
 
 

 

  
Abstract— This paper presents the development of an 

alternative method for makespan computation algorithms of a 
re-entrant flow shop scheduling problem using bottleneck 
analysis. The computation is specifically intended for the cyber 
manufacturing centre (CMC) which is an Internet based 
collaborative design and manufacturing services at Universiti 
Tun Hussein Onn Malaysia. The CMC processes scheduling 
resembles a four machine permutation re-entrant flow shop 
with the process routing of M1,M2,M3,M4,M3,M4. It was 
shown that under the sequence dependent bottleneck 
characteristics, the makespan can be accurately determined by 
the algorithm developed using bottleneck analysis. In cases 
where the bottleneck limitation is violated, the makespan can 
still be accurately determined by the introduction of bottleneck 
correction factor. 
 

Index Terms— bottleneck, cyber manufacturing, scheduling, 
re-entrant flow shop,  
 

I. INTRODUCTION 
   Flow shop manufacturing is a very common production 
system found in many manufacturing facilities, assembly 
lines and industrial processes. It is known that finding an 
optimal solution for a flow shop scheduling problem is a 
difficult task [1] and even a basic problem of F3 || Cmax is 
already strongly NP-hard [2]. Therefore, many researchers 
have concentrated their efforts on finding near optimal 
solution within acceptable computation time using heuristics.     

One of the important subclass of flow shop which is quite 
prominent in industries is re-entrant flow shop. The special 
feature of a re-entrant flow shop compared to ordinary flow 
shop is that the job routing may return one or more times to 
any facility. Among the researchers on re-entrant flow shop, 
[3] has developed a cyclic scheduling method that takes 
advantage of the flow character of the re-entrant process. 
This work illustrated a re-entrant flow shop model of a 
semiconductor wafer manufacturing process and developed a 
heuristic algorithm to minimize average throughput time 
using cyclic scheduling method at specified production rate. 
The decomposition technique in solving maximum lateness 
problem for re-entrant flow shop with sequence dependent 
setup times was suggested by Dermirkol and Uzsoy [4]. 
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Mixed integer heuristic algorithms was later on elaborated by 
Pan and Chen [5] in minimizing makespan of a permutation 
flow shop scheduling problem. Significant works on 
re-entrant hybrid flow shop can be found as in [6],[7],[8] 
while hybrid techniques which combine lower bound-based 
algorithm and idle time-based algorithm was reported in [9]. 

In scheduling literature, heuristic that utilize the bottleneck 
approach is known to be among the most successful methods 
in solving shop scheduling problem. This includes shifting 
bottleneck heuristic [10],[11] and bottleneck minimal 
idleness heuristic [12],[13]. However, not much progress is 
reported on bottleneck approach in solving re-entrant flow 
shop problem. Among the few researches are Dermirkol and 
Uzsoy [4] who developed a specific version of shifting 
bottleneck heuristic to solve the re-entrant flow shop 
sequence problem.  

In this paper we explore and investigated an Internet based 
collaborative design and manufacturing process scheduling 
which resembles a four machine permutation re-entrant flow 
shop. The study is searching for the potential of developing 
an effective makespan minimization heuristic by firstly 
developing makespan computation algorithm using 
bottleneck analysis. This computation is specifically intended 
for the cyber manufacturing centre at Universiti Tun Hussein 
Onn Malaysia (UTHM). 
 

II.   CYBER MANUFACTURING CENTRE 
UTHM has recently developed a web-based system that 

allows the university to share the sophisticated and advanced 
machinery and software available at the university with the 
SMEs using Internet technology [14]. The heart of the system 
is the cyber manufacturing centre (CMC) which consists of 
an advanced computer numerical control (CNC) machining 
centre fully equipped with cyber manufacturing system 
software that includes computer aided design and computer 
aided manufacturing (CAD/CAM) system, scheduling 
system, tool management system and machine monitoring 
system. 

The Petri net (PN) model that describes a typical design 
and manufacturing activities at the CMC is shown in Figure 
2. The places denoted by P22, P23, P24 and P25 in Figure 2 
are the resources utilized at the CMC. These resources are the 
CAD system, CAM system, CNC postprocessor and CNC 
machine centre respectively. At the CMC, all jobs must go 
through all processes following the sequence represented in 
the PN model. This flow pattern is very much similar with 
flow shop manufacturing [2],[15]. However, it can be noticed 
from the PN model that there are a few processes that share 
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Figure 1 : Petri Net Model of CMC activities 

 
common resources. The process of generating CNC program 
for prototyping (T3) and the process of generating CNC 
program for customer (T5) are executed on the same CNC 
postprocessor (P24). Similarly, the processes of prototype 
machining (T4) and parts machining (T6) are executed on the 
same CNC machine centre. Thus, this process flow is 
considered as a re-entrant flow shop as described in [3]. It can 
also be noticed that both shared resources (P24 and P25) 
must completely finish the processing of a particular job at 
T5 and T6 before starting to process any new job at T3 and 
T4. In other words, this problem can be also identified as four 
machine permutation re-entrant flow shop with the 
processing route of M1,M2,M3,M4,M3,M4 as similarly 
described in [16]. 
  

III. CMC MAKESPAN COMPUTATION UNDER BOTTLENECK 
LIMITATIONS 

Let say, the CMC is currently having four jobs that need to 
be processed. Typical processing time ranges for all 
processes are shown in Table 1. From Table 1, it is obvious 
that most probably T1 is the bottleneck for the overall process 
because it is having the longest processing time range. By 
using the time ranges in Table 1, sets of random data was 

generated for four jobs that need to be processed. These data 
is shown in Table 2. Assuming that the data in Table 2 is 
arranged in the order of First-come-first-served (FCFS), then 
a Gantt chart representing a FCFS schedule is built as 
illustrated in Figure 2. The Gantt chart is built by strictly 
referring to the PN model in Figure 1 together with strict 
permutation rule. 
 
 

Table 1 :  Processing Time Range (hr) 
 T1 T2  T3 T4 T5 T6 

Minimum time 70 2 2 8 2 8 
Maximum time 100 8 8 40 8 40 
 

Table 2 :  Processing Time Data (hr) 
 T1 T2  T3 T4 T5 T6 

Job A 73 8 3 8 5 30 
Job B 90 2 5 32 5 32 
Job C 98 2 3 8 8 17 
Job D 75 6 3 36 4 35 

By referring to Table 2, Figure 1 and Figure 2, the 
scheduling algorithm for the CMC can be written as the 
followings and is identified as Algorithm 1: 

 
 
 
 
P Job 0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 

JA 24 24 24 1                               
JB       23 24 24 19                         
JC             5 24 24 24 21                 

 
 
 

T1 JD                     3 24 24 24           
JA       8                               
JB             2                         
JC                     2                 

 
 
 

T2 JD                             6         
JA       3                               
JB             3 2                       
JC                     1 2               

 
 
 

T3 JD                             3         
JA       8                               
JB               22 10                     
JC                       8               

 
 
 

T4 JD                             15 21       
JA       4 1                             
JB                 5                     
JC                       8               

 
 
 

T5 JD                               3 1     
JA         23 7                           
JB                 9 23                   
JC                       6 11             

 
 
 

T6 JD                                 23 12   

 
Figure 2:  Gantt Chart for ABCD  Job Sequence 
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Algorithm 1 
Let i = Transition number, process number or work centre 
number (i=1,2,3,….) 
      j = Job number (j=1,2,3,…) 
     
Start (i,j) = start time of the jth job at ith work centre. 
Stop (i,j) = stop time of the jth job at ith work centre. 
     P(i,j) = processing time of the jth job at ith work centre. 
 
For i=1,2,5,6 and j=1,2,3,…n 
Start (i,j) = Max [Stop (i,j-1), Stop (i-1,j)]  except Start (1,1) 
= initial starting time 
Stop (i,j) = Start (i,j) + P (i,j) 
 
For i =3,4 and j=1,2,3,…n 
Start (i,j) = Max [Stop (i,j-1), Stop (i-1,j), Stop (i+2,j-1)]  
Stop (i,j) = Start (i,j) + P(i,j)              
 

Thorough study on the schedule Gantt chart as in Figure 2, 
a general makespan computation algorithm for the example 
case can be described as below:    
 
Let i  = process sequence of the job at CMC (i=1,2,3,4,5,6) 
      j = job number according to the scheduling sequence 

(j=1,2,3…n) 
      P(i,j) = processing time of the jth job at ith process 

sequence 
     
The makespan calculation is: 

∑ ∑
= =

+
n

j i
niPjP

1

6

2
),(),1(               (Equation 1) 

 
Equation 1 is very much similar with completion time 

algorithm described in [13] for the problem Fm|ddm|γ and 
Fm|no-wait,ddm|γ. They illustrated the scheduling sequence 
of decreasing dominant machine (ddm) in which 
Min{j=1,2…n}[P(k,j)] ≥ Max{j=1,2…n}[P(r,j)]. While 
reports in [13] concentrated on some special cases of general, 
no-wait and no-idle permutation flow shop scheduling 
problems, this paper focuses on the problem of a re-entrant 
flow shop that exhibits dominant or bottleneck machine 
characteristics at the first task.    

After careful studies on the Gantt charts of other possible 
jobs arrangements, it is observed that Equation 1 is valid for 
makespan computation if some localized sequence dependent 
conditions are met. These localized sequence dependent 
conditions for the 4-job example case are: 
 
Condition 1 
 P(1,2) + P(1,3) + P(1,4)  ≥ VP(2,1) +  VP(2,2) + VP(2,3)   
 Where, VP = Virtual Processing Time.  
 

Virtual processing time is an imaginary processing time 
that assumes the starting time of any process at a work centre 
must begin immediately after the completion of the previous 
imaginary process. For example, consider a job X starting on 
task 2 and at the same time a job Y starts at task 1. If the 
completion time of job X on task 2 is earlier than the 
completion time of job Y at task 1, under the imaginary 
concept, the VP of job X at task 2 is extended from its actual 
processing time to match the completion time of job Y at task 
1. This means the VP of job X at task 2 is equivalent to the 

processing time of job Y at task 1 since task 2 of job Y can 
only be started immediately after its completion at task 1 
regardless of the earlier completion time of job X at task 2. 
The concept of VP(i,j) is introduced in this condition to 
simplify the algorithm so that very limited numbers or not 
even a single element of P(i,j) is shown on the right side of 
the conditions statement.  

Condition 1 is meant to make sure that for the last job 
sequence, task 2 can immediately be started as soon as task 1 
completed its process. For example, if Condition 1 is 
violated, P(2,n-1) completion time is later than the 
completion time of P(1,n), this means that P(2,n) cannot start 
immediately after the completion of P(1,n). It can only begin 
after the completion of P(2,n-1) which is also indicated by 
the completion time of VP(2,n-1). This introduces a delay 
between P(1,n) and P(2,n) thus affecting the accuracy of 
Equation 1.  

The virtual processing time for task 2 are assigned as the 
followings:   
For j=1, VP(2,1) = Max [P(2,1), P(1,2)]     
For j=2,3…n-1, 
 VP( 2, j ) = 

∑∑∑
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Condition 2 
  
P(1,2) + P(1,3) + P(1,4) + P(2,4) ≥  
P(2,1) + VP(3,1) + VP(3,2) + VP(3,3)  
 

Condition 2 functions to ensure that for the last job 
sequence, task 3 can immediately be started as soon as task 2 
completed its process. For example, if Condition 2 is 
violated, this means that the right side value of the above 
condition is larger than its left side value. Since P3 and P5 are 
sharing the same postprocessor P24 (refer Figure 1), the 
violation of Condition 2 will result to a later completion time 
of P(5,n-1) compares to the completion time of P(2,n). 
Consequently, P(3,n) cannot start immediately after the 
completion of P(2,n). It can only begin after the completion 
of P(5,n-1) which is indicated by the completion time of 
VP(3,n-1). This introduces a delay between P(2,n) and P(3,n) 
thus affecting the accuracy of Equation 1.  

The virtual processing time for task 3 are assigned as the 
followings:   

 
For j=1, VP(3,1) = Max [{VP(2,1) + P(2,2)},{P(2,1) + P(3,1) 
                                      + P(4,1) + P(5,1)}] - P(2,1)    
 
For j=2,3…n-1, VP(3, j) =  
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Condition 3 
 

P(1,2) + P(1,3) + P(1,4) + P(2,4) + P(3,4) ≥  
P(2,1) + P(3,1) + VP(4,1) + VP(4,2) + VP(4,3)  

 
Condition 3 functions to guarantee that for the last job 

sequence, task 4 can immediately be started as soon as task 3 
completed its process. Since P4 and P6 are sharing the same 
CNC machine P25 (refer Figure 1), the violation of 
Condition 3 will result to a later completion time of P(6,n-1) 
compares to the completion time of P(3,n). Consequently, 
P(4,n) cannot start immediately after the completion of 
P(3,n). It can only begin after the completion of P(6,n-1) 
which is indicated by the completion time of VP(4,n-1). This 
introduces a delay between P(3,n) and P(4,n) thus affecting 
the accuracy of Equation 1.  

The virtual processing time for task 4 are assigned as the 
followings:   
For j=1, VP(4,1) = Max [{VP(3,1) + P(3,2)},{P(3,1) + P(4,1) 
                              + P(5,1) + P(6,1)}] - P(3,1)    
For j = 2,3…n-1, VP(4,j) =  
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IV. GENERALIZED CMC MAKESPAN COMPUTATION 
By meeting all Conditions 1, 2 and 3, a job sequence 

arrangement is said to have fulfilled the P1 (process 1) 
bottleneck characteristics of the CMC and this enables 
Equation 1 to be used for the makespan computation. If any 
of the Conditions 1, 2 and 3 is violated, Equation 1 is no 
longer valid for the makespan computation. This equation 
has to be modified and improved by introducing a dedicated 
correction factor in order to absorb the violated conditions if 
it is still to be used for makespan computation beyond the 
above stipulated conditions. 

Detail observations of Conditions 1, 2 and 3 reveals that 
the inaccuracy of Equation 1 due to the violation of 
Condition 1 is inclusive in its computation of VP(2,j) which 
will be used in Condition 2. Similarly, the error of Equation 1 
resulted from the violation of Condition 2 is also inclusive in 
its computation of VP(3,j) which will later be used in 

Condition 3. As such, by evaluating and monitoring 
specifically on Condition 3, all the errors of Equation 1 
resulted from the violations of either Conditions 1, 2 and 3 or 
their combinations can be computed.  

Table 3 is specifically developed using majority data from 
Table 2 in order to show the process of determining the 
values of VP(2,j), VP(3,j) and VP(4,j). These values will be 
used to detect the occurrences of bottleneck at processes 
other than P(1,j). In other words, this table will be used to 
suggest the correction factor need to be added to Equation 1 if 
the previously described Condition 3 is violated. This 
correction factor can be computed as the followings: 
 
From Condition 3: 

P(1,2) + P(1,3) + P(1,4) + P(2,4) + P(3,4) ≥  
P(2,1) + P(3,1) + VP(4,1) + VP(4,2) + VP(4,3)  

 
If Condition 3 is violated, it means: 

P(1,2) + P(1,3) + P(1,4) + P(2,4) + P(3,4) <  
P(2,1) + P(3,1) + VP(4,1) + VP(4,2) + VP(4,3)  

 
Therefore, the correction factor can be computed as: 
 P1BCF = {P(2,1) + P(3,1) + VP(4,1) + VP(4,2) + VP(4,3)} 
     - {P(1,2) + P(1,3) + P(1,4) + P(2,4) + P(3,4)} 
 
If {P(2,1) + P(3,1) + VP(4,1) + VP(4,2) + VP(4,3)} 
   - {P(1,2) + P(1,3) + P(1,4) + P(2,4) + P(3,4)} < 0 then, 
P1BCF = 0 
 

The general formulation of the correction factor can be 
written as the following: 
P1BCF =  
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where, 
P1BCF = Process 1 Bottleneck Correction Factor 
 

Therefore the generalized makespan computation 
algorithm for the CMC is: 
 

Makespan =∑ ∑
= =

+
n

j i
niPjP
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2
),(),1(  +P1BCF       (Equation 2) 

 
Table 3 :  Table For Makespan Computation 

 
Job   j P(1,j) P(2,j) P(3,j) P(4,j) P(5,j) P(6,j) 

Job A 1 73 8 3 8 5 30 
Job B 2 90 2 5 32 5 32 
Job C 3 98 2 3 35 8 39 
Job D 4 75 6 3 36 4 35 

 
 A B C D E F G H K 

 
j Sum 

P(1,k) 
k=2,j+1 VP(2,j) 

Sum VP(2,k) 
k=1,j-1 

For j=2,3…n 

Sum 
VP(2,k) 

k=1,j VP(3,j)

Sum VP(3,k) 
k=1,j-1 

For j=2,3…n 

Sum 
VP(3,k) 

k=1,j VP(4,j) 

Sum VP(4,k) 
k=1,j-1 

For j=2,3…n 
          

1 90 90  90 84  84 86  
2 188 98 90 188 98 84 182 96 86 
3 263 75 188 263 79 182 261 82 182 
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To verify the accuracy and reliability of Equation 2 in 
performing the makespan computations, a total of 10,000 
tests were conducted using random data of between 1 to 80 
hours for each of  P(1,j), P(2,j), P(3,j), P(4,j), P(5,j) and 
P(6,j) with four job sequence for each test. Each set of 
random data obtained was also tested with a total of 24 
different sequences that resembles the sequence arrangement 
of ABCD, ABDC, ACBD etc. This means that with 10000 
sets of random data, a total of 240,000 job sequence 
arrangements were testedThe makespan results from using 
Equation 2 were compared with the makespan value obtained 
from Algorithm 1. The results from the comparisons showed 
that all makespan value from both Equation 2 and Algorithm 
1 are the same. This indicates that Equation 2 produces 
accurate makespan computation for 4-job CMC scheduling 
problem. Equation 2 was also tested for estimating the 
makespan for 6-job, 10-job and 20-job CMC scheduling. 
Each test was conducted with 10,000 sets of random data 
between 1 to 80 hours for each of  P(1,j), P(2,j), P(3,j), 
P(4,j), P(5,j) and P(6,j). Each set of random data obtained 
was also tested with a total of 720 different sequences that 
resembles the sequence arrangement of ABCDEF, ABCDFE, 
ABCEDF etc. All the results indicate that Equation 2 
produces accurate makespan result exactly the same with 
Algorithm 1. This shows the reliability of Equation 2 in 
predicting the makespan of the CMC scheduling 
arrangements.   
 

V.    CONCLUSION 
In this paper, we explore and investigated the CMC 

processes scheduling which resembles a four machine 
permutation re-entrant flow shop with the process routing of 
M1,M2,M3,M4,M3,M4. It was shown that under the P1 
bottleneck characteristics, the makespan of the job sequence 
can be accurately determined by the makespan algorithm 
developed using bottleneck analysis. In cases where the 
sequence dependent P1 bottleneck limitation is violated, the 
makespan can still be accurately determined by the 
introduction of bottleneck correction factor. With the 
successful makespan computation using bottleneck analysis, 
the next phase of this research is to further utilize the 
bottleneck approach in developing heuristic for optimizing 
the CMC scheduling sequences.   
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