
A Design of a Hybrid System for DNA Sequence Alignment

Heba Khaled, Hossam M. Faheem, Tayseer Hasan, Saeed Ghoneimy

Abstract

This paper describes a parallel algorithm and its
needed architecture and a complementary sequential
algorithm for solving sequence alignment problem on
DNA (Deoxyribonucleic acid) molecules. The parallel
algorithm is considered much faster than sequential
algorithms used to perform sequence alignment; the
initialization operation is done by activating a number
of processing elements each compares the two
sequences simultaneously and weights this
comparison between each nucleotide from the first
and the second DNA sequences. Then, the sequence
matching operation is performed also simultaneously
on the same processing elements. Both the
initialization operation and the sequence matching
operation are done in only two clock cycles. The
proposed sequence matching operation is considered
a new approach that highlights the subsequences
matched between the given two DNA sequences. This
operation provides a good indication for linking the
matched subsequences of the two DNA sequences
depending on a threshold K. which indicates the
number of subsequences of highest score that can be
linked. A parallel architecture is also presented as the
algorithms are performed using it. A simple sequential
algorithm is then presented to get the final alignment
between the two DNA sequences. This hybrid system is
considered a step towards a complete parallel
processing architecture to solve computationally
intensive applications of DNA.
Key Words: parallel processing, sequence alignment
algorithms, molecular biology.

1. Introduction

Sequence comparison is one of the most
fundamental problems of computational biology.

Manuscript received November 1, 2007.
Heba Khaled, Hossam M. Faheem, Saeed Ghoneimy are with

the Computer System Department at Faculty of Computer &
Information Science, Ain Shams University, (e-mails respectivly:
hebakhahmed@yahoo.com, hmfaheem@asunet.shams.edu.eg,
ghoniemy@gmail.com).

Tayseer Hasan is with the Information System Department at
Faculty of Computer & Information Science, Ain Shams University,
(e-mail: taysir_soliman@hotmail.com).

Complexity of sequence comparison algorithms are
quadratic with respect to the length of the query size
and database size, which is extensively high on
sequential computers [1], [2]. Database growth rate
will continue by a factor of 1.5–2 every year [3].

Sequence alignment leads to identify similar
functionality, to predict structural similarity and to
find important regions in a genome. An alignment can
be seen as a way of transforming one sequence into
the other. This paper focuses on the molecular biology
domain specially the DNA (Deoxyribonucleic acid)
sequence databases.

Many algorithms were used to solve the sequence
alignment problem like Needleman-Wunsch, Smith-
Waterman, BLAST and FASTA, Suffix Trees,
Hirschberg’s algorithm, Four Russian Algorithm and
so on [4]-[7]. For example, Needlman Wunsch
algorithm is a dynamic programming based algorithm,
it finds the best global alignment for two sequences
[6]. The algorithm Complexity is O (n × m) for
sequence lengths n and m. Also Smith-Waterman
algorithm finds the optimal local alignment between
two sequences using the technique of dynamic
programming [7].

Parallel processing reduces task's execution time
by solving multiple parts of the problem concurrently.
Sequence alignment problem also seems to be ideally
qualified to be solved using parallel processing this is
because a typical process is repeated on different data
items where interactions between tasks and operations
are minimal.

This paper shows that the sequence alignment
problem can be solved using parallel processing
architectures. This can be performed by assigning a set
of processing elements. These processing elements are
able to decide whether there is a match between the
first and the second DNA sequences nucleotides or not
and then weight and focus on the matched
subsequences between the two DNA sequences to be
aligned. All the processing elements can perform the
same operation concurrently at different positions into
both DNA sequences. The number of processing
elements is equal to n × m where n and m are the first
and the second DNA sequences sizes respectively.
Then, the subsequences where there is a match
between the two sequences can be linked by a

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

mailto:hebakhahmed@yahoo.com
mailto:hmfaheem@asunet.shams.edu.eg
mailto:ghoniemy@gmail.com
mailto:taysir_soliman@hotmail.com

complementary sequential algorithm, by completing
this step the best alignment and score can be found
between the two DNA sequences.

2. DNA Sequence Alignment New parallel
and sequential Algorithm

The algorithm shown in Fig.1-a finds all the
sequences of match between two DNA sequences the
first sequence S of length n and the second sequence T
of length m. Given the length of the first and the
second DNA sequences, the algorithm first activates a
number of processing elements (PE) equals to (n) ×
(m). All nucleotides from the two DNA sequences are
loaded to their corresponding PE as shown in Fig.2.
All the PEs perform the exact matching between the
corresponding first sequence nucleotide and second
sequence nucleotide simultaneously as a first step
which is called the initialization process. The PEs then
performs the sequence matching process that weights
any sequence of match between the two DNA
sequences according to set of rules listed below. The
sequence matching process is done simultaneously and
the result of each PE is then stored in n Match
Register (MR) each of size equals m at a position
relevant to the PE.
The algorithm shown in Fig.1-b first creates a table of
indices as shown in Fig. 3, which contains a list of
matched subsequences represented by the lead and the
trail of each matched subsequence and its score. The
matched subsequence score is equal to the number of
matched cells multiplied by 2. A preprocessing step is
then done to discard the very small subsequences of
score equal 2 “only one match” from the table of
indices and then sort the entries of the matched
subsequences using merge sort. The user can specify a
merging threshold K that indicated the longest
common subsequences between the two DNA
sequences. The algorithm then merges the entries in
the table of indices “matched subsequences” according
to set of rules listed in Fig.1-b. The merging
operation’s complexity is O (K N) where K is a
constant representing the merging threshold and N is
the size of the table of indices. After the merging
process the alignment of maximum score can be
found.
Parallel Part:

Given two DNA sequences S of length n, and T of length
m:
1- Activate n × m PE (processing element)
2- For each PE:

Load a nucleotide from the first sequence and a
nucleotide from the second sequence.

Sequential Part:
1- Apply merge sort to the results given from the parallel

part that sorts the subsequences descending according
to their score “A preprocessing step”.

2- Discard small subsequences of score equal 2.
3- Create table of indices according to the sorted

subsequences.
4- Given that Each entry “aligned subsequence” in the

table of indices has a lead and trail and each has i and j
coordinates such that: iLୣୟୟୢୢୱ୲
 Is the i coordinate of the first subsequence’s Trail,

ୱ୲ Is the
Is the j coordinate of the first subsequence’s lead,

i coordinate of the first subsequence’s lead, jLୣT୰ୟ୧୪ୱ୲iT୰ୟ୧୪ୱ୲j Is the j coordinate of the first subsequence’s Trail, iLୣୟୢ୬ୢ Is the i coordinate of the second subsequence’s lead, ୢ୬ୢjLୣୟ Is the j coordinate of the second subsequence’slead, ୧୪୬ୢ ’iT୰ୟ Is the i coordinate of the second subsequence sTrail, Is th d subsequence’sjT୰ୟ୧୪୬ୢ e j coordinate of the seconTrail, irst s equ e’s e, Scoreୱ୲ Sୣ୯ = F ubs enc scorScore୬ୢ Sୣ୯ = Second subsequence’s score. M_G = max[(iLୣୟୢ୬ୢ − iT୰ୟ୧୪ୱ୲), (jLୣୟୢ୬ୢ − jT୰ୟ୧୪ୱ୲)]=Gaps and/orMismatches between the two subsequences, Given a threshold K indicating how many subsequence tobe merged with the whole entries in the table of indices,he s e ue the le o ces accordinMerge t ubs q nces in tab f indi gto the following rules: ୲IF (((iୱ == i ୟୢ୬ୢ AND jୱ୲ < j୬ୢ)OR T୰ୟ୧୪ Lୣ T୰ୟ୧୪ Lୣୟୢ(jT୰ୟ୧୪ୱ୲ == jLୣୟୢ୬ୢ AND iT୰ୟ୧୪ୱ୲ < iLୣୟୢ୬ୢ) AND ൫M

3- Perform the initialization process according to the
following rules:
IF Si= Tj i=1, …, n. j=1, …, m.
THEN H (i, j) t = 01
ELSE IF Si ≠ Tj
 THEN H (i, j) t = 00

4- Perform the sequence matching process according to
the following rules:
IF H (i, j) t = 00
THEN H (i, j) t+1 = 00
ELSE IF H (i, j) t = 01
THEN
 IF H (i+1, j+1) t =01 AND H (i-1, j-1) t =01
 THEN H (i, j) t +1= 11

 ELSE IF H (i-1, j-1) t =01 OR H (i+1, j+1) t =01
 THEN H (i, j) t+1 =10
 ELSE H (i, j) t +1=01
5- Store the matching result in the n MRs of size m

(match register) at position i=n and j=m.
6- Display the output.

Figure 1.a DNA sequence alignment parallel
algorithm

)_G < Scoreୱ୲ Sୣ୯൯ AND ൫M_G +1 < Scoreୱ୲ Sୣ୯൯)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Figure 2 PE matrix

Figure 3 Table of Indices

 Lead
Xi lead, j lead

Trail
Xi trail, j trail

Score M&G

1
2

3. Organization

The organization of the proposed system is shown
in Fig. 4. It consists of an input unit, control unit, and
an output unit. The input unit has an input device that
accepts the first and the second DNA sequence arrays.
Each of the two arrays is stored into a one dimensional
array. Each sequence will be stored into an input array
of a number of positions equal to the input sequence
length stored in it and each position has 2 flip flops A
and B. Table I shows the binary representation of
different basic DNA molecules. The first and second
sequences are passed to the processing elements (PEs)
after the control unit activates them. The PEs then

perform the initialization process in one clock cycle
and then the sequence matching process also in only
one clock cycle. Each PE then provides its decision to
its corresponding bit into the match registers (MRs).
All the PEs perform the same operation
simultaneously. The data stored into the MRs is then
passed to a decoding circuitry and then to an output
device to display results.

4. Architecture

The PE performs two operations, first the
initialization operation then the sequence matching
operation, a block diagram of the PE is shown in
Fig.5-a. At the initialization operation the PE acts as a
2-bit binary comparator used to compare the four
DNA nu eo . ion that describes
this ope n is:

cl tides The logical funct
ratio𝑀, = (𝑎ଵ ⊙ 𝑎ଶ) (𝑏ଵ ⊙ 𝑏ଶ) (1)

The internal structure is shown in Fig.5-b. The
sequence matching operation’s output indicates the
matched sequences occurred between the two DNA
sequences. The internal structure is shown in Fig.5-c.
Seq en atch ar ighted according to the
logi l

u ces of m e we
a i hown ble II; (2)

c funct on s in Ta 𝑅 = 𝑀, (𝑀ିଵ,ିଵ + 𝑀ାଵ,ାଵ)𝑅ଵ = 𝑀, (𝑀ିଵ,ିଵ⨀ 𝑀ାଵ,ାଵ) (3)

THEN Total score= Scoreୱ୲ Sୣ୯ e୬ୢ Sୣ୯+ Scor − MG − 2 ୢ))AND ELSE IF (ୱ୲ < 𝑖୬ୢ) AND (jT୰ୟୱ୲ < 𝑗Lୣୟ୬ୢND ((iT୰ୟ୧୪ Lୣୟୢ ୧୪ ((M_G − 1) < Scoreୱ୲ Sୣ୯) A< Sc ୬ୢSୣ୯) ((M_G − 1) ore)THEN ୱ Total score=Score ୲ Sୣ୯ ୬ୢ Sୣ୯

+ Score − (MG − 1) 5- Add the merged subsequences to the table. 6- After a round of merging and getting newsubsequences, delete from the table of indices theg each nefirst subsequence used in marginin wsubsequence. - Go to 3 “another round of margining”. If there is nothing to be merged then select thesequence of maximum score and minimum gap andmismatches.
7

Figure 1.b DNA sequence alignment sequential
algorithm

Figure 4 Parallel Organization

Input Unit

First
Sequence

Second
Sequence

Input D

evice

Control
Unit

Processing
Elem

ents
Output Unit

Match
register

Decoding
circuitry

Output
Device

Table I DNA Molecules Binary Representation

G

0 0

0 1
1 0
1 1

A
A B Nucleotide

C
T

(a) PE Block Diagram

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

0

1

0

Mi, j At t

…

01

…

Mi,j At t+1

Mi,j At t+1

11

Mi, j At t

1
1

1

Case 1: Current cell value i, j = 0 M
After sequence matching ⟹ Mi, j = 00 “no change”.

M M At 0

. 00
i,j At t i,j t+1

Case 2:
Current cell value Mi, j=1 d has no diagonal cells=1
Mi-1,j-1 and Mi+1,j+1 ≠1

 an

After sequence matching ⟹ Mi, j = 01.

Case 3:
Current cell value Mi, j=1 has one diagonal cell Mi-

1,j-1 or Mi+1,j+1 =1
and

After sequence matching ⟹Mi, j = 10.

Case 4:
Current cell value Mi, j= nd its both diagonal cells
Mi-1,j-1 and Mi+1,j+1 =1

1 a

After sequence matching ⟹Mi, j = 11.

Processing of the first DNA sequence S and the
second DNA sequence T is performed simultaneously.
The overall operations are carried out in two clock
cycles one for the initialization operation and the other
for the sequence matching operation. Consequently, n
× m positions of the MRs hold the result R0R1from the
PE as shown in Fig. 6.

5. Operation

In order to explain the operation of the proposed
system, let us consider an example; perform sequence
alignment on the given two DNA sequences S=
T1C2G3C4A5G6A7 and T= T1C2C3A4C5G6A7 . The
operation shown in Fig.7, Table III and Table IV can
be summarized as follows:
• Activate (n)*(m) PE where n is the first sequence

length and m is the second sequence length.
• For each PE load a nucleotide from the first

sequence and a nucleotide from the second
sequence.

• Perform the initialization and the sequence
matching processes according to the rules stated
in the parallel algorithm shown in Fig. 1-a.

Mi, j At t M At i,j

Mi-1,j-1 Mi,j Mi+1,j+1 R0 R1

0 0 0 0 0
0 0 1 0 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 0
1 0 1 0 0
1 1 0 1 0
1 1 1 1 1

Table II scoring the matched sequence

Case 1

Case 1

Case 2

Case 3

Case 4

Or

0 1 …

1 1 10 (b) Initialization Operation

1 0 …

(c) Sequence Matching Operation
Figure 5 Processing Element

Figure 6 Storing results in Match Registers

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

• Store the matching result in the n MRs (match
register) of size m at position i=n and j=m as
shown in Fig.7.

• Use the decoding circuitry to display the initial

entries of the table of indices as shown in Table
III.

• A preprocessing step is performed to discard very
small subsequences of score equal 2 and sort the
entries of the table of indices descending
according to their score using merge sort as
shown in Table IV.

• Merge the subsequences in the table of indices
given a threshold indicating how many
subsequence is used in merging with the whole
entries of the table of indices according to the
rules stated in the sequential algorithm shown in
Fig. 1-b and add the merged subsequences to the
table.

• Repeat the merging operation and if there is
nothing to be merged then select the sequence of
maximum score and minimum gap/mismatches.

• The resulted tables of indices is shown in Table V
given threshold K=1.

• The best alignment starts at lead (0, 0) and ends
with the trail (6,6) with score equals 10 and
Gap/Mismatch equals 2 which is indicated at
sequence number 0 at the final round in the table
of indices.

ID

Su
bs

eq
ue

nc
e

&

Su
bs

eq
ue

nc
e

Le
ad

Tr
ai

l

Sc
or

e

G
ap

&

M
is

m
at

ch

Next Round
0 0&2 (0,0) (4,3) 7 1
1 0&3 (0,0) (6,6) 5 3
2 _ (1,4) (2,5) 4 0
3 2 (3,2) (4,3) 4 0
4 3 (5,5) (6,6) 4 0

Next Round
0 0&4 (0,0) (6,6) 10 2
1 0&3 (0,0) (6,6) 5 3
2 _ (1,4) (2,5) 4 0
3 2 (3,2) (4,3) 4 0
4 4 (5,5) (6,6) 4 0

6. Results

It is obvious that as the DNA sequences’ size
increases, the number of the required PEs increases.
Also, the number of PEs decreases as the DNA
sequences’ size decreases. In the parallel part, clock
cycle time can be considered as the sum of PE
activation time, time needed for data to enter the PE,
the time taken by a PE to perform the comparison and
scoring processes, and time needed to store results into
the MRs. A typical macro-scale implementation for a
processing element in the previously explained
example is shown in Fig.8. A typical time of 58.5ns is
achieved.
The parallel algorithm execution time is the clock
cycle time 58.5 ns. The sequential algorithm execution
time can be calculated for different thresholds as
shown in Table VI on a 1.83 GHz Intel Centrino Duo,
2 GB of RAM. The total execution time for the hybrid

Table V Completed rounds in the table of
indices at K=1

Figure 7 System operation

Table III Initial table of indices

ID

Su
bs

eq
ue

nc
e

&

Su
bs

eq
ue

nc
e

Le
ad

Tr
ai

l

Sc
or

e

G
ap

&

M
is

m
at

ch

0 _ (0,0) (1,1) 4 0
1 _ (1,4) (2,5) 4 0
2 _ (3,2) (4,3) 4 0
3 _ (5,5) (6,6) 4 0
4 _ (1,2) (1,2) 2 0
5 _ (3,1) (3,1) 2 0
6 _ (3,4) (3,4) 2 0
7 _ (4,6) (4,6) 2 0
8 _ (6,3) (6,3) 2 0

ID

Su
bs

eq
ue

nc
e

&

Su
bs

eq
ue

nc
e

Le
ad

Tr
ai

l

Sc
or

e

G
ap

&

M
is

m
at

ch

0 _ (0,0) (1,1) 4 0
1 _ (1,4) (2,5) 4 0
2 _ (3,2) (4,3) 4 0
3 _ (5,5) (6,6) 4 0

Table IV Table of indices after discarding very small
subsequences

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

system is the summation of the parallel algorithm and
the sequential algorithm execution times.

Fig. 9 shows the Hybrid System execution time for
different thresholds and different DNA sequence sizes.
For a fixed size PEs, DNA sequences of sizes more
than 100 characters will be treated as segments each of
100 characters. Hence, the clock cycles’ time required
will be: (Clock Cycle time for one Segment) × (# of
Segments) and the total sequential time will be the
summation of all the segments execution time.

7. Application

The following application applies the sequential
and the parallel algorithms, finds the final alignment
and the sequential algorithm execution time at
different threshold entered by the user. As shown in
Fig. 10, the parallel form allows the user to insert two
different DNA sequences; the Create Matrix button
performs the initialization process of the parallel
algorithm. The Scoring button performs the sequence

matching process and the output at the MRs after
decoding is shown in the second data grid. The Index
Table button creates the initial table of indices
represented by the lead and the trail of each matched
subsequence and its score.

Figure 8 A typical macro-scale Processing Element

Table VI Required PEs to perform DNA sequence
alignment, the Hybrid system and Smith waterman
execution times for different sequence sizes

Figure 10 Parallel form

As shown in Fig. 11, a preprocessing step is then done
by choosing the Discard Small Subsequences button to
discard the very small subsequences and then sort the
entries of the matched subsequences. The user can
specify a merging threshold K. The algorithm then
merges the entries in the table of indices “matched
subsequences” by clicking on the Complete Rounds
button. After merging, the alignment of maximum
score and the total sequential execution time can be
calculated by clicking the Final Sequence button.

Figure 9 The total Hybrid system execution times
required to perform DNA sequence alignment for
different sequence sizes and thresholds

8. References
Figure 11 Sequential form

 [1] J. Setubal and J. Meidanis, Introduction to Computational
Molecular Biology, PWS Publishing Company, 1997.
[2] Terence Hwa and Michael Lässig, “Similarity Detection and
Localization”.
[3] Dominique Lavenier, “Speeding up Genome Computations with
a Systolic Accelerator”, July 18 2001.
[4] Ron Shamir, “Algorithms for Molecular Biology”, Algorithms in
Molecular Biology Lecture 3, School of Computer Science, Tel
Aviv University, 2001.
[5] Marcelam Miyazawa, “Sequence Alignment/Linear Space
Alignment/Four Russian Algorithm”, CS262: Computational
genomics, 2005.
[6] S. Needleman and C.Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two
proteins”. J. Mol. Bio., (48):443–453, 1970.
[7] T. Smith and M. Waterman, “Identification of common
molecular subsequences”. J. Mol. Bio., (147):195–197, 1981.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

	1. Introduction
	/
	Processing of the first DNA sequence S and the second DNA sequence T is performed simultaneously. The overall operations are carried out in two clock cycles one for the initialization operation and the other for the sequence matching operation. Consequently, n × m positions of the MRs hold the result R0R1from the PE as shown in Fig. 6.
	/
	7. Application
	8. References

