
 
 

 

  
Abstract— This work presents a differential evolution 

algorithm for solving a single-item resource-constrained 
aggregate production planning (APP) problem. Due to its 
NP-hardness, we have developed a Differential Evolution 
(DE) for solving the above model with a real 
representation of chromosomes, adapting DE with the 
integer nature of the problem. Experiments were carried 
out to compare results from the differential evolution 
algorithm and local optimum solutions obtained by 
optimization software. 

 
Keywords— Aggregate production planning, Differential 

evolution, Optimization.  
 

I. INTRODUCTION 
  Aggregate production planning belongs to a class of 

production planning problems in which there is a single 
production variable representing the total production of all 
products [1]. The term Aggregate indicate that all production 
must be treated as one and there must be some units for 
measuring the aggregate output that is called "aggregate unit 
of production" such as tons for a steel mill, machine-hours for 
a job shop or man-hours for a maintenance department. 

APP deals with matching capacity to demand fluctuation, 
varying customer orders over the medium term, often from 3 
to 18 months in advance [2]. The main goal of APP is setting 
overall production levels for each product group by 
managing the hiring, layoffs, backorders, overtimes, 
subcontracting and inventory level to meet uncertain demand 
in the near future. 

APP has attracted considerable attention from both 
practitioners and academia [3]. In the field of planning, it 
falls between the broad decisions of long-range planning and 
the highly specific and detailed short-range planning 
decisions. APP is one of the most important functions in 
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production and operations management. Other forms of 
family disaggregation planning involve a master production 
schedule, capacity requirements planning, material 
requirements planning, which all depend on APP in a 
hierarchical way [2]. 

Since the HMMS rule was proposed in 1955, researchers 
have developed numerous models to help to solve the APP 
problem [4]. 

All traditional models of APP problems may be classified 
into six categories [5] — (1) linear programming (LP) [6], (2) 
linear decision rule (LDR) [4], (3) transportation method [7], 
(4) management coefficient approach [8], (5) search decision 
rule (SDR) [9], and (6) simulation [10].  

Also, some of heuristic APP strategies to satisfy demand 
are discussed in details in the literature [11]. Some of these 
yield the optimal solution; whiles others give only acceptable 
ones. Solving APP model is affected by problem size and 
type of cost functions (linear, non-linear or both of them). 
Studies show that the consideration of the all realistic 
parameters in an APP model makes the model difficult and 
non-optimally solvable. Therefore, it is necessary for a 
trade-off between the selection of a non-exact model with an 
optimal solution and an exact model with a near-optimal 
solution [1]. Nowadays metaheuristic methods are widely 
used to obtain near optimal solution for NP-hard problems 
such as generalized APP and the like.  

Among the numerous method capable of developing 
mathematical optimization models include APP problems, a 
literature survey reveals that linear programming is 
conventionally used technique [12].  

Some literatures considers solving different kind of APP 
models using genetic algorithms that shows robust to obtain 
near optimal solution in more reasonable time in comparison 
with traditional techniques such as branch and bound. 

Additional references on the use of FLP to solve APP 
problems include [13], [14], [15], [16], and [17].  

The rest of paper is organized as follows. Section II 
describes the APP problem and model. Section III introduces 
the DE and considers its adaptation to solve the model. Some 
numerical results are included in section IV and concluding 
remarks are made in section V. 
 

II. PROBLEM FORMULATION 
The single-item resource constrained problem is a 

nonlinear model of APP considering four main costs as 
production, adjusting work forces, inventory carrying and 
shortage ones. In this model, all resources are assumed to be 
finite and backorder is allowed to a level determined by 
customer but the ending shortage is not permitted. Available 
time for manpower in regular time and overtime, 
subcontracting level, storage area and adjusting work force 
level depends on the decision maker. 
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The demand rate assumed to be deterministic and dynamic 
under a multi period horizon planning and the initial value for 
each parameter is known before. The model was linearized to 
a mixed integer one [1]. The Proposed model was modified 
and described below.  

A. Notation 
T=number of periods in horizon planning. 
Dt=forecasted demand in period t. 
I0=beginning inventory. 
W0=initial workforce level. 
Imax=maximum inventory available in period t (units). 
Bmax=maximum backorder (shortage) available in period t 
(units). 
Hmax=maximum allowable hiring at each period. 
Fmax=maximum allowable firing at each period. 
Rmax=maximum production volume in regular time at each 
period (units). 
Rmax=maximum production volume in overtime at each 
period (units). 
Smax= maximum production volume in subcontracted 
available at each period (units). 
rt=regular time production cost per unit in period t 
($/unit). 
ot= overtime production cost per unit in period t ($/unit). 
st= subcontracting cost per unit in period t ($/unit). 
ht=hiring cost per one worker in period ($/man). 
ft= firing cost per one worker in period ($/man). 
h+

t=inventory carrying cost per unit in period ($/man). 
h-

t=backorder cost per unit in period ($/man). 
k=number of workers required per unit product 
 
Decision Variables 
Pt=total aggregate production in period t. 
Rt=regular time production volume in period t (units). 
Ot=overtime time production volume in period t (units). 
St=subcontracting production volume in period t (units). 
Ht=workers hires in period t. 
Ft=workers fires in period t. 
It=inventory/backorder level in period t (negative 
inventory ≡ shortage). 

B. Mathematical Formulation 
By defining the above notation, the mathematical model of 

APP can be presented as follows. 
 

݉݅݊ ܼ ൌ ∑ ሺݎ௥
்
௧ୀଵ ܴ௧ ൅ ௧ܱ௧݋ ൅ ௧ܵ௧ݏ ൅ ݄௧ܪ௧ ൅ ௧݂ܨ௧ ൅

݄௧
ା݉ܽݔሼܫ௧, 0ሽ ൅ ,௧ܫሼെݔܽ݉ 0ሽሻ                                                (1)    
ܵ.   .ݐ
௧ܫ ൌ ௧ିଵܫ ൅ ௧ܲ െ ݀௧      (2)                         ݐ׊ 

௧ܲ ൌ ܴ௧ ൅ ܱ௧ ൅ ܵ௧        (3)                                                 ݐ׊ 
݇ሺ ଵܱ ൅ ܴଵሻ ൌ ଴ܹ ൅ ଵܪ െ  ଵ                                              (4)ܨ
݇ሺܱ௧ ൅ ܴ௧ሻ ൌ ݇ሺܱ௧ିଵ ൅ ܴ௧ିଵሻ ൅ ௧ܪ െ ݐ׊      ௧ܨ ൐ 1   (5) 
ܴ௧ ൏ ܴ௠௔௫                    (6)                                                  ݐ׊ 
ܱ௧ ൏ ܱ௠௔௫                     (7)                                                   ݐ׊ 
ܵ௧ ൏ ܵ௠௔௫                      (8)                                                  ݐ׊ 
max ሺܫ௧, 0ሻ ൏  (9)                                  ݐ׊                     ௠௔௫ܫ
max ሺെܫ௧, 0ሻ ൏ ݐ׊                   ௠௔௫ܤ ൏ ܶ                      (10) 
௧ܪ ൏  (11)                                            ݐ׊                  ௠௔௫ܪ
௧ܨ ൏ ௠௔௫ܨ  (12)                                                ݐ׊                     
max ሺെ்ܫ, 0ሻ ൌ 0                                                        (13) 
ܴ௧, ܱ௧, ܵ௧, ,௧ܨ ,௧ܪ ௧ܲ א ܰା  ܽ݊݀  ܫ௧ א  (14)       ݐ׊      ܰ

 

The nonlinear objective function (1) is equal to the total 
cost of production, adjusting workforce, inventory carrying, 
and shortage in planning horizon. Equation (2) indicates the 
balance inventory constraint between periods. Equation (3) 
determines the total production level at each period. 
Equations (4) and (5) calculates the number of workers 
hired/fired at each period with respect to the total regular and 
overtime production level. Inequalities (6) to (8) correspond 
to the maximum allowable volume of production in regular 
time, overtime and subcontracting at each period 
respectively. Inequalities (9) and (10) correspond to 
maximum allowable level of inventory and backorder 
(shortage) at each period respectively. Likewise, inequalities 
(11) and (12) correspond to maximum allowable level of 
hiring and firing at each period respectively. Finally equation 
(13) indicates the lack of shortage at the end of horizon 
planning. The mentioned model includes 10T constraints and 
7T integer variables, where T is the number of periods in 
horizon planning. 

 

III. DIFFERENTIAL EVOLUTION 
In 1997, a new Evolutionary algorithm known as 

Differential Evolution (DE) was successfully applied by [18] 
to the optimization of some well-known and non-convex 
functions. This technique combines simple arithmetic 
operators with the classical events of crossover, mutation and 
selection to evolve from a randomly generated starting 
population to a final solution [19]. 

DE can be categorized to the class of floating point 
encoded, evolutionary optimization algorithms. Currently, 
there are several variants of DE and the most popular one is 
DE/rand/1/bin [20]. The Different DE schemes are discussed 
more detailed in [20],[21]. 

DE can be categorized to the class of floating point 
encoded, evolutionary optimization algorithms. Currently, 
there are several variants of DE and the most popular one is 
DE/rand/1/bin [20]. The different variants are classified 
using the following notation: 

DE/X/Y/Z where: 
X indicates method for selecting the parent chromosome 

that will form the base of the mutated vector. Thus, 
DE/best/1/bin selects the best member of the population to 
form the base of the mutated chromosome. 

Y indicates the number of difference vectors used to 
perturb the base chromosome. 

Z indicates the crossover mechanism used to create the 
child population. The bin acronym indicates that crossover is 
controlled by a series of independent binomial experiments 
[19]. 

Generally, the function to be optimized, f(X), is the form of 
f(X): RD→R. The optimization target is to minimize the value 
of this objective function f(X),  

Min (f(X)), 
By optimizing the value of its parameters X={x1, x2,…, xD}, 

where X denotes a vector composed of D objective function 
parameters. Usually, the parameters of the objective function 
are also subject to lower and upper boundary constraints, xL 
and xU respectively, 

DE was originally designed to work with continuous 
variables and here we discussed handling discrete variables. 
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A. Chromosome Representation 
The first step of any kind of evolutionary algorithms is to 

design and represent a proper chromosome for the solution 
structure coding. This structure must be compatible with the 
model's decision variables and constraints. According to the 
mentioned model, each solution is represented by a 
chromosome formed as an integer vector with T genes as 
shown in Figure 1, where T is the number of periods [1]. The 
value of tth

 gene, i.e, Pt, indicates the total production in 
period t that is bounded in interval [0, Rmax, Omax, Smax]. 

 
 

 

 
 

B. Initialization 
As with all evolutionary optimization algorithms, DE 

works with a population of solutions, not with a single 
solution for the optimization problem. Population P of 
generation G contains NP solution vectors called individuals 
of the population and each vector represents potential 
solution for the optimization problem [20]. 

The initial population is generated randomly in the way 
that boundary constraints are satisfied, the more divers initial 
population increase the chance of reach the optimal solution. 
In this case a natural way to initialize the population P(0) 
(initial population) is to seed it with random values within the 
given boundary constraints. 

C. Mutation 
The self-referential population recombination scheme of 

DE is different from other evolutionary algorithms. For 
mutating each population P(G), first a temporary or trial 
population is generated according to selected strategy. In this 
study, we discussed DE/best/1/bin, so the trial vector, vj,i

(G) is 
generated as follows: 

 

௝,௜ݒ
ሺீሻ ൌ ௝ܲ,௕௘௦௧

ሺீሻ ൅ ܨ ൈ ൫ ௝ܲ,௥ଵ
ሺீሻ െ ௝ܲ,௥ଶ

ሺீሻ൯                                   (15) 

 
Where ݅ א ሾ1, ܰܲሿ, ݆ א ሾ1, ,1ݎ   ,ሿܦ 2ݎ א

ሾ1, ܰܲሿ, randomly selected, except: 1ݎ ് 2ݎ ് ݅, ݇ ൌ
ሺ݅݊ݐሺ݀݊ܽݎሾ0,1ሿ ൈ ሿܦ ൅ 1ሻ and ܴܥ א ሾ0,1ሿ, ܨ א ሾ0,1ሿ. 

Two randomly chosen index, r1,r2, refer to two randomly 
chosen vectors of population, and  best is index of the best 
vector in the population [20]. 

D. Crossover 
The crossover process is a series of independent binomial 

trials. It determines if the vector parameter value for the child 
chromosomes will come from the mutated vector or from the 
target vector in the corresponding position in the parent 
population. If a random variable was less than or equal to CR, 
then the vector parameter value is taken from the mutated 
vector. Otherwise, the vector parameter value is taken from 
the target vector in the corresponding position in the parent 
population [19].  
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Offspring    U1   P2    U3    P4    U5 

Fig 2. Crossover operator 

 
 Binomial crossover products a single offspring by 

probabilistic combining target vector and trial vector as 
shown in Figure 3. 

 

௝,௜ݑ
ሺீሻ ൌ ൝

௝,௜ݒ
ሺீሻ       ,    ݂݅ ݊ܽݎ ௝݀ሾ0,1ሿ ൏ ݆ ݎ݋  ܴܥ ൌ ݇,

௝ܲ,௜
ሺீሻ              ܱ݁ݏ݅ݓݎ݄݁ݐ                                   

     (16) 

 
The index k refers to a randomly chosen vector parameter 

and it is used to ensure that at least one vector parameter 
value of each child is differs from its counterpart in the parent 
population. 

E. Selection 
The selection scheme of DE also differs from the other 

evolutionary algorithms. Vectors in the child population are 
compared for fitness to the target vectors and vector with 
better fitness function survives in to the next generation. 

F. Handling Constraints 
 

1) Boundary Constraints 
It is important to notice that the mutation scheme of DE is 

able to extend the search outside the defined boundaries, so it 
is essential to ensure that parameter values lie inside their 
allowed range. A simple way to guarantee the feasibility of 
parameters is to replace parameter values that violated the 
boundary constraints with random value generated within the 
feasible range, in the way that violated vector parameter 
greater that upper bound is replaced with a random value 
between target vector parameter and upper bound and if 
vector parameter value is less than lower bound, it will be 
replaced with random value between lower bound and target 
vector parameter. Since in our problem, lower and upper limit 
for all parameter values are the same, [0, Rmax, Omax, Smax], so 
the below formula is used for this purpose. 

 

௝,௜ݑ
ሺீሻ ൌ

ە
ۖ
۔

ۖ
ሾ0,1ሿ݀݊ܽݎۓ ൈ ௝ܲ,௜

ሺீሻ                              ݂݅ ݑ௝,௜
ሺீሻ ൏ 0,

௝ܲ,௜
ሺீሻ ൅ ሾ0,1ሿ݀݊ܽݎ ൈ ቀU െ ௝ܲ,௜

ሺீሻቁ , ௝,௜ݑ ݂݅
ሺீሻ ൐ U,

௝,௜ݑ
ሺீሻ                                                       ܱ݁ݏ݅ݓݎ݄݁ݐ,

  (17) 

 
Where ܷ ൌ R୫ୟ୶ ൅ O୫ୟ୶ ൅ S୫ୟ୶, ݅ א ሾ1, ܰܲሿ, ݆ א ሾ1,  .ሿܦ
In fact this operation is a kind of migration, not only brings 

the infeasible mutated vector parameter into feasible region, 

1 2 3  T 

P1 P2 P3  PT 

Fig 1. Chromosome representation 
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but also proper diversity is obtained in order to DE 
stagnation. 

2) Integer Variables 
In the canonical form, the differential evolution algorithm 

is only capable of handling continuous variables. Some 
studies discuss how to modify DE for mixed integer variable 
optimization, the suggested method uses only a copy of 
vector parameters and converts it to integer values then 
evaluates the fitness function, even though DE still work with 
continuous floating point values [21]. 

3) Functional Constraints 
An excellent study on comparing evolutionary algorithms 

for constrained optimization problems [22], the methods are 
grouped into the following four categories: 

• Methods based on preserving feasibility of solution. 
• Methods based on penalty functions. 
• Methods based on a search for feasible solutions. 
• Other hybrid methods. 

Among the evolutionary algorithms the methods based on 
penalty function have been proven to be the most popular 
[23]. In this study we use penalty function to handle these 
kinds of constraints.  

According to the chromosome representation, other 
decision variables must be updated with respect to the current 
solution and the model constraints by equations (18) to (23). 

 
ܴ௧ ൌ min ሼܴ௠௔௫, ௧ܲሽ                                                         (18) 
ܱ௧ ൌ min ሼܱ௠௔௫, maxሼ ௧ܲ െ ܴ௠௔௫, 0ሽሽ                              (19) 
ܵ௧ ൌ min ሼܵ௠௔௫, maxሼ ௧ܲ െ ܴ௠௔௫ െ ܱ௠௔௫, 0ሽሽ               (20) 
௧ܫ ൌ ௧ିଵܫ ൅ ௧ܲିܦ௧                                                              (21) 
௧ܪ ൌ max ሼ݇ሺܴ௧ ൅ ܱ௧ െ ܴ௧ିଵ െ ܱ௧ିଵሻ, 0ሽ                       (22) 
௧ܨ ൌ max ሼ݇ሺܴ௧ିଵ ൅ ܱ௧ିଵ െ ܴ௧ െ ܱ௧ሻ, 0ሽ                        (23) 
 
Where P0=W0/k and I0 are known as priori. Equation (13) 

indicates that total production and initial inventory must not 
less than total demand over horizon planning, ∑ ௧ܲ ൅ ଴ܫ ൐
∑  ௧. If one of the constraints (9) to (13) are violated by onܦ
hand solution, then the degree of violation is added to the 
objective function by the penalty coefficient λ, that is a large 
positive number. Equation (24) indicates the fitness function 
that chromosomes are evaluated by the following equation. 

 
 ܼ ൌ         ∑ ሺݎ௥

்
௧ୀଵ ܴ௧ ൅ ௧ܱ௧݋ ൅ ௧ܵ௧ݏ ൅ ݄௧ܪ௧ ൅ ௧݂ܨ௧ ൅

݄௧
ା݉ܽݔሼܫ௧, 0ሽ ൅ ,௧ܫሼെݔܽ݉ 0ሽሻ ൅ ߣ ∑ ሺmax ሺሼ0, ௧ܫ

ା்
௧ୀଵ െ

௠௔௫ሽܫ ൅ maxሼ0, ௧ܫ
ି െ ௠௔௫ሽܫ െ maxሼ0, ௧ܪ െ ௠௔௫ሽܪ െ

max ሺܨ௧ െ  ௠௔௫ሽሻ                                                             (24)ܨ

IV. EXPERIMENTAL RESULTS 

A. Parameter Tuning 
The values of NP, CR and F are fixed empirically 

following certain heuristics [18].F is usually between 0.5 and 
1.0 and CR usually should be 0.3, 0.7, 0.9 or 1.0 to start 
with.NP should be of the order of 10 * D and should be 
increased in case of miss-convergence. If NP is increased 
then usually F has to be decreased [19]. In this study, twenty 
trials were carried out consisting of four mentioned levels of 
CR, five levels of F (0.3, 0.5, 0.7, 0.9 and 1) and three levels 
of NP (3*D,8*D and 10*D). The best values obtained from 

combining these parameters during experimentation are F = 
0.5, and CR = 0.3 and the population size was set to eight 
times of period number, Another parameter is penalty 
coefficient in equation (24) that is set to 10000 in order to 
reduce the infeasibility of the problem.  Previous studies 
showed that DE/rand/1/bin is the most popular among ten 
strategies of DE, so we examined here two DE strategies: 
DE/rand/1/bin and DE/best/1/bin. We also we experimented 
DE local search [24] which assumes that the target vector is 
the main parent in the mutation scheme. The results for T= 70 
are shown in table I. 

 
Table I. Comparing the results of DE strategies using 70 periods problem 

Strategy DE/rand/1/bin DE/best/1/bin* DE local search 
Fitness value 2112315 2109126 2230111 

*Best Strategy 

 

B. Numerical example 
In this section, several instances are solved by coded DE in 

MATLAB and run it on a PC with Pentium, 3 GHz processor 
and 1 GB of RAM. The results are compared with local 
optimum obtained by Lingo software package, using branch 
& bound method. Table II shows one sample of the generated 
data for this problem, the intervals are adapted from the 
presented data in the literature [1].  
Table 3 illustrated the comparison between solutions 
obtained by DE and local optimal solutions, the   results are 
compared with respect to the mean objective value, and the 
mean CPU time to 15 instances according to the table III.  

As shown in table 3, increasing period numbers has a 
considerable effect on the computational correspond CPU 
time in both DE and local optimal solution. The results 
indicate that DE could find better solutions in comparison 
with local optimums and could find the near optimal 
solutions in a reasonable time. This is considerable when 
period number is increased to over than 50.  

 
In fact  DE has a strong capability to reduce the 

infeasibility of the problem, figure 3 shows DE trend toward 
a near optimal solution in less than 30 generation  and figure 
4 shows a typical convergence of DE to a feasible solution 
during about 27 generations at T=40  (period number=40). 

Table II. Intervals to random generation of instance 
Parameter Interval Parameter Value 

dt U(Pmax-δ,Pmax-δ) I0 2000 
rt U(10,20) W0 480 
ot U(20,30) Imax 2000 
st U(30,40) Bmax 1000 
ht U(100,150) Hmax 200 
ft U(200,250) Fmax 100 

ht
+ U(1,10) Rmax 2400 

ht
- U(10,20) Omax 400 
  Smax 200 

Pmax=Rmax+Omax+Smax  , δ= Pmax/2 
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Fig 3. A typical convergence of DE to near optimal solution 

 

Fig 4. Decreasing trend of penalty using DE 
 

V. CONCLUSION 
In this work, an aggregate production planning model was 

considered with the most realistic costs and parameters. To 

solve such a NP-Hard problem, a differential evolution 
algorithm was proposed and made compatible with integer 
nature of the problem. The numerical results indicates that 
DE has a strong capability in reducing the infeasibility of the 
problem, in fact the penalty function and migration was so 
well designed to bring the problem into the feasible space in 
few generations. Since the migration operator provides more 
diversity in generations, it prevents DE from stagnation. The 
described method is relatively simple, easy to implement and 
easy to use. It is, however, capable of optimizing all integers, 
discrete and continuous variables and capable of handling 
non-linear objective functions with multiple non-trivial 
constraints. The proposed DE can be applied in other 
industrial engineering problems like lot sizing problems and 
inventory models, and also other evolutionary algorithm can 
be applied for the considered model in the future research. 
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