
 
 

 

  
Abstract— In this paper, a new computational technique is 

presented based on the eXtended Finite Element Method for large 
deformation of metal forming processes. An ALE technique is 
employed to capture the advantages of both Lagrangian and 
Eulerian methods and alleviate the drawbacks of the mesh 
distortion in Lagrangian formulation. The X-FEM procedure is 
implemented to capture the discontinuities independently of 
element boundaries. The process is accomplished by performing a 
splitting operator to separate the material (Lagrangian) phase 
from convective (Eulerian) phase, and partitioning the 
Lagrangian and relocated meshes with some triangular 
sub-elements whose Gauss points are used for integration of the 
domain of elements. Finally, several numerical examples are 
presented to demonstrate the capability of enriched FE technique 
in large deformation of forming processes. 
 

Index Terms— Metal forming, Extended FEM, ALE technique, 
Large deformation.  
 

I. INTRODUCTION 
In metal forming processes with large deformations, the note 
for mesh adaption in different stages of process is of great 
importance. The need for mesh conforming to the shape of the 
interface must be preserved at each stage of simulation. In 
numerical simulation, the requirement of mesh adaptation may 
consume high expenses of capacity and time. Thus, it is 
necessary to perform an innovative procedure to alleviate these 
difficulties by allowing the interfaces to be mesh-independent.  

In large deformation analysis with large mass fluxes, the 
conventional finite element technique using the updated 
Lagrangian formulation may suffer from serious numerical 
difficulties when the deformation of material is significantly 
large. This difficulty can be particularly observed in higher 
order elements when severe distortion of elements may lead to 
singularities in the isoparametric mapping of the elements, 
aborting the calculations or causing numerical errors [1]. In 
order to overcome this difficulty, the arbitrary Lagrangian– 
Eulerian (ALE) approach has been proposed in the literature [2, 
3]. In ALE approach, the mesh motion is taken arbitrarily from 
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material deformation to keep element shapes optimal. In ALE 
description, the choice of the material, spatial, or any arbitrary 
configuration yields to a Lagrangian, Eulerian, or arbitrary 
Lagrangian-Eulerian description, respectively.  

The aim of present study is to develop the ALE technique in 
large deformation analysis using the X-FEM method based on 
an operator splitting technique. In the Lagrangian phase, a 
typical X-FEM analysis is first carried out with updated 
Lagrangian approach. The Eulerian phase is then applied to 
update the mesh, while the material interface is independent of 
the FE mesh. The main difficulty in ALE formulation of solid 
mechanics is the path dependent material behavior. The 
constitutive equation of ALE nonlinear mechanics contains a 
convective term which reflects the relative motion between the 
physical motion and the mesh motion. 

 

II. THE EXTENDED FINITE ELEMENT METHOD 
The enriched finite element method is a powerful and accurate 
approach to model discontinuities, which are independent of 
the FE mesh topology [4, 5]. In this technique, the interfaces 
are not considered in the mesh generation operation and special 
functions, which depend on the nature of interface, are included 
into the finite element approximation. The aim of this method is 
to simulate the interface with minimum enrichment. In X-FEM, 
the external boundaries are only consideration in mesh 
generation operation and the internal boundaries have no effect 
on mesh configurations. 

In X-FEM, the enrichment functions are associated with new 
degrees of freedom and the approximation of the displacement 
field as  

 

( ) ( ) ( ) ( ) I I J J
I J

N N ψ= +∑ ∑u u ax x x x  (1) 

 
where I Tn ∈n  and J en ∈n . The first term of above relation 
denotes the classical FE approximation and the second term 
indicates the enrichment function considered in X-FEM. In this 
equation, Iu  is the classical nodal displacement, Ja  the nodal 
degrees of freedom corresponding to the enrichment functions 

)(xψ , and )(xN  the standard shape function. In equation (1), 
Tn  represents the set of all nodes of global domain, and en  the 

set of nodes of elements split by the interface.  
The choice of enrichment functions in displacement field is 

dependent on the conditions of problem. The level set method is 
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a numerical scheme for tracking the motion of interfaces. This 
method, which is used for predicting the geometry of 
boundaries, is very suitable for bi-material problems in which 
the displacement field is continuous but there is a jump in the 
strain field. In this technique, the interface is implicitly 
represented by assigning to node I of the mesh, located at the 
distance Iϕ  from the interface. The sign of its value is negative 
in one side and positive on the other side. The level set function 
can be then obtained with interpolating the nodal values using 
the standard FE shape functions as  

 

∑=
I

II N )()( xx ϕϕ  (2) 

 

where above statement  indicates the summation over the nodes 
which belong to elements cut by the interface. A discontinuity 
is represented by the zero value of level set ϕ . The new degrees 
of freedom 

Ja  corresponding to the level set enrichment 
function are considered in equation (1) in order to attribute to 
the nodes that belong to the set of en . Generally, two types of 
enrichment function have been implemented to model the 
discontinuity as a result of different types of material 
properties. The first function is based on the absolute value of 
the level set function, which indeed has a discontinuous first 
derivative on the interface as 

 

∑=
I

II N )()(1 xx ϕψ  (3) 

 

An extension of above function that improves the previous 
enrichment strategy has a ridge centered on the interface and 
zero value on the elements which are not crossed by the 
interface. This modified level set function 2ψ  is defined as 

 

∑∑ −=
I

III
I

I NN )()()(2 xxx ϕϕψ  (4) 

 

III. ARBITRARY LAGRANGIAN-EULERIAN MODEL 
In the ALE description, three different configurations are 
considered; the material domain Ω0, spatial domain Ω and 
reference domain Ω̂ , which is called ALE domain. The 
material motion is defined by ) ,(m tXfx jii = , with jX  denoting 
the material point coordinates and ) ,( tXf ji  a function which 
maps the body from the initial or material configuration Ω0 to 
the current or spatial configuration Ω. The initial position of 
material points is denoted by g

ix  called the reference or ALE 
coordinate in which 0) ,(g

jii Xfx = . The reference domain Ω̂  is 
defined to describe the mesh motion and is coincident with 
mesh points so it can be denoted by computational domain. The 
mesh motion is defined by ) ,(ˆ gm txfx jii = . The material 
coordinate can be then related to ALE coordinate by 

) ,(ˆ m1 g txfx jii
−= . The mesh displacement can be defined by 

g g m g( , )i j i iu x t x x= − . 
It must be noted that the mesh motion can be simply obtained 

from material motion replacing the material coordinate by ALE 
coordinate. The mesh velocity can be defined as  

g
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in which the ALE coordinate g
jx  and material coordinate jX  in 

material velocity are fixed. In ALE formulation, the convective 
velocity ic  is defined using the difference between the material 
and mesh velocities as  
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where the material velocity m
iv  can be obtained using the chain 

rule expression with respect to the ALE coordinate g
jx  and time 

t. In equation (6), the referential velocity iw  is defined by 
( )

ji Xtxw ∂∂= g
i . The above relationship between the convective 

velocity ic , material velocity m
iv , mesh velocity g

iv  and 
referential velocity iw  is frequently used in ALE formulation.  
 

A. Governing Equations 
In ALE technique, the governing equations can be derived 

by substituting the relationship between the material time 
derivatives and referential time derivatives into the continuum 
mechanics governing equations. This substitution gives rise to 
convective terms in the ALE equations which account for the 
transport of material through the grid. Thus, the momentum 
equation in ALE formulation can be written similar to the 
updated Lagrangian description by consideration of the 
material time derivative terms, as  

 

ijjii bvρ ρσ += ,
m  (7) 

 
where ρ  is the density, σ  the Cauchy stress and ib  the body 
force. In above equation, the material time derivative of 
velocity m

iv  can be obtained as  
 

m m
m

m
g

   i i
i j

j
jx

v vv c
t x

∂ ∂
= +

∂ ∂
 (8) 

 
Substituting equation (8) into (7), the momentum equation can 
be then written as  

 

m m
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 (9) 

 
In order to describe the constitutive equation for nonlinear 

ALE formulation, the relationship between material time 
derivatives and referential time derivatives can be specialized 
to the stress tensor as  

 

mg
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qσ σ  (10) 
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where q  accounts for both the pure straining of the material 
and the rotational terms that counteract the non-objectivity of 
the material stress rate.  

The basis of any mechanical initial boundary value problem 
in the framework of the material description is the balance of 
momentum equation. In the framework of the referential 
configuration, the constitutive equations are also defined as 
partial differential equations in the case of the referential 
description. In the quasi-static problems, the inertia force aρ  is 
negligible with respect to other forces of momentum equation, 
hence, the equilibrium equation in ALE and Lagrangian 
descriptions is exactly identical.  

 

IV. THE X-ALE-FEM ANALYSIS 
In X-ALE-FEM analysis, the X-FEM method is performed 
together with an operator splitting technique, in which each 
time step consists of two stages; Lagrangian (material) and 
Eulerian (smoothing) phases. In material phase, the X-FEM 
analysis is carried out based on an updated Lagrangian 
approach. It means that the convective terms are neglected and 
only material effects are considered. The time step is then 
followed by an Eulerian phase in which the convective terms 
are considered into account. In this step, the nodal points move 
arbitrarily in the space so that the computational mesh has 
regular shape and the mesh distortion can be prevented, 
however – the material interface is independent of the FE mesh. 

The number of enriched nodes may be different during the 
X-ALE-FEM analysis, which results in different number of 
degrees-of-freedom in two successive steps. There are two 
main requirements, which need to be considered in the 
smoothing phase [6-8]. Firstly, due to movement of nodal 
points in the mesh motion process, a procedure must be applied 
to determine the new nodal values of level set enrichment 
function. Secondly, in the extended FE analysis, the number of 
Gauss quadrature points for numerical integration of elements 
cut by the interface can be determined using the sub-triangles 
obtained by partitioning procedure. However, in the case that 
the material interface leaves one element to another during the 
mesh update procedure, the number of Gauss quadrature points 
of an element may differ before and after mesh motion. Hence, 
an accurate and efficient technique must be applied into the 
Godunov scheme to update the stress values. 

 

V. MODELING FRICTIONAL CONTACT WITH X-FEM 
Numerical simulation of frictional contact in FEM can be 
achieved by employing contact elements [9]. Although these 
elements have wide application in simulation of contact 
problems, the modeling of evolving contact surfaces with the 
finite element method is cumbersome due to the need to update 
the mesh topology to match the geometry of the contact surface, 
and implement those elements between two different bodies. 
The extended finite element method alleviates much of the 
burden associated with mesh generation by not requiring the 

finite element mesh to conform to contact surfaces, and in 
addition, provides a seamless means to use higher-order 
elements or special finite elements without significant changes 
in the formulation. The essence of X-FEM lies in sub-dividing 
the model into two distinct parts; mesh generation for the 
geometric domain in which the contact surface is not included, 
and enriching the finite element approximation by additional 
functions that model the geometric of contact surface.  

For an arbitrary contact displacement field, equation (1) can 
be rewritten as [5] 

 

( ) ( ) ( ) ( ) h
i i j j

i j

N N H= +∑ ∑u u ax x x x  (11) 

 

where )(xH  is the Heaviside jump function. In above relation, 
the contact surface is considered to be a curve parameterized by 
the curvilinear coordinate s . Considering a point x  in the 
domain, we denote *x  the closest point to x  on the contact 
surface. At point *x , we construct the tangential and normal 
vectors to the curve se  and ne , with the orientation of ne  taken 
such that zns eee  =∧ . The Heaviside jump function )(xH  is 
then given by the sign of the scalar product nexx  )( *− , in 
which the function )(xH  takes the value of +1 ‘above’ the 
contact surface, and −1 ‘below’ the contact surface, i.e.  
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⎨
⎧

−
≥−+

=
              otherwise
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*
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On substituting the trial function of equation (11) into the 

weak form of equilibrium equation of elasto-plasticity, and 
using the arbitrariness of nodal variations, the discrete system 
of equations can be obtained as fdK = , where d  is the vector 
of unknowns of iu  and ja  at nodal points, and K  and f  are 
the global stiffness matrix and external force vector, defined as 
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where  
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where epD  is the elasto-plastic constitutive matrix. In equation 
(15), ii NN ≡α  is for a finite element displacement degree of 
freedom, and HNN ii ≡α  for an enriched degree of freedom. 

For the elements cut by the contact surface, the standard 
Gauss points are insufficient for numerical integration, and 
may not adequately integrate the discontinuous field. If the 
integration of the discontinuous enrichment is indistinguishable 
from that of a constant function, the system of equations may be 
rank deficient. Thus, it is necessary to modify the element 
quadrature points to accurately evaluate the contribution to the 
weak form for both sides of the contact surface [5].  
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Figure 1. Die pressing with two inclined interfaces 
 

VI. NUMERICAL SIMULATION RESULTS 

A. Die Pressing with Inclined Interfaces 
The first example is of a free-die pressing of a rectangular 

component with two inclined interfaces, as shown in Figure 1. 
A weak material is taken in the middle part, and the outside of 
the region delimited by these two interfaces, in which the 
material is elastic with the Young’s modulus of 26 cmKg101.2 ×  
and Poisson ratio of 0.35. The weak zone has a nonlinear 
elasto- plastic behavior characterized by the von-Mises 
behavior with the Young’s modulus of 25 cmKg101.2 × , 
Poisson’s coefficient of 0.35, the yield stress of 2cmKg2400  
and a hardening parameter of 24 cmKg100.3 × .  

In order to demonstrate the robustness and accuracy of the 
proposed method, the simulation is performed using the 
unstructured X-FEM and regular FEM meshes, as shown in 
Figure 2. In Figure 3, the distribution of normal stress yσ  
contours together with the deformed configurations are shown 
for the X-FEM and FEM techniques. A good agreement can be 
seen between two different techniques. 
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Figure 2. Die pressing with inclined interfaces; a) The X-FEM 
mesh of 620 elements, b) The FEM mesh of 600 elements 
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Figure 3. The normal stress contours at d = 1.0 cm; a) The 
X-FEM technique, b) The FEM model 

 

B. Die Pressing with Rigid Central Core 
The next example refers to die pressing of the cubic 

component with a central core, as shown in Figure 4. A cubic 
component of 4 x 4 x 6 cm with the central core radius of 1.3 
cm is restrained at the top edge and a uniform compaction is 
imposed at the bottom. The initial FEM and XFEM meshes are 
presented in Figure 5 for three-quarter of specimen. The 
material properties of the core are assumed to have an elasto- 
plastic von-Mises behavior, while the outer part is taken as an 
elastic behavior. 

 
 

 
 

Figure 4. Die pressing with a rigid central core 
 
 

(a)   (b)  
 

Figure 5. Die pressing with a rigid central core; a) The X-FEM 
mesh, b) The FEM mesh 
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            (a)  

            (b)  
 

Figure 6. Die pressing with a rigid central core; Deformed 
configuration at 2.60 cmd = ; a) The X-FEM, b) The FEM  

 
 
The component is modeled for the high reduction of 2.60 cm. 

In Figures 6 and 7, the deformed configurations are shown 
together with the normal stress 

yσ  distributions of compacted 
component at the final stage of die-pressing using both the 
X-FEM and FEM methods. In order to compare the results of 
two different techniques, the force-displacement curves are 
plotted in Figure 8 using X-FEM and FEM analyses. 
Remarkable agreements can be observed between two different 
methods. This example adequately presents the capability of 
X-FEM technique in 3D modeling of large elasto-plastic 
deformation of die-pressing problems. 

 
 

         (a)  

(b)     
 

Figure 7. The normal stress contours at the deformation of 
2.60 cmd = ; a) The X-FEM, b) The FEM  
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Figure 8. The variation of reaction force with displacement; A 
comparison between FEM and X-FEM analyses  

 

C. Die Pressing of Shaped Tablet Component 
The last example chosen demonstrates the performance of 

X-FEM technique in modeling large elasto-plastic deformation 
of shaped-tablet pressing, as shown in Figure 9. A shaped tablet 
is compacted by simultaneous action of top and bottom 
punches. This component is a challenging example for the 
proposed X-FEM approach because it involves two crossing 
interfaces; the first is the surface between punch and tablet and 
the second consists of the contact interface between the die and 
tablet. The punch and sleeve are both elastic and the tablet has a 
nonlinear elasto-plastic behavior. On the virtue of symmetry, 
the process is modeled for one-quarter of component. 

In Figure 10, the X-FEM and FEM meshes are shown at the 
initial stage of compaction. In the X-FEM analysis, the 
discontinuity in different material properties of tablet and 
punch is modeled by level set function, and the discontinuity in 
contact interface between the die and tablet is simulated by the 
Heaviside enrichment function. In the FEM analysis, the finite 
element mesh is combined with the contact elements along the 
contact surface.  

 
 

 (a)   (b)  
 

Figure 9. Closed-die pressing of shaped tablet component; a) 
Problem definition, b) One-quarter of specimen 
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 (a)    (b)  
 

Figure 10. Die pressing of shaped tablet component; a) The 
X-FEM mesh, b) The FEM mesh 
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Figure 11. Die pressing of shaped tablet component; Deformed 
configuration at 2.60 cmd = ; a) The X-FEM, b) The FEM  
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Figure 12. The normal stress contours at the deformation of 
2.60 cmd = ; a) The X-FEM, b) The FEM  

 
 

In Figure 11, the deformed X-FEM and FEM meshes are 
shown at the deformation of 2.60 cm. The distributions of the 
normal stress contour at the final stage of compaction are 
shown in Figure 12 for both techniques. Complete agreements 
can be observed between the X-FEM and FEM methods. 

VII. CONCLUSION 
In the present paper, the X-FEM method was presented in the 

framework of arbitrary Lagrangian-Eulerian formulation for 
large deformation of forming processes. The X-ALE-FEM 
technique was developed by implementation of the enrichment 
functions to approximate the displacement fields of elements 
located on discontinuity due to different material properties. 
The X-FEM method was applied by performing a splitting 
operator to separate the material (Lagrangian) phase from 
convective (Eulerian) phase. The Lagrangian phase was carried 
out by partitioning the domain with triangular sub-elements 
whose Gauss points were used for integration of the domain of 
the elements. The ALE governing equation was derived by 
substituting the relationship between the material time 
derivative and grid time derivative into the governing equations 
of continuum mechanics. The analysis was carried out 
according to Lagrangian phase at each time step until the 
required convergence is attained. The Eulerian phase was then 
applied to keep the mesh configuration regular.  

The capability of proposed method was finally demonstrated 
through several numerical examples. The simulation of the 
deformation was shown as well as the distribution of stresses 
and the results were compared with those obtained by FEM 
analysis. Remarkable agreements were achieved between the 
X-FEM and FEM techniques. The results clearly indicate that 
the proposed approach can be efficiency used to model the 
large plastic deformation of forming problems. 
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