throughput and yield, around 70% of the 
conditions occur in “Medium-Low” or “Medium-High”. On 
the other hand, the probabilities of product mix are almost 
evenly distributed for each condition. These posterior 
marginal probabilities can help us understand the likely 
distributions of variables. In addition, the following inference 
discussion is based on the joint probabilities after EM 
learning algorithm for the corresponding variables in our 
proposed estimation model. 
 

Table 1: Marginal Probabilities after Parameter Learning 

 1 2 3 4 
Cycle Time 33.96 37.19 16.26 12.59 
WIP 21.79 53.85 15.38   8.97 
Throughput 19.23 37.18 32.05 11.54 
Yield 14.10 33.33 39.74 12.84 
Product Mix 20.51 34.62 23.08 21.79 
Unit: % 

B. Statistical Inference 
From the view point of Bayesian approach, the conditional 

probabilities given evidence can be used to make statistical 
inference. Thus in this study, the estimation of cycle time is 
analyzed through different angles of probability distributions. 
We start with the discussion of expected cycle time given the 
conditions of respective variables. Findings of expected cycle 
time are summarized in Table 1, where the mean (μ) and 
standard deviation (σ) of cycle time given the evidence of 
predictor variables are calculated by updating algorithm from 
Jensen, Lauritzen, and Olesen [9]. According to the results of 
column WIP in Table 1, expected cycle time has highest 
value of 2.58 when WIP is observed as “High” and lowest 
value of 1.86 when WIP is observed as “Medium-Low”. But 
the mean differences between various conditions of predictor 
variables are smaller than 0.5 for throughput, yield, and 
product mix. It implies that the expected difference of defect 
inspection cycle time is less than 3 hours given any evidence 
from these three predictor variables. In addition, findings 
from Table 1 also suggest that expected cycle time is around 
“2", which indicates the expected cycle time is more likely 
less than 12 hours but higher than 6 hours given any evidence 
from individual predictor variable. Staff of defect inspection 
station could refer this value for customer response time 
under the situation of limited available information. 
 
Table 1: Expected Cycle Time Given the Value of Predictor 

Value of 
Variable  WIP Through-

put Yield Product 
Mix 

1 μ 2.13 2.33 2.26 1.96 
σ 1.11 1.02 1.07 1.05

2 μ 1.86 2.01 1.90 2.04 
σ 0.86 0.94 1.01 1.00

3 μ 2.44 1.92 2.09 2.19 
σ 1.02 0.98 0.91 0.91

4 μ 2.58 2.28 2.28 2.12 
σ 1.07 1.07 1.08 1.02

To analyze cycle time behavior from Bayesian perspective, 
we can also compute the posterior probability of predictor 
variable given the evidence of cycle time. Let’s consider the 
situation of WIP first. Suppose the observed evidence of 
cycle time is less than 6 hours, posterior probabilities of WIP 
= “Low”, “Medium-Low”, “Medium-High”, and “High” are 
0.2475, 0.6038, 0.9130, and 0.5740 respectively according to 
Table 2. It implies that the volume of WIP is likely in 
“Medium-Low” level when observed cycle time is less than 6 
hours. Similar situation happens when the evidence of cycle 
time is between 6 hours and 12 hours. Although WIP = 
“Medium-Low” still has the highest probability when 
observed cycle time is between 12 and 18 hours, the 
probability distribution is spread over the other values of 
WIP. Table 2 also indicates that the probabilities of WIP are 
more evenly distributed and the standard deviation (σ) of 
WIP is higher as the observed cycle time is getting higher. 
However, we are unable to have a better understanding of 
cycle time performance from the expected values (μ) of WIP 
given the evidence of cycle time because their differences are 
not significant. 
 
Table 2: Posterior Probability of WIP Given the Evidence of 
Cycle Time 

CT
W < 6 hrs 6 ~ 12 hrs 12 ~ 18 

hrs > 18 hrs 

1 24.75% 15.73% 23.19% 29.94% 
2 60.38% 64.42% 35.33% 28.89% 
3    9.13% 14.61% 23.05% 24.64% 
4    5.74%    5.24% 18.43% 16.53% 
μ 1.96 2.09 2.37 2.28 
σ 0.75 0.71 1.03 1.06

CT: Cycle Time; W: WIP 
 
Next, let’s discuss the situation of throughput. Table 3 

summarizes the posterior probabilities of throughput given 
the evidence of cycle time. When the observed evidence of 
cycle time is less 12 hours, the total posterior probability of 
P(Throughput = “Medium-Low” | Cycle Time = 6 hours or 
6~12 hours) and P(Throughput = “Medium-High” | Cycle 
Time = 6 hours or 6~12 hours) is close to 75%. Similarly like 
the situation of WIP, the standard deviation (σ) of throughput 
is getting higher and the probability distribution of 
throughput is more dispersed over the possible values of 
cycle time as the observed cycle time increases. Meanwhile, 
the differences among the expected values of throughput 
given the evidence of cycle time are still small. 
 
Table 3: Posterior Probability of Throughput Given the 
Evidence of Cycle Time 

CT
T < 6 hrs 6 ~ 12 hrs 12 ~ 18 

hrs > 18 hrs 

1 14.62% 15.98% 32.88% 23.63% 
2 36.28% 42.94% 30.76% 30.88% 
3 39.45% 30.61% 22.92% 28.13% 
4    9.65% 10.74% 13.44% 17.36% 
μ 2.44 2.37 2.17 2.39 
σ 0.85 0.88 1.03 1.03

CT: Cycle Time; T: Throughput 
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The probability distribution of yield given the evidence of 
defect inspection cycle time is a little different than the 
distributions of previous discussion. According to the results 
of Table 4, the posterior probability distribution of 
throughput given the evidence of cycle time = ‘3’ or ‘4’ is 
slightly more centralized than the ones from WIP and 
throughput. In the meantime, the standard deviation of yield 
is smallest and the posterior probability of yield = 
‘Medium-High” is as high as 50% when the observed cycle 
time is between 6 to 12 hours.  
 
Table 4: Posterior Probability of Yield Given the Evidence of 
Cycle Time 

CT 
Y < 6 hrs 6 ~ 12 hrs 12 ~ 18 

hrs > 18 hrs 

1 12.76% 11.46% 18.97% 19.27% 
2 44.39% 27.53% 25.79% 30.39% 
3 31.42% 50.88% 37.85% 31.73% 
4 11.43% 10.13% 17.39% 18.61% 
μ 2.42 2.60 2.54 2.50 
σ 0.85 0.82 0.99 1.00

CT: Cycle Time; Y: Yield 
 

For the situation of product mix, Table 5 illustrates the 
posterior probabilities of product mix given the evidence of 
cycle time. Because all of the standard deviations of product 
mix given evidence are larger than 1, we can expect the 
probability distributions of product mix given the evidences 
of cycle time are more evenly spread over the possible values 
of product mix comparing to the results from WIP, 
throughput, and yield. The findings from Table 2 to Table 5 
can help us to understand the posterior probability 
distributions of predictor variables given the evidence of 
defect inspection cycle time. 
 
Table 5: Posterior Probability of Product Mix Given the 
Evidence of Cycle Time 

CT 
P < 6 hrs 6 ~ 12 hrs 12 ~ 18 

hrs > 18 hrs 

1 26.31% 16.40% 17.08% 21.45% 
2 37.45% 32.70% 33.84% 33.63% 
3 15.36% 29.16% 27.29% 20.48% 
4 20.88% 21.74% 21.79% 24.44% 
μ 2.31 2.56 2.54 2.48 
σ 1.08 1.00 1.01 1.08

CT: Cycle Time; P: Product Mix 
 

Finally, data of one season is used to evaluate the 
prediction quality of our proposed Bayesian model. Table 6 
demonstrates the expected values and standard deviations of 
defect inspection cycle time based on the model and 
probability distributions after structural learning and 
parameter learning. Due to the characteristic of Bayesian 
approach, expected cycle time is computed and therefore 
their corresponding estimations do not commonly match the 
exact values of classification codes. But the staff is still able 
to provide an estimation of cycle time based on the 
observations of predictor variables. For example, the actual 
cycle time of observation 2 is “2”, which denote the cycle 

time ranging from 6 hours to 12 hours. The estimation from 
our BN model is 2.5, which suggests the expected cycle time 
could be “between 6 to 12 hours” or “between 12 to 18 
hours”. Comparing the estimation results of BN model with 
the ones from discriminant analysis, Table 6 shows that the 
mean square deviation of BN model is less than the one of 
discriminant analysis. Alternatively, the mean absolute 
deviation has opposite outcome for discriminant analysis and 
BN model. Hence, we can conclude that the estimation 
quality of BN approach is at least as good as the result of 
discriminant analysis according to the observations of sample 
TFT-LCD plant.  
 
Table 6: Comparisons of Cycle Time Estimations between 
Discriminant Analysis and Bayesian Model 

Obs
. Actual DA Bayesian Est. 

Mean S.D. 
1 3.0 3.0 3.0 0.00 
2 2.0 3.0 2.5 1.12 
3 2.0 3.0 3.0 0.00 
4 3.0 3.0 2.5 1.12 
5 3.0 3.0 2.5 1.12 
6 3.0 4.0 3.0 0.00 
7 2.0 3.0 2.5 1.12 
8 3.0 3.0 2.5 1.12 
9 3.0 3.0 2.5 1.12 

10 3.0 3.0 3.0 0 
11 3.0 2.0 2.5 1.12 
12 2.0 2.0 2.5 1.12 
13 2.0 2.0 2.5 1.12 

MSD 0.3846 0.2500 
MAD 0.3846 0.4231 

DA: Discriminant Analysis; S.D.: Standard Deviation; 
Obs.: Observation; MSD: Mean Square Deviation; 

MAD: Mean Absolute Deviation 

V. CONCLUSIONS 
This paper illustrates a Bayesian network model to 

estimate defect inspection cycle time in TFT-LCD module 
assembly process. According to the outcomes from previous 
research and on-site observations, predictor variables such as 
work-in-process, throughput, yield, and number of product 
mixes are included in the proposed prediction model. 
Manufacturers can easily adjust our suggested model to 
accord with their environments and data availability. To 
validate the feasibility of BN approach, a TFT-LCD panel 
factory was selected as case study. Structural and parameter 
learning is first performed through the collected data from 
sample plant in order to update model structure and 
probability beliefs. Findings of this paper not only 
demonstrate the applicability of BN approach in cycle time 
estimation but also prove its prediction quality by comparing 
to the results from discriminant analysis. Because Bayesian 
networks have several advantages in model construction, 
knowledge acquisition, and data learning, this study also 
demonstrate how to adopt BN approach for practical usage of 
cycle time approximation in the defect inspection station of 
TFT-LCD module assembly process. Future research may 
gather more samples to further test the prediction accuracy of 
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BN model. In addition to discriminant analysis, we may 
further compare BN approach with the other methodologies 
in order to understand the advantages or disadvantages of 
respective methods in the issues of cycle time estimation for 
manually operated processes in TFT-LCD panel 
manufacturing. 
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