
 
 

 

  
Abstract—In recent years, the process of cellular 

manufacturing and group technology has received much 
attention and popularity in many developed countries. By 
applying Group Technology (GT), many benefits of flow-line 
production can be attained in a batch production system. GT 
can improve material handling, significantly reduce material 
flow time and distance, and setup times.  In this paper, a two 
step approach is proposed to solve the GT problem using 
Genetic Algorithms (GA). The first step assigns parts to the best 
available machines according to their required specifications. 
The second step forms manufacturing cells and part families. 
The proposed GA model has the flexibility of choosing the 
number of cells required, which is very useful in examining 
different manufacturing cell configurations; or in case that the 
workshop or factory prefers a certain number of cells. For 
example if the workshop or factory doesn't have the workspace 
required for more than four cells. To compare the performance 
of the proposed GA model, five part-machine matrices are 
obtained from the literature are solved using different 
techniques and their results are compared to the results 
achieved by the proposed GA model. The GA model results 
were found satisfactory and superior to other techniques in 
some cases. 
 

Index Terms— Cellular Manufacturing, Genetic Algorithms, 
Group Technology, Part-machine Matrix. 
 

I. INTRODUCTION 
Group technology is a manufacturing philosophy in which 

similar parts are identified and grouped together to take 
advantage of their similarities in manufacturing and design. 
Similar parts are arranged into part families. For example, a 
plant producing 10,000 different part numbers may be able to 
group the vast majority of these parts into 50 or 60 distinct 
families. 

The objectives of Group Technology are best achieved in 
business concerned with small to medium batch production; 
these represent a major part of manufacturing industry. The 
traditional approach to this type of manufacturing is to make 
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use of a functional layout in the factory, i.e. similar machines 
are grouped according to type. As a result of this form of 
machine layout, where only machining operations of a 
particular type may be performed in a limited area of the 
workshop, the work-piece itself must travel a considerable 
distance around the workshop before all the operations are 
performed upon it. This usually leads to a long throughput 
time. The planning of process route becomes an extremely 
difficult task since a number of similar machine tools may be 
considered at each point in the sequence of manufacturing 
operations.  

Also, the scheduling and control in such a system are 
difficult because numerous alternatives are available. As a 
result, a different concept of manufacturing organization and 
layout has been developed to overcome these difficulties. 
This is the Group Technology (GT) concept whose emphasis 
lies in reducing the dimension of the situation to be 
controlled. Instead of being functionally laid out, the factory 
is divided into smaller cells in such a way that each cell is 
equipped with all the machines and equipment needed to 
complete a particular family of components. Each family 
would possess similar design and/or manufacturing char-
acteristics. Hence, the processing of each member of a given 
family would be similar, and this results in better 
manufacturing efficiencies than the traditional manufacturing 
approaches [1, 2]. 

It has been found that by switching to this type of cellular 
manufacture, many benefits of flow-line production can be 
attained in a batch production system. The application of GT 
to a traditional manufacturing system can usually result in a 
simpler material flow system, so that a higher transfer rate 
and easier production planning and control functions can 
usually be achieved. This paper will present a genetic 
algorithm approach to the group technology problem. 

Based on a set of part required design and manufacturing 
characteristics and a set of machine capabilities, the approach 
first selects the best machines to process the parts and then 
forms machine cells and part families. Thus, the GT problem 
is solved on two consecutive steps using two GA-based 
models. 

The paper first defines the group technology problem and 
classifies the different approaches, presented by the 
literature, to solve this problem. Then a brief description of 
genetic algorithms is presented with a focus on the logic 
structure of GA. Afterwards, a detailed description of the 
developed models is given. Also, a comparison of the results 
obtained from the model to results of other techniques found 
in the literature is shown. Finally, the conclusions and 
remarks are pointed out. 
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II. APPROACHES TO GROUP TECHNOLOGY 
PROBLEM 

The biggest obstacle in changing over to group technology 
from a traditional production shop is the problem of grouping 
parts and machines into families.  

There are many approaches to this problem [3-8]. These 
approaches are divided into two categories, which are the 
classical and the modern approaches (Fig. 1). This paper 
presents a new approach to solve the GT problem using 
Genetic Algorithms.  

Approaches to Cellular 
Manufacturing
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Fig. 1: Approaches to the Group technology Problem. 

 

III. GENETIC ALGORITHMS 
Genetic algorithms (GA) were formally introduced by 

John Holland in 1975 and have been applied in a number of 
fields, e.g. mathematics, engineering, biology, and social 
science. Genetic algorithms are search algorithms based on 
the mechanics of natural selection and natural genetics. They 
combine the concept of survival of the fittest with structured, 
yet randomized, information exchange to form robust search 
algorithms. The concept of GA mimics the evolution process 
that occurs in natural biology.  

The logic structure behind the process of genetic 
algorithms process can be represented by the flowchart 
shown in Fig. 2.  

Generate initial population

Calculate fitness function 
for each chromosome

Select the fittest 
chromosome

Crossover operation

Mutation operation

Stopping criteria 
reached ?

Generate new generation

Terminate

Yes

No

 
Fig. 2: Logic Structure of Genetic Algorithms. 

An initial population of possible solutions (referred to as 
individuals or chromosomes) is generated. The genetic pool 
of a given population potentially contains the solution, or a 
better solution, to a given adaptive problem. This solution is 
not "active" because the genetic combination on which it 
relies is split between several subjects. Only the association 
of different genomes can lead to the solution. The 
chromosomes evolve through successive iterations, called 
generations. During each generation, the chromosomes are 
evaluated using a measure of fitness. 

To create the next generation, new chromosomes 
(offspring) are formed using crossover and mutation 
operators. A new generation is formed by selection among 
the fittest chromosomes. Fitter chromosomes have higher 
probability of being selected. After several generations, the 
algorithm reaches stopping criteria and converges to the best 
chromosome, which represents the best found solution to the 
problem. 

 

IV. PROPOSED GA MODEL DESCRIPTION AND MECHANISMS 
To solve the GA problem, a two step procedure is used. To 

solve the GT problem, a two steps procedure is used. The first 
step is to select the best machine(s) for each part. The second 
step is to group the machines and parts into different number 
of sets (groups).  

Machines and parts specifications defined by the user are 
the inputs for step one. The output of step one is the machines 
required for each part, which is then converted to 
un-clustered part-machine matrix. 

This un-clustered part-machine matrix is now the input to 
step two. The function of step two is to cluster this 
un-clustered part-machine matrix. Based on the formed 
clusters, machine cells and part families are identified, which 
is step two output. Fig. 3 shows the inputs and outputs of the 
proposed method solution procedure. 

The genetic algorithm models for the two steps where 
developed using Microsoft Office Excel and GeneHunter 
program, release 2.4, developed by Ward Systems Group Inc.  

 

Step
One

Machines Required 
for Parts

Un-clustered Part-
Machine Matrix

Step
Two

Machine cells

Part Families

Machine Specs.

Parts Specs.

 
Fig. 3: Proposed method solution procedure. 

A.  Step 1: Selecting the Best Machine(s) for Parts 
Step one role is to assign each part to the best suitable 

machine(s). To do that, two chromosomes are created, one 
for parts and another for machines. Parts chromosome 
contains a number of parts, while machines chromosome 
contains a number of machines.   

Pairwise comparisons between the required part 
specifications and machine capability specifications are done 
for each part in the parts chromosome and the corresponding 
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machine in the machines chromosome, and a suitability index 
is calculated.  

GA process continues and chromosomes evolve to achieve 
the goal which is to maximize the overall suitability index 
(fitness function), and hence finding the best suitable 
machine(s) for each part. 

The Genetic Algorithm Model for step one is divided into 
four sections which are: 
1) Machines specification section. 
2) Parts specification section. 
3) Chromosomes, comparisons, and suitability section. 
4) Model constraints and penalty factors section.  

Machines specification section includes a list of machines 
and their specifications. Parts and their required 
specifications are listed in the parts specification section. 
These two sections basically include all the data required for 
this step, which is entered by the end user. Table 1 lists the 
required data for the first two sections of the model. 
TABLE 1: DATA NEEDED TO DEFINE PARTS AND MACHINES SPECIFICATION. 
 Required Part Spec. Machine Capability 
1 Length Max Length 
2 Width Max. Width 
3 Height Max. Height 
4 Turning Dia. Max. Turning Dia. 
5 Turning Length Max. Turning Length 
6 Drilling Dia. Max Drilling Dia. 
7 Drilling Length Max. Drilling length 
8 Tolerance Max. tolerance 
9 Surface Finish Max. Surface Finish 

Suitability and comparisons section is the section in which 
the comparisons of machines and parts specifications occur 
and the results are obtained.  

Fig. 4 shows a sample of these pair-wise comparisons, 
where the first 9 columns represent a comparison between 
each required part specification and machine capability for a 
given machine and part number. The machine number and 
part number are generated by the GA model and, hence, are 
the model chromosomes (last two columns).  

Empty cells shown in the figure indicate that a machine is 
not capable of producing a given part specification. For 
example machine number 7 is a milling machine and can 
perform neither turning nor drilling operations 
(specifications 4 to 7 as indicated in Table 1). 

The suitability index column indicates how suitable the 
machine is to produce the part’s required specifications. 
Furthermore, the overall suitability percentage is the average 
of all the pair-wise comparisons’ suitability index and should 
be maximized. 

Suitability Machine Part
1 2 3 4 5 6 7 8 9 Index Number Number

1 1.00 0.97 0.93 0.85 0.71 0.89 7 8
2 0.96 0.98 0.40 0.50 0.71 10 17
3 0.93 0.98 0.05 0.77 0.68 13 6
4 0.99 1.00 0.97 0.75 0.77 0.90 2 10
5 0.92 0.97 0.53 0.56 0.75 10 12
6 0.95 0.99 0.60 0.91 0.86 13 14
7 0.99 0.97 0.78 0.68 0.86 11 13
8 0.98 0.95 0.91 1.00 0.79 0.93 4 9
9 0.94 0.96 0.08 0.92 0.72 18 6

10 0.97 0.97 0.94 0.05 0.69 0.72 5 6
11 0.96 0.91 0.67 0.91 0.86 17 14
12 0.93 0.95 0.45 0.56 0.72 20 17
13 0.95 0.93 0.83 0.83 0.89 8 18
14 0.81 0.91 0.65 1.00 0.84 19 7
15 0.75 0.97 0.78 1.00 0.87 15 5
16 0.98 0.90 0.96 0.53 0.88 0.85 3 12
17 1.00 0.92 0.60 0.63 0.79 20 12
18 0.88 0.94 0.50 0.92 0.81 18 11
19 0.95 0.98 0.70 0.80 0.86 9 7
20 0.96 0.92 0.96 1.00 0.88 0.94 4 15

Overall Suitability 81.86%

Pairwise Comparisons

 
Fig. 4: Sample of the pair-wise comparisons and their suitability indexes. 

Finally, the model constraints and penalty factors section 
includes constraints used in the GA model as well as penalty 
to ensure that all model constraints are satisfied. These are 
discussed in further details later. 
 
1) Model Mechanism 

The GA model follows these steps to select the best 
machine(s) required to produce each part: 
1) The GA model starts with generating a population of 100 

machine and part chromosomes. Each machine 
chromosome contains 50 machines, and each part 
chromosome contains 50 parts.  

2) The model compares each machine spec. with the 
corresponding part spec. and calculates the suitability 
index between the machine and part. 

3) An overall suitability percentage is calculated (fitness 
function of the GA model). 

4) Step 3 is repeated for all the first generation population. 
5) The best 2% (1 – generation gap) of the population 

chromosomes are copied directly to the next generation 
without crossover or mutation. 

6) The rest of the population undergoes a crossover process 
in which a random number is generated. If the crossover 
rate is greater than or equal to the generated random 
number, then the crossover operator is applied. 

7) Mutation is applied to the resulting offspring of the 
crossover process. A random number is generated. The 
mutation operator is applied only if the mutation rate 
(0.001) is greater or equal to the generated random 
number. 

8) The offspring resulting form crossover and mutation 
processes plus the directly copied chromosomes from 
the previous generation, form the new generation. 

9) The Gene Hunter program terminates the process if the 
fitness function remains unchanged for 500 generations 
(stopping criteria). If not, it goes back to step 2. 

 
2) Model Constraints and Penalty Factors 

For the model to work properly, a set of constraints and 
penalty factors have to be applied. The model checks two 
values, which are the sum of the Yes/No column, and the sum 
of unsatisfied processes. 

Yes/No column checks whether the part appeared in the 
comparisons or not and the unsatisfied processes checks 
whether each required process for a given part has a machine 
selected to perform it or not. 

Thus there are two main constraints in that case these are: 
1) The sum of the Yes/No column must be equal to the total 

number of parts, which will prevent the model from 
ignoring parts (not including them in the comparisons). 

2) The sum of unsatisfied processes must be equal to zero, 
which will prevent the model from ignoring required 
manufacturing processes. 

If any of these constraints were not satisfied, a penalty factor is applied which 
multiplies the overall suitability percentage by a large negative value; as 
shown in  
 

Fig. 5. Consequently, the GA mechanism will avoid these 
penalties as the objective in this step is to maximize the 
fitness function value. 
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M T D M T D M T D
1 1 1 1 1 1 1 1 0 0 0
2 1 0 1 1 0 1 1 0 0 0
3 1 1 1 1 1 1 1 0 0 0
4 1 1 1 0 1 1 0 0 0 0
5 1 0 1 1 0 1 1 0 0 0
6 1 1 1 1 1 1 1 0 0 0
7 1 1 1 1 1 1 1 0 0 0
8 1 1 1 1 1 1 1 0 0 0
9 1 1 1 0 1 1 0 0 0 0
10 1 1 1 1 1 1 1 0 0 0
11 1 0 1 1 0 1 1 0 0 0
12 1 1 1 1 1 1 1 0 0 0
13 1 0 1 1 0 1 1 0 0 0
14 1 1 1 1 1 1 1 0 0 0
15 1 1 1 0 1 1 0 0 0 0
16 1 0 1 1 0 1 1 0 0 0
17 1 1 1 1 1 1 1 0 0 0
18 1 1 1 1 1 1 1 0 0 0
19 1 1 0 1 1 0 1 0 0 0
20 1 1 1 0 1 1 0 0 0 0

Total 20 15 19 16 15 19 16 0 0 0

processes numbe 50 Sum of Unsatisfied Constraints = 0
Penalty Factor = 1

Unsatisfied ProcessesSatisfied ProcessesRequired Processes
Part Yes/No

 
 
 
Fig. 5: Model constraints and penalty factors section for step 1 model. 
 

B.  Step 2: Forming Manufacturing Cells 
Step two in the proposed procedure is to form 

manufacturing cells. The model purpose is to cluster the 
un-clustered part machine matrix obtained from the previous 
step. The model is divided into three sections. Section one is 
where the un-clustered data obtained from step one is located. 
Section two contains the distances calculations. Finally, 
section three is where the results of clustering are showed. 
 
1)  Model Mechanism 

The model's main concept is to create a number of 
clustering centers and try to gather as much 1’s as possible 
around them by minimizing the total sum of distances 
between cluster centers and the 1’s.  

The distance (d) between each cell value and the cluster 
center is calculated using the following formula: 

22 )()( YyXxd −+−=  (1) 
Where:  
x = the X-axis value of the cell. 
y = the Y-axis value of the cell. 
X = the X-axis value of the cluster center. 
Y = the Y-axis value of the cluster center. 

As there is more than one cluster center, the distance between the cell and 
each cluster center is calculated and the minimum distance is chosen, as 
indicated in  

Fig. 6. Hence, distance equals: 
),min( 21 ndddD K=  (2) 

Where:  
D = minimum distance chosen. 
n = number of clusters considered.  
The model moves the locations of cluster centers, 

machines, and parts until minimum distance is obtained. To 
move any cell value, the entire values included in the row or 
column, in which that value belongs to, will be moved as 
well. 

The chromosomes for the GA model are selected to be the 
machines and parts numbers, and the fitness function for the 
GA model is the minimization of the total sum of distances.  
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Fig. 6: Distance to cluster calculation. 

 
 
The GA model follows these steps to solve the problem: 

1) The GA model starts with generating a population of 200 
machine and part chromosomes. Each machine 
chromosome contains 20 machines, and each part 
chromosome contains 20 parts. 

2) The model calculates the distance between each cell 
value and all the cluster centers and choosing the least 
distance.  

3) Calculate the total number of distances (fitness 
function). 

4) Step two and three are repeated for all the first 
generation population. 

5) The best 2% (1 – generation gap) of the population 
chromosomes are copied directly to the next generation 
without crossover or mutation. 

6) The rest of the population undergoes a crossover process 
in which a random number is generated. If the crossover 
rate is greater than or equal to the generated random 
number, then the crossover operator is applied. 

7) Mutation is applied to the resulting offspring of the 
crossover process. A random number is generated. The 
mutation operator is applied only if the mutation rate 
(0.001) is greater or equal to the generated random 
number. 

8) The offspring resulting form crossover and mutation 
processes plus the directly copied chromosomes from 
the previous generation, form the new generation. 

9) The Gene Hunter program terminates the process if the 
fitness function remains unchanged for 500 generations 
(stopping criteria). If not, it goes back to step 2. 

 
2) Model Constraints and Penalty factors 

A number of constraints have to be applied for the model 
to work properly. The model checks if all the machines and 
parts appeared or not in the part-machine matrix. It also 
makes sure that every part and machine appears only once. 
This is achieved using two counters that are used to: 
1) Show how many parts and machines that did not appear.  
2) Show how many times each part and machine has 

appeared.  
If any part or machine did not appear in the matrix and/or 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



 
 

 

any part or machine appeared more than once in the matrix; 
the counters value is greater than zero and is multiplied by a 
large positive value.  

The resulting value is then multiplied by the total distance 
value as a penalty. If all constraints have been satisfied (as in  

Fig. 7) then the penalty value is equal to one.  
Furthermore, the distance calculation formula given in 

equation (2) is modified to equation (3); thus, the distance 
from the cluster now increases exponentially. Hence, this acts 
a penalty to give more importance to lower distance values. 
The new distance formula is as follows: 

),min( 21 ndddeD K=  (3) 
 
 

Machines
Parts 15 11 19 7 9 8 16 1 13 5 17 10 3 20 18 14 2 4 12 6

5 1 1
13 1 1
19 1 1
7 1 1 1
8 1 1 1
16 1 1
1 1 1 1
18 1 1 1
4 1 1
14 1 1 1
6 1 1 1
17 1 1 1
3 1 1 1
12 1 1 1
2 1 1
10 1 1 1
11 1 1
9 1 1
20 1 1
15 1 1

1

# of Parts/Machines Not Selected
# of Parts/Machines Selected than Once
Total Number of Unsatisfied Constraints
Penalty for Unsatisfied Constraints  

 
Fig. 7: Model constraints and penalty factors section for step 2 model. 

 

V. COMPARING OTHER CLUSTERING TECHNIQUES TO THE 
PROPOSED GENETIC ALGORITHM MODEL 

To compare the GA model to other clustering techniques, 
five part-machine matrices from the literature are solved 
using the proposed model and the results are compared to 
other techniques.  

Efficacy is used as a measure of performance [4, 9-17], 
where the closer the grouping efficacy is to 1, the better the 
grouping will be.  

To calculate the grouping efficacy (µ) the following 
equation is used: 

in

out

NN
NN

01

11

+

−
=μ  (4) 

Where, 
N1 = total number of 1's in the matrix. 
N1

out = total number of 1's outside the diagonal blocks 
(cells). 

N0
in = total number of 0's inside the diagonal blocks (cells). 

The proposed model has performed better than the other 
techniques found in literatures for part-machine matrices of 
size 7x11 and 14x24. Moreover, the results obtained from the 
proposed model for the remaining matrix sizes were the same 
as obtained from other techniques. These results are 
summarized in Table 2. 

TABLE 2: DIFFERENT TECHNIQUES PERFORMANCE COMPARISONS.                          
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VI. CONCLUSION 
A new two steps approach to solve the GT problem using 

GA is presented in this paper. Step one of the proposed GA 
approach is to identify the best machine(s) for each part based 
on machines and parts parameters (features). This step is 
ignored in most of the papers available in the literature, 
which only discuss the clustering problem without referring 
to the part-machine allocation problem, and the GT problem 
is solved assuming that the part-machine incidence matrix is 
already known. 

Step two is to cluster the part-machine matrix obtained in 
step one to a selected number of clusters, and hence forming 
machine cells and part families. The proposed approach is 
very flexible to modify and has the advantage of allowing the 
user to select and test different numbers of manufacturing 
cells, which is very useful in many cases.  

The paper also showed the proposed GA model results 
(step two) compared to other techniques used to solve the GT 
problem. The results obtained by the proposed model for 
small and medium sized matrices are extremely satisfactory 
and even superior to other techniques in some cases. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



 
 

 

REFERENCES 
[1] M. P. Groover, Automation, Production Systems, and Computer 

Integrated Manufacturing: Prentice-Hall International, Inc., 1987. 
[2] D. D. Bedworth, Hendersen,M. P.,  and Wolfe, P. M., Computer 

Integrated Design and Manufacturing: McGraw-Hill, Inc., 1991. 
[3] J. R. King, "Machine-component group formation in group 

technology," Omega, vol. 8, pp. 193-199, 1980. 
[4] H. M. Chan, and Milner, D. A., "Direct clustering algorithm for group 

formation in cellular manufacturing," Journal of Manufacturing 
Systems, vol. 1, pp. 65-75, 1982. 

[5] F. Glover, "Tabu Search — Part I," ORSA Journal on Computing, vol. 
1, pp. 190-206, 1989. 

[6] F. Glover, "Tabu Search — Part II," ORSA Journal on Computing, 
vol. 2, pp. 4-32, 1990. 

[7] R. P. Lippman, "An introduction to computing with neural nets.," 
IEEE ASSP magazine, pp. 4-22, 1987. 

[8] V. Cerny, "A thermodynamical approach to the travelling salesman 
problem: an efficient simulation algorithm," Journal of Optimization 
Theory and Applications, vol. 45, pp. 41-51, 1985. 

[9] G. Srinivasan, "A clustering algorithm for machine cell formation in 
group technology using minimum spanning trees," International 
Journal of Production Research, vol. 32, pp. 2149-2158, 1994. 

[10] G. C. Onwubolu, and Mutingi, M., "A genetic algorithm approach to 
cellular manufacturing systems," Computers and Industrial 
Engineering, vol. 39, pp. 125-144, 2001. 

[11] A. Kusiak, Chow, W. , "Efficient solving of the group technology 
problem," Journal of Manufacturing Systems, vol. 6, pp. 117-124, 
1987. 

[12] F. Boctor, "A linear formulation of the machine-part cell formation 
problem," International Journal of Production Research, vol. 29, pp. 
343-356, 1991. 

[13] C. T. Moiser, and Taube, L., "The facets of group technology and their 
impact on implementation," OMEGA, vol. 13, pp. 381-391, 1985. 

[14] R. G. Askin, and Subramanian, S. , "A cost based heuristic for group 
technology configuration," International Journal of Production 
Research, vol. 25, pp. 101-113, 1987. 

[15] M. Chandrasekharan, P., Rajagopalan, R., "ZODIAC - An algorithm 
for concurrent formation of part families and machine cells.," 
International journal of Production Research, vol. 25, pp. 835-850, 
1987. 

[16] G. Srinivasan, Narendran, T. T., "GRAFICS - A nonhierarachical 
clustering algorithm for group technology " International journal of 
Production Research., vol. 29, pp. 463-478, 1991. 

[17] C. H. Cheng, Gupta, Y. P., Lee, W. H., and Wong, K. F., "A 
TSP-based heuristic for forming machine groups and part families. ," 
International journal of Production Research., vol. 36, pp. 
1325-1337, 1998. 

 
 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008


