

Abstract—Biological data has been rapidly increasing in

voluminous data of different data sources. To query multiple
data sources manually on the internet is a time consuming task
for the biologists. Therefore, systems and tools that facilitate
searching multiple biological data sources are needed.
Traditional approaches to build distributed or federated systems
do not scale well to the large, diverse, and growing number of
biological data sources. Recent Internet systems such as World
Wide Web browsers allow users to search through large
numbers of data sources, but provide very limited capabilities
for locating, combining, processing, and organizing information.
A promising approach to this problem is to provide access to the
large number of biological data sources through a multiagent
technology, where a set of agents can cooperate with each other
to retrieve relevant information from different bio logical web
databases. The proposed system uses a mediator based
integration approach with domain ontology which used as a
global schema. The proposed system is developed using JADE
(Java Agent DEvelopment Framework) which is a software
development framework aimed at developing multi-agent
systems and applications conforming to FIPA (Foundation for of
Intelligent Physical Agent) standards for intelligent. In this
paper we develop a multiagent system that responds to different
user queries to multiple heterogeneous biological databases. The
system works as a middleware between users and different
biological databases.

Index Terms— Biological data integration, Biological
ontology, Multiagent technology, JADE.

I. INTRODUCTION

Recent advances in laboratory technology have resulted
in massive amounts of biological data that are often
deposited in web databases. Clearly, access to this data is
very important to biological researchers. However,
heterogeneity among biological databases due to the
incompatibilities in data formats, data representations, and
data source schema has impeded the accessibility to these
databases. Each of the biological databases has its own

F. Maghrabi graduated in Faculty of Computer & Information Sciences

Ain Shams University, Computer science department (e-mail: bosycs@
yahoo.com).

H.M.Faheem, , Associate Professor, Computer Systems department,
Faculty of Computer and Information Sciences, Ain Shams University,
Director of EUN (e-mail: hmfaheem@ieee.org).
 T.Hassan, Teacher in Faculty of Computer & Information Sciences ,Ain
Shams University, Information system department
(email:taysir_soliman@hotmail.com)
 Z.T..Fayed, Associate Professor, Computer science department, Faculty of
Computer & Information Sciences, Ain Shams University.

interfaces and control languages, and represents information
using conflicting data models and formats. The goal of the
proposed system is to hide the large variety of local or
remote biological databases and the disparity of their
interfaces. A user should see only one interface and be able
to query the system by specifying what it wants to know
without a detailed knowledge where relevant information is
located, what its representation is like, and how the
biological databases interfaces must be handled.

Three fundamental approaches have been used to address
the challenges associated with the incompatibilities among
biological databases: data warehousing integration,
information linkage integration, and mediator-based
integration. Data warehousing consists of materializing the
data from multiple data sources into a local warehouse and
executing all queries on the data contained in the warehouse
rather than in the actual sources. Data warehousing suffers
from a lack of scalability when considering the exponential
growth of biological databases. The Information linkage
integration is motivated by the fact that many of data sources
on the web are browsed instead of queries. The integration
happens through links and applies to any collection of data
sources which can be seen as a set of pages with their
interconnections and specific entry point. Information
linkage takes advantage of distributed resources. However,
maintaining and updating the static links between various
databases is a challenge. Furthermore, the only queries that
can be answered by information linkage based systems are
those that are within the scope of the pre-existing static links
[1, 2].

The proposed system is based on the third approach,
mediator-based integration, which establishes a transparent
access to heterogeneous data sources without physically
copying them into a single data repository. This class of
integration systems can be divided into two subclasses:
Local As View (LAV) and Global As View (GAV). In LAV,
there is no global schema, and the user needs to specify the
component databases in the query by using a multidatabase
query language. One of the disadvantages of LAV is that the
component databases are not transparent to the user. This
approach is used by BioKleisli [3]. In GAV, a global data
schema is constructed, and queries are expressed in this
unified schema. The global schema integrates all the
component schemas therefore, the component databases are
transparent to the user. TAMBIS [4] and BACIIS [5] are
examples of GAV, where they use ontology as a conceptual
model to integrate multiple biological web databases.

Domain ontology and mapping schema are the two main
components of the proposed system. The domain ontology
can be used to define a common controlled vocabulary and
to semantically define databases. It is designed with
hierarchal structure describing the biological concepts and
the relationship between them. When integrating

Developing a Multiagent System for
Integrating Biological Data Using JADE

Faheema Maghrabi, Hossam M. Faheem, and Tayseer Hassan, and Zaki T. Fayed

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

heterogeneous databases, some issues have to be addressed:
semantic and syntactic variability. Resolving semantic
variability consists of adequately interpreting and cross
relating information stored in different databases. Syntactic
variability arises from the heterogeneity of the database
schema, data models, and query processing approaches.
Domain ontology has been used successfully as domain
model in several general-purpose information integration
systems. The domain ontology in this architecture serves as a
global schema and plays a major role in resolving both
semantic and syntactic variability. Domain ontology can be
used for guiding user through query formulation. It is also
used in data source selection utilizing mapping schema, and
in rewriting the user query into smaller subqueries.

BACIIS Ontology (BAO) is an example of biological
ontology. The ontology developed in BAO has three
dimensions: object, property, and relation. In the ontology of
BAO, the properties of an object are defined as a property
class which occupies a position in the property hierarchy
tree. A relation refers to the association between the two
concepts. In BAO, classes under the object and property
dimensions are arranged into a hierarchy tree based on the
relation “is-a-subclass-of.” For example, GENE is a subclass
of the class NUCLEIC-ACID in the object hierarchy.
Similarly, “base-count” is a subclass of “NUCLEIC-ACID-
SEQ-INFO” in the property hierarchy. The relation “has
property” is used for the object classes and property classes
as in the case of the class NUCLEIC-ACID in the object
hierarchy and the class “NUCLEIC-ACID-INFO” in the
property hierarchy. The relation “is-a-subsetof” is used for
property classes or object classes with parent-descendant
relationships. The relations “regulate” and “source-of” are
used for object classes that are neither parents nor
descendants of each other [5].

The mapping schema is used to describe each database
participating in the integration. In each mapping schema a
mapping between data schema of web database and domain
ontology is made. This mapping includes concepts and terms
from domain ontology that are relevant to specific database.
It contains metadata of how to query and extract data from
the web interface of specific web database. Each mapping
schema consists of the metadata which includes general
information about the web database such as database name,
the input data types accepted, and the output data types
generated by the corresponding web database. These data
types are expressed by using ontology terms. The mapping
schema also used to select the component database that can
respond to the given subquery.

The proposed system is based on agent technology. The
following requirements are best met within an agent-based
environment; modularity, extensibility, flexibility, and
declarative forms of communications. Modularity allows
new components to be added or removed without affecting
the operation of other system parts. Extensibility allows for
new elements to be easily added to the system. Flexibility
provides the ability to deal with the dynamic state of the
system, e.g. availability of data sources. Declarative forms
of communication allow the communication between
components into the system to deal primarily with
information and knowledge. Thus, communication protocols
based on known agent communication languages are more
appropriate for our purpose [6].

This paper is organized as follows: section II introduces
the overview of agent technology, section III discusses why
agent technology is a promising approach to address the
biological data integration problem, section IV discuss JADE
framework, section V introduce components of proposed
system, section VI presents example and results, and section
VII augments some concluding remarks.

II. OVERVIEW OF AGENT TECHNOLOGY

Agent may exhibit three important general characteristics:
autonomy, adaptation, and cooperation. By “autonomy” we
mean that agents have their own agenda of goals and exhibit
goal-directed behaviour. They are not simply reactive, but
can be proactive and take initiatives as they deem
appropriate. Adaptation implies that agents are capable of
adapting to the environment, which includes other agents
and human users, and can learn from the experience in order
to improve themselves in a changing environment.
Cooperation and coordination between agents is probably
the most important feature of multi-agent systems. Unlike
those stand-alone agents, agents in a multi-agent system
collaborate with each other to achieve common goals. In
other words, these agents share information, knowledge, and
tasks among themselves [7].

Agent programs have four major types they are: simple
reflex agents, agents that keep track of the world, goal-based
agents, and utility-based agents. A simple reflex agent works
by finding a rule whose condition matches the current
situation (as defined by the percept) and then doing the
action associated with that rule. An agent that keeps track of
the world works by finding a rule whose condition matches
the current situation (as defined by the percept and the
stored internal state) and then doing the action associated
with that rule. A goal-based agent selects any action (from a
set of actions) that can achieve the goal. Utility based agent
selects the best action (from a set of actions that can achieve
the goal) to achieve the goal in order to maximize the
happiness [8].

III. AGENT TECNOLOGY AND BIOLOGICAL DATA

INTEGRATION

Three important aspects of biological data integration are
distribution, autonomy and heterogeneity. Distributions, in
most cases data sources are distributed. The user need not
know the location and other details of each available data
resource. Autonomy, it is very often the case that integrated
resources belong to different organizations or research
groups. While most people are willing to share their data,
they do not want to lose control over decisions for their data
source. Thus, the developers of an integrated system do not
usually have any control over the underlying systems, which
are autonomous. Heterogeneity, in an open and diverse
environment it is very common that some or all of the data
sources are different from each other. Integrating
heterogeneous databases involves extra work so as to ensure
the correct relationship of data between the information
systems. Agents naturally cover the fundamental aspects of
data integration. [9].

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

IV. JADE

JADE is free software and is distributed by Telecom
Italia Lab (TILAB), as open source software under the terms
of the LGPL (Lesser General Public License Version 2). It is
implemented in Java and aims to make easier the
development of multiagent systems by providing a
comprehensive set of services and an API to support the
development of agents in compliance with the FIPA
specifications. The JADE framework provides an API with
several classes that represent common entities in multiagent
system, supporting the definition of agents, agents
behaviours, interaction protocols, and so on. In the time of
vocabulary and semantics definition of the agents’
communication content, a solution based on Java objects
usage as the content of the messages exchanged among the
agents has been adopted. The JADE utilization has been
essential to the agents implementation, simplifying and
significantly speeding up the process. JADE includes a
runtime environment where JADE agents can “live” and
that must be active on a given host before one or more
agents can be executed on that host. JADE also includes a
suite of graphical tools that allow administrating and
monitoring the activity of running agents. JADE has several
properties such as has good documentation, very good GUI,
acceptance of users, used in many development projects,
standard FIPA, very good security features, and various
communication protocols[10].

A. Containers and platforms

Each running instance of the JADE runtime environment
is called a Container as it can contain several agents. The
set of active containers is called a Platform. A single special
Main container must always be active in a platform and all
other containers register with it as soon as they start. It
follows that the first container to start in a platform must be
a main container while all other containers must be “normal”
(i.e. non-main) containers and must “be told” where to find
(host and port) their main container (i.e. the main container
to register with). You don’t have to know how the JADE
runtime environment works, but just need to start it before
executing your agents. [10]

B. AMS and DF
Besides the ability of accepting registrations from other

containers, a main container differs from normal containers
as it holds two special agents (automatically started when the
main container is launched). The first is AMS (Agent
Management System) that provides the naming service (i.e.
ensures that each agent in the platform has a unique name)
and represents the authority in the platform (for instance it is
possible to create/kill agents on remote containers by
requesting that to the AMS The second agent is DF
(Directory Facilitator) that provides a Yellow Pages service
by means of which an agent can find other agents providing
the services he requires in order to achieve his goals.

C. Creating and terminating agent
Creating a JADE agent is as simple as defining a class

extending the jade.core.Agent class and implementing the
setup () method .The setup () method is intended to include
agent initializations. The actual job an agent has to do is

typically carried out within “behaviors”. Each agent is
identified by an “agent identifier” represented as an instance
of the jade.core.AID class. The getAID() method of the
Agent class allows retrieving the agent identifier. An AID
object includes a globally unique name plus a number of
addresses. The name in JADE has the form
<nickname>@<platform-name> so that an agent called
UIA living on a platform called P1 will have UIA@P1 as
globally unique name. In order to make it terminate its
doDelete() method must be called. Similarly to the setup()
method that is invoked by the JADE runtime as soon as an
agent starts and is intended to include agent initializations,
the takeDown() method is invoked just before an agent
terminates and is intended to include agent clean-up
operations.

D. Agent behaviours
The actual job an agent has to do is typically carried out

within “behaviours”. A behaviour represents a task that an
agent can carry out and is implemented as an object of a class
that extends jade.core.behaviours.. In order to make an agent
execute the task implemented by a behaviour object it is
sufficient to add the behaviour to the agent by means of the
addBehaviour() method of the Agent class. Behaviours can be
added at any time: when an agent starts (in the setup()
method) or from within other behaviours. Each class
extending Behaviour must implement the action() method,
that actually defines the operations to be performed when the
behaviour is in execution and the done() method (returns a
boolean value), that specifies whether or not a behaviour has
completed and have to be removed from the pool of
behaviours an agent is carrying out.

E. Agent communication
One of the most important features that JADE agents

provide is the ability to communicate. Each agent has a sort of
mailbox (the agent message queue) where the JADE runtime
posts messages sent by other agents. Whenever a message is
posted in the message queue the receiving agent is notified. If
and when the agent actually picks up the message from the
message queue to process it is completely up to the
programmer however.

Messages exchanged by JADE agents have a format
specified by the Agent Communication Language (ACL)
defined by the FIPA.international standard for agent
interoperability. This format comprises a number of fields
and in particular:
• The sender of the message.
• The list of receivers
• The communicative intention (also called “performative”)
indicating what the sender intends to achieve by sending the
message. The performative can be REQUEST, if the sender
wants the receiver to perform an action, INFORM, if the
sender wants the receiver to be aware a fact, QUERY_IF, if
the sender wants to know whether or not a given condition
holds, CFP (call for proposal), PROPOSE,
ACCEPT_PROPOSAL, REJECT_PROPOSAL, if the
sender and receiver are engaged in a negotiation, and more.
• The content i.e. the actual information included in the
message (i.e. the action to be performed in a REQUEST
message, the fact that the sender wants to disclose in an
INFORM message …).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

• The content language i.e. the syntax used to express the
content (both the sender and the receiver must be able to
encode/parse expressions compliant to this syntax for the
communication to be effective).
• The ontology i.e. the vocabulary of the symbols used in the
content and their meaning (both the sender and the receiver
must ascribe the same meaning to symbols for the
communication to be effective).
• Some fields used to control several concurrent conversations
and to specify timeouts for receiving a reply such as
conversation-id, reply-with, in-reply-to, reply-by.

F. GRAPHICAL TOOLS
To support the difficult task of debugging multi-agent

applications, some tools have been developed. Each tool is
packaged as an agent itself, obeying the same rules, the same
communication capabilities, and the same life cycle of a
generic application agent [11]. There are four tools we discuss
in the following sections.

• Remote Monitoring Agent: The Remote Monitoring Agent
(RMA) allows controlling the life cycle of the agent
platform and of all the registered agents. The distributed
architecture of JADE allows also remote controlling, where
the GUI is used to control the execution of agents and their
life cycle from a remote host.
• Dummy Agent: The DummyAgent tool allows users to
interact with JADE agents in a custom way. The GUI allows
composing and sending ACL messages and maintains a list
of all ACL messages sent and received. This list can be
examined by the user and each message can be viewed in
detail or even edited. Furthermore, the message list can be
saved to disk and retrieved later. Many instances of the
DummyAgent can be started as and where required.
• DF GUI: A GUI of the DF can be launched from the
Tools menu of the RMA. This action is actually
implemented by sending an ACL message to the DF asking
it to show its GUI. Therefore, the GUI can just be shown on
the host where the platform (main-container) was executed.
By using this GUI, the user can interact with the DF: view
the descriptions of the registered agents, register and
deregister agents, modify the description of registered agent,
and also search for agent descriptions.
• Sniffer Agent: As the name itself points out, the Sniffer
Agent is basically a FIPA-compliant Agent with sniffing
features. When the user decides to sniff an agent or a group
of agents, every message directed to/from that agent / agent
group is tracked and displayed in the Sniffer Agent’s
Graphical User Interface (GUI). The user can view every
message and save it to disk.

V. COMPONENTS OF THE PROPOSED SYSTEM

 The proposed system consists of biological ontology,
mapping schema, and multiagent system.

A. Biological ontology
Due to the cost of designing the ontology we deployed

BACIIS ontology as biological domain ontology. BACIIS
ontology is less complex than the concept of TAMBIS
ontology. Moreover, BACIIS concepts are easier to
understand and could be modified consequently. BACIIS

ontology developed using protégé-2000(Protégé-2000 is an
extensible, platform independent ontology and knowledge-
base editor, developed by Stanford Medical Informatics at
the Stanford University School of Medicine. Protégé is
available as free software) and then converted to JADE
compatible java classes using jadejessprotege (plugin for
protégé). Fig.1 show partial structure of BAO designed
using protégé.

Fig.1 Partial of BACIIS ontology designed using protégé

B. Mapping schema
We initially used two biological databases SWISSPROT

(protein) and GENBANK (Gene), we mapped each term in
database to BACIIS ontology concepts. By mapping
operation we solve heterogeneity between databases. for
example, to refer to the organism name, the database
GENBANK uses “ORGANISM” and the SWISSPROT use
“OS”. The ontology is used to map all the different terms
used by the remote databases to a single term (see Fig.2).
Each database has its own mapping schema .we can easily
add other biological databases only by creating mapping
schema and wrapper agent for this database.

Fig.2 Mapping operation

C. Multiagent system
As shown in Fig.3 the proposed framework includes the

following agents:
• The User Interface Agent (UIA) guides user to construct
ontology based query, and then sends this query to the Query
Planner Agent, and receives result data from Execution
Agent.
• The Query Planner Agent (QPA) decomposes this query
into a list of subqueries, and then sends these subqueries to
the Mapping Agent, then receives a list of appropriate

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

databases from mapping agent, then constructs the execution
path for this query (select the best execution path), and then
sends this execution path to the Execution Agent.
• The Mapping Agent (MA) prepares a list of appropriate
databases using mapping schema, and then sends this list of
databases to the Query Planner Agent.
• The Execution Agent (EA) invokes the Wrapper Agent
associated with each web database that corresponds to a
given subquery, and collects result data from wrapper
Agents then sends to User Interface Agent which displays
result.
• The wrapper Agents (WA) retrieves the result data from
remote databases using mapping schema of this database.
The mapping schema contains rules of how to extract data
from web interface of this database, and then send these
results data to the Execution Agent. Table I shows a brief
description for each agent, percepts, actions, goals, and type.

Fig.3 Multiagent framework

VI. EXAMPLE

Consider the following user query: Find the sequence and
description of "GRAA_HUMAN" protein of "Homo
sapiens" organism, also find sequences and length of their
coding gene.

UIA guides user in constructing the query which consist
of two parts; input and output. In input part, user selects
input type (BACIIS ontology concept) and types keyword.
In output part, user selects output type (BACIIS ontology
concept). According to the given example , the input query
are " GRAA_HUMAN" of input type are PROTEIN_NAME
and "Homo sapiens" of input type ORGANISM-NAME .the
output query are AMINO_ACID_ORIGIN, PROTEIN_DESCRIPTION
, and NUCLIEC_ACID_ORIGIN(see Fig.4).
The UIA then sends REQUEST message to QPA such as in
Fig 5.

Fig.5 Request message to QPA from UIA

Fig.4 GUI of UIA

QPA receive REQUEST message that contain the ontology
concepts from UIA and then decompose it using mapping
schema and biological ontology. QPA then sends a
REQUEST message contains these subqueries to MA which
maps each subquery to biological database, and then sends
INFORM message includes a list of appropriate databases
to QPA which constructs the execution path (see Fig 6).

Fig.6 Execution path

QPA sends INFORM message to EA contains the execution
path, The EA sends REQUEST message contains the
subquery for each WA associated with databases according
to dependencies in execution path. The WA use the mapping
schema to map ontology concept to corresponding term in
database, and then submit the subquery after transform it to
the form compatible to the web interface of specific
database(using the mapping schema). And then sends
INFORM message contain result to EA which collects and
integrate all result received from WAs, EA then sends
INFORM message contain integrated result set for UIA
which display it to user. Fig.7 shows sniffer agent GUI
which display message passing between agents .In this figure
a messages directed to/from DF agent. DF agent receive
REQUEST message for information, such as agent name,
about any agent registered and send INFORM message
contain this information.

VII. CONCLUSION

Agent-oriented techniques are being increasingly used in
several applications. They are ideally qualified for
developing complicated and distributed software systems. In
fact, agents enhance software modularity, maintainabilit

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Table. I Agent description

and reusability . In this paper, we proposed a multiagent
system that responds to different biological queries
according to its biological domain ontology. A set of agents
can cooperate with each other to retrieve relevant
information from different biological web databases. The
proposed system resolves the incompatibilities in data
formats, data representations, and mapping schema of
biological web databases. It also reduces the overhead
associated with changing the existing or adding different
data sources. Mediator based integration approach with
domain ontology has been deployed. One of the main
advantages of this approach is that it does not require
component databases to be physically combined into one
database. The domain ontology serves as a global schema
and plays a major role in resolving both semantic and
syntactic variability of biological web databases. The
proposed system is developed using JADE platform.
We believe that the proposed system is a step towards a
complete multiagent-based system for bioinformatics
applications.

Fig.7 Sniffer agent GUI

REFERENCES

[1] Z.B Miled, Y.W.Webster, and Y.Liu, " An Ontology for Semantic
Integration of Life Science Web Databases", International Journal of
Cooperative Information Systems, World Scientific Publishing Company,
Vol.12 No.2, 2003, pp.275-294.
[2] T.Hernandez, and S.Kambhampati, " Integration of biological
sources: current systems and challenges ahead", ACM SIGMOD Record ,
ACM Press ,Vol.33 No 3, 2004, pp.51 – 60 .
[3] S.B.Davidson, C.Overton, V.Tannen, and L.Wong, “BioKleisli: a.
digital library for biomedical researchers", International Journal on Digital
Libraries, Springer Berlin, Vol.1 No.1, 1997, pp.36-53.
[4] P.G.Baker, A.Brass, S.Bechhoferb, C.Goble, N.Paton, and R.Stevens., "
TAMBIS - Transparent Access to Multiple Bioinformatics Information
Sources", Proceedings of the 6th International Conference on Intelligent
Systems for Molecular Biology, AAAI Press, 1998, pp.25-34.
[5] Z.B.Miled, N.Li, and O.Bukhres, " BACIIS: Biological and Chemical
Information Integration System", Journal of Database Management, Idea
Group Inc, Vol.16 No.3, 2005, pp. 72-85.
 [6] E.Burger, J.Link,, and O.Ritter, "A Multi-Agent Architecture for the
Integration of Genomic Information", First International Workshop on
Intelligent Information Integration (in conjunction with KI97), 1997
[7] Y.Peng, T.Finin, Y.Labrou, B.Chu, J. Long, W. J. Tolone, and A.
Boughannam, "A Multi-Agent System for Enterprise Integration,
International", Journal of Agile Manufacturing, UMBC eBiquity, Vol.1 No
2, 1998, pp.213-229.
[8] S.Russell, and P.Norvig, “Artificial Intelligence: A Modern Approach”,
Printice Hall Inc, New Jersey, USA, 1995.
[9] K.A.Karasavvas, R.Baldock, and A.Burgera, "Bioinformatics
integration and agent technology", Journal of Biomedical Informatics,
Elsevier Science, Vol 37 No.3, 2004, pp.205 - 219 .
[10] G. Caire," JADE TUTORIAL JADE PROGRAMMING FOR
BEGINNERS", available at http://jade.tilab.com.
[11] F.Bellifemine, G.Caire, T.Trucco, G.Rimassa,R.Mungenast," JADE
Administrator’s GUIDE ", available at http://jade.tilab.com .

Explanation Type

Goals Actions Percepts Agent
name

This agent
selects actions
on basis of
current percept
(input query)
only.

Simple
reflex
agent.

Construct
ontology
based
query,
output the
integrated
result set
to user.

Guide user
to
construct
ontology
based
query and
output the
integrated
result set
to user.

Input query
sent by the
user, the
integrated
result set
sent by the
RA.

UIA

This agent
select the best
action (best
execution path)
that achieves
the goal.

Utility
based
agent.

Construct
the
execution
path.

Decompos
e input
query into
smaller
subqueries
.

Ontology
based query
sent by the
UIA , list of
appropriate
databases
sent by
MA .

QPA

This agent
select action
based on an
internal state
(mapping
schema) and
current percept
(subquery).

Agent
that
keeps
track
of
world.

Find list of
appropriat
e data
sources
that submit
subqueries
.

Map each
subquery
to a
specific
data
source
using
mapping
schema

Subqueries
sent by the
QPA.

MA

This agent
selects actions
on basis of
current percept
(execution
path, result
data) only.

Simple
reflex
agent.

Invoking
the WAs
associated
with each
web
database
according
to
dependenc
ies in
execution
path.
Collects
query
results
data from
WAs and
send it to
UIA .

Invoke the
WAs
associated
with each
web
database.
Collects
query
results
data from
Was and
send it to
UIA .

Execution
plan sent by
the QPA.
Result data
sent by the
WAs.

EA

This agent
select action
based on an
internal state
(mapping
schema) and
current percept
(subquery).

Agent
that
keeps
track
of
world.

Submit the
subquery
and
retrieves
the result
data.

Retrieves
the result
data from
remote
databases.

Ontology
based
Subqueries
sent by the
EA.

WA

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

