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Abstract—Pickup and Delivery Problems, where

customers may both receive and send goods, are an

extension to classical Vehicle Routing Problems. We

do not make the assumption common in literature

that goods may only be picked up after all deliver-

ies have been completed. Thereby we model industry

problems encountered by freight forwarding agencies,

which have to deal with dynamic pickups and deliv-

eries in an integrated manner. The approach we take

evaluates the benefits of dynamic optimization antic-

ipating varying travel times as well as unknown cus-

tomer orders in the specific environment of freight

forwarding agencies. On test instances with customer

distributions common in forwarding industries single

depot problems are analyzed with very encouraging

results.

Keywords: vehicle routing, pickup and delivery, dy-

namic, varying travel times, discrete optimization

1 Introduction

Distribution costs have an immense impact on the total
costs of products. This is mainly induced by the neces-
sary transportation between members of the supply chain
and end customers. Therefore, the optimization of distri-
bution processes offers potential cost savings. The main
focus of this work will be on forwarding agencies han-
dling less-than-truckload (LTL) freight. LTL freight is a
type of cargo which is on the one hand too large or heavy
to be transported by means of standard courier services
and on the other hand the amount is by far too low for
full truckloads. Consequently, direct transportation from
origin to destination would be too expensive. Hence, the
main idea is to consolidate enough small shipments to
efficiently conduct transportation for the majority of the
distance. In preparation of this transport it is necessary
to pick up commodities from different customer locations
in the origin region (preliminary leg). At the transship-
ment point consignments with the same destination re-
gion are grouped on trucks heading for this region and
are transported to a consolidation center in the destina-
tion region. Upon arrival they are transshipped again on
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Figure 1: Less-than-truckload freight network

smaller trucks and distributed to the customers in the
destination region (subsequent leg), as illustrated in Fig-
ure 1.

Nearly every transshipment point collects as well as rolls
out goods. Thus, typical forwarding agencies perform the
pickups and the deliveries conjoined on the same vehicle.
They have to cope with hundreds of pickups and deliver-
ies each day and a few tens of vehicles are necessary to ser-
vice the customers in the local region. Within the opera-
tions of forwarding industries vehicle capacity is crucial,
because sometimes single loads require large amounts of
the total vehicle capacity. Furthermore, inquiries of busi-
ness customers cannot be neglected as sometimes sug-
gested in approaches dealing with dynamic customer or-
ders. The performance is mainly influenced by two dy-
namic aspects: First, due to developments in information
and communication technology, the agencies receive in-
quiries shortly before the actual pickup. That is, up to
50 percent of all orders are unknown at the beginning of
the day. Second, unexpected traffic situations are endan-
gering the scheduled pickups, though traffic information
is increasingly available. Especially in urban areas for
many roads rush hour traffic jams are known. Surpris-
ingly, this information is hardly used within forwarding
agencies, even though vehicle location is available in real-
time. Consequently, forwarding agencies are experiencing
lateness of shipments and poor utilization of vehicles.

Recapitulatory, forwarding agencies are still facing the
problem that they have to manage lots of shipments, ve-
hicles, restrictions, and especially dynamics in customer
orders and unexpected traffic situations disrupting the
planned schedule. Thus, the goal is to evaluate the bene-
fits of an intelligent planning system, assisting forwarding
agencies in routing vehicles efficiently.

The paper is organized as follows. At the beginning, Sec-
tion 2 gives a brief literature review. Thereafter, Sec-
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tion 3 depicts the optimization approach to analyze the
impact of considering changing travel times and the pos-
sible impact of anticipating customer orders arriving over
the planning horizon. Finally, Section 4 gives computa-
tional results.

2 Literature Review

Static routing problems have been studied extensively
in the past and the interest is now increasingly on dy-
namic routing problems. Most static or dynamic real
world routing problems from combinatorial optimization,
including the Pickup and Delivery Problem (PDP) we
modeled, are NP-hard and cannot be solved to optimal-
ity within reasonable time. In fact, the most effective
exact algorithms proposed so far consistently solve prob-
lems containing about 50 customers [1]. Hence, usually
heuristics are applied. Nagy and Salhi compare different
heuristic algorithms to solve large Pickup and Delivery
Problems [2].

Before discussing some approaches covering dynamic
problems, it is necessary to define the term dynamic.
Larsen introduced a good definition to differentiate static
from dynamic problems, based on two aspects: “First,
not all information relevant to the planning of the routes
is known by the planner, when the routing process be-
gins. Second, information can change after the initial
routes have been constructed” [3]. Psaraftis as well tried
to differentiate between static and dynamic problems and
listed detailed attributes to differentiate between them
[4]. Examples relevant for dynamics in forwarding agen-
cies are: new or dropped out customers, new or altered
time windows, vehicle break downs requiring reschedul-
ing, altering quantities to pick up, varying travel times
(e.g., traffic jams), vehicle breakdowns, and varying ser-
vice times.

There are primarily two ways to solve dynamic problems.
First, a priori models which account in their optimiza-
tion strategy for changes which might occur. Second,
dynamic models which restart computing new solutions,
every time new information is available. General solution
concepts for PDP, though for single vehicles, are given by
Gribkovskaia et al. [5].

Kenyon and Morton built a priori models considering
stochastic travel times as well as stochastic service times
[6]. One model tries to minimize the time likely required
to finish all tours, while another model maximizes the
probability to finish all routes within a given time. Both
models utilize a branch-and-cut approach to solve the
problem.

Dynamic models can be differentiated in models which
anticipate and consider possible incoming orders and
models which simply start recomputing, if new informa-
tion is available. One method for the last mentioned ap-

proach of iterative planning might be to find tours of a
pure static problem and with each new information avail-
able the generated routes are updated. Savelsberg and
Sol applied a branch-and-price approach on such a prob-
lem, there each new information triggers recalculation of
previous results [7]. The general advantage of this ap-
proach is, that it is possible to modify existing methods
to adapt to dynamic problems. These methods might
be simulated and deterministic annealing, genetic algo-
rithms, tabu search, ant colony systems, adaptive mem-
ory, or variable neighborhood search. To be able to ap-
ply various methods in a short period of time, it is often
necessary to execute them parallel [8]. Nonetheless the
results of such approaches are limited, because possible
benefits of anticipating results are not used.

Jaillet and Wagner consider online routing problems and
analyze the value of advanced information using compet-
itive ratios [9]. The work is dedicated to online traveling
salesman and traveling repairman problems. The perfor-
mance of online algorithms is measured using competi-
tive ratios (i.e., worst case ratio of the online algorithm’s
cost in comparison to the costs of an optimal offline al-
gorithm). The authors analyzed objectives optimizing
the server’s interest and the customers’ interest. As well
as they introduced a disclosure date, the point of time
at which requests become known, ahead of the dates at
which requests can first be served. This is similar to the
degree of dynamism Larsen introduced earlier [10].

Hiller et al. present a column generation algorithm, to
route a fleet of service vehicles to unknown service loca-
tions [11]. They analyze, if the reoptimization gap or the
reoptimizaton model error is more significant. The au-
thors give the original strategy (named ZIBDIP), based
on a set partitioning formulation and some simplified
strategies for high load situations. For three test days
computational experiments were conducted. The origi-
nal strategy was used for low loads and the simplified
models were used in high loads. Experiments show that
all simplified models reduced the optimality gap. With
respect to costs only two simplified models were compet-
itive against ZIBDIP. Still the model error of most high
load models leads to worse long-term behavior than the
original strategy. The results suggest to keep the origi-
nal model, but use simplified reoptimization models. The
tested algorithms increased the long term cost more than
the model errors before. Further, the authors claim that,
if reoptimization is not working properly, this is not cured
by using suboptimal solutions to the reoptimization prob-
lem [11]. These results confirm the results of Bertsimas
and Simchi-Levi, who state that - depending on specific
cases - results of exact reoptimization are satisfying [12].

Schönberger et al. accept or reject customer orders based
on the expected profit (i.e., a vehicle routing problem
with profits). Therefore, the expected profit is compared
to the additional costs of a request. In the beginning var-
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ious orders have to be combined, as a single order is not
sufficient to profitable conduct a tour [13]. However, or-
der rejection within forwarding agencies is generally not
applicable. Another approach from Aksen and Aras con-
nects the customer selection with a profit maximization
(i.e., the objective is not to minimize the distance, but to
maximize the profit). Accordingly, the travel costs as well
as the profit for each customer have to be known. Similar
to the standard problem time windows can be considered
[14]. Again, this is not applicable in forwarding agencies,
which are committed to service all customers.

Promising results motivate to extend the multiple sce-
nario approach suggested by Bent and van Hentenryck
[15], which permanently generates routing plans consid-
ering known and future requests. According to a con-
sensus function the plan which offers the best flexibility
at the actual point in time is chosen. Alternatively, and
for forwarding agencies even more promising, seems the
approach from Kunze [16]. The author built aggregates,
representing geographical regions and the time to service
and to travel these regions are estimated. Dynamically
incoming orders are considered, though no capacities are
included.

Fleischmann et al. consider a dynamic routing system
where customer orders arrive at random during the plan-
ning period. Every customer request requires a transport
from a pickup location to a delivery location with given
time windows, though no capacity is considered. Addi-
tionally, the authors consider forecasted and dynamically
changing travel times obtained from a traffic management
center. The forecasted travel times account to regular
rush hour congestion in certain streets. Two events trig-
ger recalculation: new orders or vehicles done with one
order. The authors use an assignment and an insertion
heuristic algorithm. The assignment algorithm considers
all vehicles and all open orders simultaneously. The in-
sertion algorithm integrates new orders into the current
schedule at the point of the arrival of this order. The
resulting schedule is improved by resequencing and reas-
signing the orders. Results indicate that the flexible as-
signment algorithm outperforms the simple assignment
and insertion algorithm. This advantage is increasing
with higher levels of dynamism [17].

Branke et al. derive theoretical results about the best
waiting strategies for one and two vehicle cases [18]. Some
deterministic waiting strategies and an evolutionary al-
gorithm for waiting strategies are presented. The results
show that a proper waiting strategy reduces detours and
allows to service the additional customer. They state
that, if only few customer orders are unknown, it is bet-
ter to use preplanned route and insert new customers.
On the other hand, if requests are expected customer or-
ders should be anticipated. Further, known or unknown
arrival times are considered and time lacks of vehicles are
used to insert new customers or to wait. Branke et al.

prove that for a single vehicle it is not beneficial to wait
and that benefits will prevail even for more customers.
This is solely valid for a small number of new customers.
Generally, with a large number of customers waiting is
unlikely to be of any benefit.

Powell was one of the first to review the idea of forecasting
uncertainties within dynamic routing, though the focus
is on job assignment to maintain a steady flow of work
[19]. Instead of creating routes beforehand and different
to Powell’s approach focusing on forecasting and the as-
signment problem. Van Hemert and La Poutré try a new
approach [20]. The authors do not consider the distances
traveled or the number of vehicles, instead they solely
try to cover the expected workload of the area. Still, cus-
tomer requests are handled dynamically and a solution
is provided in real-time. Three criteria differentiate their
dynamic routing approach from static ones. First, vehi-
cles are allowed to pass through nodes without servicing
customers. Second, loads become available while vehicles
are already on route. Third, loads do not necessarily have
to be assigned to vehicles. Consequently, their objective
is to carry as many loads as possible to the central de-
pot. The performance is measured by the total number
of loads generated in a given time period. In practice,
various customers requests are often emanating in the
same geographical region. Van Hemert and La Poutré
try use the fact that the number of service requests from
different regions might vary (e.g., production capacities
in specific customer regions). Therefore, it might be ben-
eficial to service regions with high probability of customer
requests (i.e., service fruitful regions). The authors use
an evolutionary algorithm that offers to maintain vari-
ous candidate solutions and therefore reacts on changes.
The authors conclude that, if the time restriction to de-
liver loads is beyond a certain point, it is best to perform
routing for pickup and delivery only. Vehicles might take
a long time to pick up any load and return to the de-
pot. This assumption might hold for other pickup and
delivery tasks, but does not fit with forwarding agencies.
The distances are usually higher than in other delivery
areas and in far off regions combined pickup and deliver-
ies allow tremendous savings. The criteria differ from the
ones assumed in our approach. The expected service and
travel times within the region are already assumed. Sim-
ilar to van Hemert and La Poutré loads become available
during route execution, but within forwarding agencies it
is absolutely necessary to pickup all available nodes and
evenly important, the time windows of customers have to
be considered.

Most approaches are dealing either with varying travel
times or dynamic customers, some also consider both but
rarely Pickup and Delivery Problems including both are
analyzed. In particular, the special requirements of for-
warding agencies are not considered. Additionally, vari-
ous papers show performance improvements with a pri-
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Figure 2: Structure of a dynamic routing system

ori or dynamic problems over static ones, but rarely it is
evaluated, if it is economically beneficial to invest in dy-
namic routing. Thus, we focus on evaluating, if forward-
ing agencies might benefit from approaches anticipating
events and routing in real-time. For this reason we an-
alyze the potential improvements of dynamic routing in
forwarding agencies and determine, if it is economically
advantageous.

3 Optimization Approach

Pickup and Delivery Problems are appropriate to model
decision problems of forwarding agencies, where cus-
tomers may both receive and send goods. These com-
panies exhibit high operational costs, among other things
due to high gasoline prices and toll payments in Germany,
additionally the competition is tough. Consequently, the
objective is to find a set of minimum cost routes, start-
ing and ending at a single depot and serving demands
of numerous customers. Furthermore, vehicle capacity,
driving time restrictions and especially tight time win-
dows hinder the operations in forwarding agencies. An
optimization approach considering dynamics occurring in
forwarding agencies will help to pick up and deliver goods
on time and avoid sudden rescheduling.

Figure 2 illustrates the functionality of a dynamic routing
system. Every time new information is available, either
travel times or customer requests, the intelligent planning
system is started. The idea of such a planning system
is that anticipating future changes will produce consider-
ably less route changes than systems purely recalculating.

Problems dealing with dynamic data are difficult to com-
pare, because the degree of dynamism and the num-
ber of known and unknown customers (nv, nz) is likely
to vary. Therefore the effective degree of dynamism is
crucial for evaluating the results of different scenarios.
We measured the degree of dynamism essentially in the
way Larsen, Madsen and Solomon suggested [10]. The
extended degree of dynamism, which incorporates indi-
vidual customer time windows and thereby accounts for
widely varying time windows, is used. The value of equa-
tion (1) is always between zero and one, because li − ti

Figure 3: Example of dynamic routing

(latest arrival time at customer, order arrival time respec-
tively) is always less than or equal to T (time horizon).
Usually, greater response time offers more flexibility, be-
cause the number of potential options is higher. That is,
the more time is available to react (the response time),
the more likely it is to find satisfying solutions for this
event.

edodtw =
1

nv + nz

nv+nz∑

i=1

T − (li − ti)

T
(1)

On the one hand we consider varying travel times, caused
by traffic jams, stoppages, breakdowns, etc. and the pos-
sible impacts. An example with two vehicles is given in
Figure 3. Assuming the originally planned route (left
side) would be for vehicle one (solid line) to service five
customers and for vehicle two (dashed line) to service
two. In the process time windows have to be respected,
because otherwise high penalties or long periods with idle
waiting are induced. In the example vehicle number one
is stuck in a traffic jam after visiting three customers and
will not be able to service the remaining customers on
time. Within the forwarding industry not servicing cus-
tomers is not an option. Either an additional vehicle has
to be hired to service these customers and maybe high
penalties have to be paid for lateness or - and much bet-
ter - one of the other vehicles, in this example vehicle
two (dotted line), might be able to take care of these cus-
tomers on time (right side). This decision process could
be supported by an online planning algorithm. We con-
sidered how often planned routes are endangered, to eval-
uate the benefits of such an approach. The robustness of
the solution is analyzed to be able to estimate the benefits
from routing algorithms anticipating traffic jams.

On the other hand we considered dynamically arriving
orders. In reality customer orders are canceled, but this
is generally not a problem. All other customers can still
be serviced on time, in the worst case the vehicle might
be idle for some time and utilization decreases. Far more
difficult to handle are orders arriving throughout the day.
Our industry partners did not have the data available to
provide the exact times of order arrivals. On that ac-
count we decided to assume the best time for order ar-
rivals, namely directly after the tour start. In this case
the companies do have the most time to react to each
incoming order. Of course, in reality orders arrive dur-
ing the day and therefore our results indicate less impact
caused by dynamics as the company might actually ex-
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perience. In addition, this assumption is a lower bound
on the daily performance and the company will definitely
experience at least the impact computed. At the begin-
ning, routes for all known orders are planned, then we
added stepwise incoming, therefore unknown, customer
orders and analyzed the results.

To analyze potential savings a PDP is formulated as
a mixed integer linear programming model. Here, the
common assumption in the PDP literature that goods
may only be picked up after all deliveries have been
completed is not necessary. The PDP can be defined
as follows. Let G = (V0, E) be a graph where V0 =
{v0, v1, ..., vn} and V = V0\ {v0} are vertex sets and
E = {(vi, vj) : vi, vj ∈ V0; i 6= j} is the arc set. Every
vertex of V corresponds to a customer, and vertex v0

represents the depot at which at most m vehicles are
based. The decision variable m limits the number of ve-
hicles, which can be used in the optimal solution and
with E is associated a distance matrix C = (cij). The
model, objective function and constraints are given below
in equations (2) to (15).

Min

n∑

i=1

n∑

j=1

m∑

k=1

cijxijk + Z ∗
n∑

j=2

m∑

k=1

x1jk (2)

In the above formulation the objective function minimizes
the total distance traveled or travel time respectively. In
addition, the number of vehicles used is minimized (2).
Without minimizing the number of vehicles, the model
would probably use more vehicles to minimize the total
distance or travel time. However, in forwarding agen-
cies every additional vehicle costs a lot more than a few
additional kilometers or minutes traveled.

s.t.

n∑

i=1

m∑

k=1

xijk = 1 ∀ j = 2, ..., n (3)

n∑

i=1

xijk −
n∑

i=1

xjik = 0 ∀ j ∈ N ; k ∈ K (4)

n∑

j=1

x1jk ≤ 1 ∀ k ∈ K (5)

The customer and vehicle related constraints ensure that
every customer is visited (3). Theoretically, it is possible
that a vehicle visits a customer and leaves another one.
Of course that is not possible in reality and has to be
precluded (4) and (5).

fijk ≤ C ∀ i, j ∈ N ; k ∈ K (6)

fijk ≤ xijk

n∑

h=2

(qh + ph) ∀ i, j ∈ N ; k ∈ K (7)

n∑

i=1

m∑

k=1

fijk − qj =

n∑

i=1

m∑

k=1

fjik − pj

∀ j = 2, ..., n (8)

The flow related constraints limit the capacity for all ve-
hicles k on all edges (6). A flow of goods is only possible,
if a vehicle is actually traveling from node i to node j

(7). Of course the load is reduced or increased only by
the amount of customer orders (8). These constraints
implicitly avoid subtours, therefore also produce lots of
constraints and provoke a NP-hard problem [2].

ei ≤ aik ∀ i ∈ N ; k ∈ K (9)

aik ≤ li ∀ i ∈ N ; k ∈ K (10)

aik + si + cij − R ∗ (1 − xijk) ≤ ajk

∀ i, j = 2, ..., n; k ∈ K (11)

e1 + c1j − R ∗ (1 − x1jk) ≤ ajk

∀ j = 2, ..., n; k ∈ K (12)

aik + si + di1 − R ∗ (1 − xi1k) ≤ a1k

∀ i = 2, ..., n; k ∈ K (13)

xijk = {0, 1} ∀ i, j ∈ N ; k ∈ K (14)

fijk ≥ 0 ∀ i, j ∈ N ; k ∈ K (15)

The time windows and travel time constraints are equa-
tions (9) to (13). Constraints (9) and (10) let the vehicles
arrive at the earliest at the beginning of a time window
and require the service to take place at the latest at the
end of the time window. Equations (11) ensure the time
consistency. Based on the arrival time of vehicle k at
customer i the necessary service time si is added and the
departure time is calculated. The departure time plus the
travel time and the arrival at the next customer location
j has to be at least this high. These constraints are not
valid for the depot node, otherwise no valid routes would
be found. One possibility to solve this problem is to cre-
ate for each vehicle one virtual depot node, that is, every
vehicle has a virtual depot node for the start of each tour
and one for the end of the tour. Here, the problem is
solved in a different way. The equations (12) and (13)
ensure the time consistency from the depot node to the
first customers and for the return to the depot. Finally,
the last equations are formal definitions.

Based on this model the impacts of varying travel times
and dynamic order arrival are analyzed. It is important
to keep in mind that the graphical customer distribution
might affect the results drastically. Of course in such a
setting the deliveries are known at the beginning of the
planning horizon and the number of unknown pickups
determine the degree of dynamism.

4 Computational Analysis

First the problem was solved under the idealistic assump-
tion that all data are known in advance. This provides
a base to benchmark the impact of varying travel times
and dynamic order arrival. For solving GAMS and the
CPlex 10.0 branch-and-cut framework was used. Exem-
plarily, we illustrate this with modified datasets based on
the Solomon Instances of type R and C. The number of
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vehicles used, distances between customer, and order ar-
rival times vary for different datasets. For all instances
analyzed we limited the available solver time to gain re-
sults in reasonable time.

We generated optimal routes assuming all orders known
and analyzed the impact of real life traffic by means of
performing robustness analysis on the instances. This
helped us to see how long a traffic jam or extension of
travel time might be, before the solution was influenced
significantly. Individual values of each customer indi-
cated critical tours. Overall, we were able to predict to
what extend the prior computed solutions would be ap-
plicable and to what point in time lateness occurs or new
vehicles might be needed. We performed several experi-
ments for different customer distributions, vehicle capac-
ities, and time windows. All were impacted by changes
in travel time, though cases with high concentration of
customers in local regions were influenced less than cases
with dispersed customers or mixed distributions.

Similar to the real-life routes the generated routes are not
very robust. This is due to the fact that they are based on
standard travel times, but especially in urban areas traf-
fic jams occur often. Anticipating these in routing may
help forwarding agencies, which have problems fulfilling
customer demands on-time. The anticipation should not
be globally (i.e., adding 10 percent to the travel time),
because this would induce more idle time and waiting
at customer locations. Instead more sophisticated ap-
proaches, for example, time dependent and dynamically
reacting models, promise success.

In addition to varying travel times we analyzed the im-
pact of unknown customer orders. The number of un-
known customer orders is ranging from 0 to 52 percent.
Still, the service times and the time windows of different
customers were supposed to be constant. The delivery or-
ders were known, while the unknown requests were pickup
orders. Instead of generating the order arrival times via
a Poisson process, we assumed the additional orders are
known after the tour start. Considering the definition of
the degree of dynamism, this is a lower bound for the
actual dynamic. This assumption is likely to improve the
results under dynamism, but never delivers worse results
than forwarding agencies might experience actually.

We analyzed to what extend the variable order income
has an impact on the already planned routes for differ-
ent customer distributions. Therefore, we fixed the solu-
tion of all known customers before the planning starts,
because already loaded and traveling vehicles cannot be
reloaded. Now the problem was solved with each newly
arriving customer order. Results show that if the ex-
tended degree of dynamism is above 0.5 and customer
distribution of type R, generally two more vehicles (K)
are needed. Table 1 illustrates this for four instances.
Instances with dispersed customers and a high number

Table 1: Static vs. Dynamic Optimization
Static Dynamic

Instance K D K D U edodtw

R25-1 8 618.3 10 742.2 0.52 % 0.53

R25-2 8 618.3 8 686.0 0.24 % 0.53

C25-1 3 191.8 4 259.0 0.52 % 0.62

C25-2 3 191.8 3 191.8 0.28 % 0.62

of unknown customers (U) experience a strong impact.
With only few unknown customers, the traveled distances
(D) increase only slightly. Datasets with clustered cus-
tomers are impacted similarly, but due to the proximity
of the customer location the solution is more flexible to
integrate dynamic events.

The instances of type R are those most similar to cus-
tomer distributions of common forwarding agencies. In
cases of type R with dispersed customers fluctuations in
travel speed show great impact on the results. Of course
the distance traveled and time spent servicing customers
induces costs, but the major cost drivers in forwarding
agencies are the number of vehicles used. Overall, for
instances of type R and a edodtw above 0.5 two more
vehicles are needed.

The results we found indicate that considering dynamic
data might be useful in forwarding agencies, but it is still
unclear, if an invest is economically reasonable. Gener-
ally, companies have to pay penalties for lateness as high
as the operating costs for one vehicle for one day. Ad-
ditionally, all results consistently show that in dynamic
situations additional vehicles are required.

To compute the benefits of considering varying travel
times, for all datasets the probability of late deliveries are
computed and weighted with individual penalty costs for
each late delivery. Of course nonmonetary consequences
like image, lost customers or even additional efforts to ser-
vice the customer on time are not considered. Dynamic
order income likely requires a higher number of vehicles
and therefore is the main cost driver; additionally extra
kilometer costs are added. In cases with few unknown
customers (less than 25 percent) the risk to not finish
routes and the risk of lateness increase only moderately.
It is likely that no new vehicles are needed, because the in-
crease of route execution time is below 10.95 percent (i.e.,
few extra costs). Cases with high degrees of dynamism
(above 0.5) and lots of unknown customers (above 50 per-
cent) are endangered by lateness. The increase of route
execution time is above 20.04 percent and likely more
than two additional vehicles are needed (i.e., high extra
costs). Even though pure static planning induces addi-
tional costs, in cases of low dynamics an invest might
be noneconomical and critical consideration is needed.
In cases of high dynamics, especially with varying travel
times, optimization with anticipation is favorable.
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5 Conclusions and Future Work

Overall the results show that the anticipation of chang-
ing travel times and dynamic customer orders within for-
warding agencies is very promising and, if fluctuations of
both are high enough, even economically advantageous.
The further examination of the degree dynamism regard-
ing travel times and customer distribution might be in-
teresting. Especially, the development and evaluation of
fast dynamic algorithms with strategies to anticipate cus-
tomer orders and travel times considering the specific re-
quirements mentioned above is an important field of re-
search.
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