
 
 

 

  
Abstract—This paper presents a new Eukaryotic promoter 

recognition method based on principle component analysis 
(PCA). We compute 3-mer and 5-mer frequencies as input 
features and use the PCA to reduce the dimensionality of the 
feature vector. Our system employs three neural network 
classifiers to distinguish promoters versus exons, promoters 
versus introns and promoters versus 3’UTR sequences, 
respectively. Our promoter prediction system produces the 
smallest number of false positives with the same number true 
positives in comparison with existing systems. 
 

Index Terms—Promoter recognition, DNA sequence 
analysis, CpG islands, Transcription start sites, Principal 
Component analysis  
 

I. INTRODUCTION 
Eukaryotic promoter prediction plays a very important 

role in the study of gene regulation. Although there are a 
number of promoter prediction algorithms, the result is far 
from satisfactory and there is a clear need to increase true 
positive predictions and at the same time reduce false 
positive predictions. An important problem to solve is to 
select appropriate features for the prediction system.  

It is difficult to find effective patterns in DNA 
sequences to classify promoter and non-promoter 
sequences. Most promoter prediction methods use 
CpG-islands as an important feature. However, only half 
the human promoters are CpG-island related, which leads 
to some prediction method producing even worse results 
than pure random guesswork when performing prediction 
on non-CpG-island promoters[1]. A similar situation 
occurs when using only TATA-box or CAAT-box etc. to 
search for promoters because a high percentage of 
promoters do not contain these signals. Therefore, it is an 
important task, to find more effective features and an 
improved relationship among them. Principal component 
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analysis (PCA) is a useful statistical technique that has 
been applied in many fields such as human face 
recognition and image compression. It is also a common 
technique for finding patterns in data with high 
dimensions[2]. In this paper, we create high dimensional 
matrices using features extracted from sample DNA 
sequences, and select several most import features using 
PCA. These features are used as input to a neural network 
for training purposes. The concept of CpG islands is also 
adopted as an enhancing signal here because they are still 
associated with ~60% of human promoters[3]. The 
specificity of our system is greatly improved in 
comparison with existing methods. 

 

II. DATASET CONSTRUCTION AND FEATURE SELECTION 
The promoter sequences are downloaded from the 

Eukaryotic Promoter Database (EPD), Release 86[4], and 
from the database of transcription start sites (DBTSS), 
version 5.2.0[5]. Human exon and intron Sequences are 
extracted from the exon-intron database 
(http://hsc.utoledo.edu /bioinfo/eid/index.html) and the 
human 3’UTR sequence is from the UTR database[6]. 
PCA is used for feature selection and neural network is 
adopted for classification.  

A. Datasets construction and normalization 
We construct datasets of 3-mer (codon) and 5-mer 

frequencies for both the promoter training data set and 
non-promoter training data set, as follows: 
1) For all sequences, the length is fixed at 300bp:  

Promoter training set: We use 250bp upstream to 50bp 
downstream of the transcription binding site and 1000 
sequences are randomly selected from EPD and 7000 
sequences from DBTSS. 

Non-promoter training set: We select the sequence 
whose length is over 1200bp from the non-promoter 
database (compared to sequence length in EPD, 1200bp of 
each sequence). We arrange the selected sequence into 
300bp each and choose 10000 sequence from each of the 
Exon, Intron, and UTR databases.  
2)  We count the 3-mer and 5-mer frequencies 
(overlapping) of each sequence, and build a 64 n×  and a 
1024 n×  matrix for each dataset, where n  represents the 
sample number in each dataset (8000 in the promoter 
training set and 10000 in each of three non-promoter 
training sets). 

We apply the normalization and combine two matrices 
of each dataset as follows: 
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where 0 1( , )a i j , 1( , )a i j  and 0 2( , )b i j , 2( , )b i j  are 
3-mer and 5-mer separate frequency matrix elements 
before and after normalization, maxa  and maxb  are 
maximum values of 3-mer and 5-mer matrix respectively, 
and 3( , )c i j  is a combined feature matrix element.   

B. Principal component analysis and feature selection 
Let us refer to the m n×  matrix C  as the feature 

matrix, where m is the number of features and n  is the 
number of samples. Our target is to find an orthonormal 
matrix P , where 1 TP P− =  and Y PC=  such that 
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−
 is diagonalized.  The rows of P  are the 

principal components of C . That is, 
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where      
TA CC≡  

As A  is symmetric, we can find matrix E  and D  so 
that TA EDE= , where D  is a diagonal matrix and E  
is a matrix of eigenvectors of A arranged as columns. 
Thus, we can select P  where each row of P  is an 
eigenvector of TCC . Now, we can rewrite YC  in terms 

of P  and D . 
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It is obvious that P  is the matrix that can 

diagonalizes YC . The principal components of C  are the  

 
 
Fig.1: Distributions of promoters and exons in the 
three-dimensional space of first three principal 
components. The data points in the two classes are well 
separated. 
 
eigenvectors of TCC . The ith diagonal value of YC  is 

the variance of C  along ip (row vector of P )[7]. 

We rank the diagonal values of YC ,  and  a large value 

of YC  is associated with a high level of energy. In our 
work, we select the first three principal components of 
matrix P(p1, p2, p3) as new feature vectors. We cannot 
specify any nucleotide-combined features here as the 
TATA box or CAAT box because 1088 features 
mentioned previously are decomposed and merged again. 
More complicated features are found and a new 
3-dimensional space (p1, p2, p3) which can best describe 
the characteristics of each dataset group is formed. The 
dimension of the original feature matrix C  is reduced by 
projection onto the new space and then, a new matrix 
based on each dataset is used as input to a neural network 
for training purposes. Fig.1 shows the projection of 
promoter and exon datasets after dimension reduction by 
PCA. The result shows that the first three principal 
components can be used to separate promoters and exons 
effectively. 

C. CpG islands features 
CpG islands are genomic regions that contain a high 

frequency of CG dinulceotides. It is a very important 
feature and is applied by many promoter recognition 
programs, such as CpGProD[8], Dragon Promoter 
Finder[9], [10] , Dragon Gene Start Finder[11], FistEF[12] 
and PromoterExplorer [13]. We use two features to 
identify whether the sequence (>200bp) is CpG islands 
related:  
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Fig.2: The overall structure of our promoter recognition system. 
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If 0.5GCp > , and / 0.6o e > , the sequence is CpG 

islands related, otherwise it is non-CpG islands related[14]. 
  As an important feature of promoters, CpG islands 

themselves have a high level of energy so that they would 
have a large contribution to the principal components. 
However, it is inevitable that some useful signals might be 
largely reduced or lost during matrix transformation. So we 
extract CpG island features separately and use them together 
with those selected by PCA for classification. 
 

III. PREDICTION SYSTEM 
We use a sliding window to predict TSS along a large 

genome sequence. The flow diagram of our system is shown 
in Fig.2. The window size is 300bp and it moves 20bp in each 
step in our model. Each sequence segment will receive a 
score from the CpG islands model and at the same time, the 
Feature Vector Creation Model generates a feature vector 
containing 3-mer and 5-mer frequencies. The vector will be 
projected to a new space by the PCA model and then sent to 

three sensors: Promoter vs. Exon Sensor, Promoter vs. Intron 
Sensor and Promoter vs. Exon Sensor, which perform 
separate classifications. The three scores from the sensors 
together with the one from CpG islands are processed in the 
Data Processing Model and the final prediction of TSS will 
be produced. The PCA model and the three connected 
sensors are the neural networks built from training samples. 

IV. EXPERIMENT RESULTS 
The testing set consists of four human genomic sequences 

from GenBank with a total length of 0.95Mb and 14 known 
TSS. Table I shows an overview of the selected genomic 
sequences.Three best known promoter prediction systems are 
selected in order to compare the performance of our system: 
PromoterInspector[15], Dragon Promoter Finder and Epoine. 
A promoter region is counted as true positive (TP) if TSS is 
located within the region or if a region boundary is within 
200bp 5’ of such a TSS. Otherwise the predicted region is 
counted as false positive (FP). Both PromoterInspector and 
our system use default settings. In DPF, s  is set at 0.45 and 
in Eponine, 0.995t = . The results and comparisons are 
listed in Table II and Table III. It can be seen that our method 
produces the smallest number of false positives with the same 
number true positives in comparison with existing methods. 

V. CONCLUTION 
In this paper, we have presented a new promoter prediction 

system based on the PCA algorithm. A neural network is 
used as the classifier. Compared to other currently favored 
promoter finding models, our model shows advantage in 
reducing the false positive rate which leads to higher 
specificity. The result is also a powerful verification that the 
PCA algorithm we use performs efficiently on feature 
selection which is one of the most important tasks in the 
promoter recognition field.  Future research should adopt 
more global signals[16] (TATA box and CAAT box etc.) as
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Table I  Description of the large genomic sequences in the testing set

Accession number Description Length 
(bp) 

Number of TSS 

L44140 Homo sapiens chromosome X region 
from filamin (FLM) gene to 
glucose-6-phoshate dehydrogenase 
(G6PD) gene. There are 13 known and 
six candidate genes in the sequence. 

 
 

219447 

 
 

11 

D87675 Homo sapiens DNA for amyloid 
precursor protein. 

301692 1 

AF017257 Homo sapiens chromosome 21-derived 
BAC containing erythroblastosis virus 
oncogene homolog 2 protein (ets-2) 
gene. 

 
101569 

 
1 

AC002368 Homo sapiens Xq 28 BAC PAC and 
cosmid clones containing FMR2 gene. 

324816 1 

 
Total 

 
947524 

 
14 

 
Table II  Promoter prediction results of four different systems 

Accession 
number 

System TP  FP  Coverage (%) 

L44140 PromoterInspector 
DPF ( 0.45s = ) 
Eponine (t=0.995) 
Our system 

6 
6 
6 
6 

14 
14 
12 
11 

54.5 
54.5 
54.5 
54.5 

D87675 PromoterInspector 
DPF ( 0.45s = ) 
Eponine (t=0.995) 
Our system 

1 
1 
1 
1 

2 
3 
1 
0 

100 
100 
100 
100 

AF017257 PromoterInspector 
DPF ( 0.45s = ) 
Eponine (t=0.995) 
Our system 

1 
1 
1 
1 

0 
0 
3 
0 

100 
100 
100 
100 

AC002368 PromoterInspector 
DPF ( 0.45s = ) 
Eponine (t=0.995) 
Our system 

1 
1 
1 
1 

1 
3 
0 
0 

100 
100 
100 
100 

 

TABLE III  Performance comparison of four prediction systems in a testing set. 

System TP  FP  (%)a
eS   (%)b

pS   

PromoterInspector 9 17 64.2 34.6 
DPF ( 0.45s = ) 9 20 64.2 31.0 

Eponine 9 16 64.2 36.0 
Our system 9 11 64.2 45.0 

a Sensitivity: /( )eS TP TP FN= + . FN : false negative 
b Specificity: /( )pS TP TP FP= +  

 
enhancing factors because the impact of some important 
signals might be reduced during dimension reduction 
processing.  
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