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Abstract−In a rendezvous problem on a discrete line two

players are placed at points on the line. At each moment

of time each player can move to an adjacent point or

remain at the point at which it stands. The goal is for

both players to reach the same point in the least time.

There are optimal strategy pairs for which both players

tend toward the center. Using this result and a matrix

representation for the situation we employ a symbolic

program (Maxima) to determine all possible solutions

to searches on lines having four or five points, the cases

of 1, 2, or 3 points being trivial.
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Introduction

We consider the problem in which two teams called Player I

and Player II are placed at locations i and j respectively with

probability pi,j on a discrete line. Thereafter the two players

move to adjacent locations until they finally meet by arriving

at the same location. The goal is for the players to meet in

the shortest time. Thus if Player I starting at i chooses a path

fi and Player II starting at j chooses a path gj the goal is to

minimize the quantity

E ({fi} , {gj}) =
∑

i,j

pi,j [fi, gj ]

where [fi, gj ] denotes the time before the two paths are at the

same location.

The problem described above is known as the rendezvous prob-

lem on the discrete line. A description of results for this problem

on the line and other lattices is described in [1], and some results

for lines of arbitrary length appear in [2] and [3]. In this paper

we first show that there is always an optimal pair of paths that

tend toward the center. Next we show how to represent a pair of

paths and its result using matrix calculations. Finally we apply

the calculation to the cases of a four and five point line.

The Restriction Theorem

The main result in this section is that in every rendezvous game

on the line there is always a pair of optimal strategies that are
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within increasingly shorter lines as the search proceeds. A more

general theorem of this type is found in [4], but the present result

is not a special case since there we defined a meeting to be in the

same or adjacent locations at the same time. It is convenient to

represent the set L of locations on a line by

L = {−n,− (n − 1) , ...,−1, 0, 1, ..., n}

if the line has an odd number (2n + 1) of locations and by

L = {−n,− (n − 1) , ...,−1, 1, ..., n} ,

omitting 0, if the line has an even number (2n) of locations.

A path fi beginning at location i is a function from the set

of positive integers into L such that (1) fi (1) = i and (2)

fi (t + 1) ∈ {fi (t) − 1, fi (t) , fi (t) + 1} for each positive integer

k. We express this briefly by saying that fi (t + 1) is adjacent

to fi (t). If fi and gj are two paths then [fi, gj ] is the smallest

integer k for which fi (k) = gj (k) or ∞ if the paths never meet.

A path fi is said to be k restricted where 0 ≤ k ≤ n after time

T if −k ≤ fi (t) ≤ k for t > T . If fi is a k restricted path after

time T we define Pk−1 (fi) to be the function g from the positive

integers into L defined by

g (k) =

fi (t) if t ≤ T + 1

fi (t) if t > T + 1 and − (k − 1) ≤ fi (t) ≤ k − 1

k − 1 if t > T + 1 and fi (t) = k

− (k − 1) if t > T + 1 and fi (t) = −k

Thus g coincides with fi until time T +1 coincides with fi except

it stays at − (k − 1) when fi goes to −k or at (k − 1) when fi

goes to k.

Proposition 1 If fi is a k restricted path after time T then

g = Pk−1 (fi) is a path that begins at i and is (k − 1) restricted

after time T + 1 as well as k restricted after time T .

Proof. Since 1 ≤ T + 1 it follows that g (1) = fi (1) = i. If

t ≤ T + 1 or − (k − 1) < fi (t) < k − 1 then g (t + 1) is adjacent

to g (t) because it coincides with fi. If t > T + 1 and fi (t) = k

then g (t) can be k (if t = T + 1) or k − 1 and fi (t + 1) can

be k or k − 1 so g (t + 1) has to be k − 1 which is adjacent to

g (t). If t > T + 1 and fi (t) = k − 1 then g (t) is k − 1 and

fi (t + 1) can be k or k − 1 so g (t + 1) has to be k − 1 which is

adjacent to g (t). We omit the similar argument for fi (t) equal

−k or − (k − 1). That g is k restricted after time T follows since

g (T + 1) = fi (T + 1) . 2
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Proposition 2 If fi and gj are both k restricted paths after

time T then

[Pk−1fi, Pk−1gj ] ≤ [fi, gj ] .

Proof. Denote Pk−1fi by f∗
i and Pk−1gj by g∗

j , and let [fi, gj ] =

t0. If t0 ≤ T + 1 or fi (t0) /∈ {k,−k} then f∗
i (t0) = fi (t0) =

gj (t0) = g∗
j (t0). If t0 > T + 1 and fi (t0) = k then f∗

i (t0) and

g∗
i (t0) are both k−1. If t0 > T +1 and fi (t0) = −k then f∗

i (t0)

and g∗
i (t0) are both − (k − 1). Thus f∗

i and g∗
i both meet at

time t0 and possibly before. 2

Definition 3 A path fi on L is called restricted if it is n− T

restricted after time T for T = 0, 1, 2, .., n − 1 and fi (n) = 0

when L has an odd number (2n+1) locations or fi (n) = 1 when

L has an even number (2n) locations.

Proposition 4 If fi and gj is any pair of paths on L, there are

restricted paths f∗
i and g∗

j such that
[

f∗
i , g∗

j

]

≤ [fi, gj ].

Proof. Since fi and gi are paths on L, they are n restricted so

by Proposition Pn−1fi and Pn−1gj are n restricted after time 0

and n−1 restricted after time 1 with [Pn−1fi, Pn−1gj ] ≤ [fi, gj ].

We can iterate this process n− 1 times to obtain the desired f∗
i

and g∗
i . 2

Proposition 5 Suppose Players I and II begin at locations i

and j respectively with probability pi,j . If {fi : i ∈ L} is any set

of paths for Player I and {gj : j ∈ L} is any set of paths for

Player II then there are sets of restricted paths If {f∗
i : i ∈ L}

and
{

g∗
j : j ∈ L

}

such that
∑

i,j

pi,j

[

f∗
i , g∗

j

]

≤
∑

i,j

pi,j [fi, gj ] .

Proof. For each i, j let f∗
i , g∗

j satisfy the conclusion of Propo-

sition 4. 2

Theorem 6 Suppose Players I and II begin at locations i and

j respectively with probability pi,j . There are restricted paths

{f∗
i : i ∈ L} and

{

g∗
j : j ∈ L

}

such that
∑

i,j

pi,j

[

f∗

i , g∗

j

]

≤
∑

i,j

pi,j [fi, gj ]

for any pair of sets of paths {fi : i ∈ L} and {gj : j ∈ L}.

Proof. Since the set of restricted paths is finite so is the set of

pairs of restricted paths. Thus there is a pair {f∗
i : i ∈ L} and

{

g∗
j : j ∈ L

}

of restricted paths for which
∑

i,j

pi,j

[

f∗
i , g∗

j

]

is a minimum. If {fi : i ∈ L} and {gj : j ∈ L} is any pair

of paths, by Proposition 5 there is a pair of restricted paths
{

fˆ
i : i ∈ L

}

and
{

gˆ
j : j ∈ L

}

such that
∑

i,j

pi,j

[

fˆ
i , gˆ

j

]

≤
∑

i,j

pi,j [fi, gj ]

but we also have
∑

i,j

pi,j

[

f∗

i , g∗

j

]

≤
∑

i,j

pi,j

[

fˆ
i , gˆ

j

]

because
∑

i,j
pi,j

[

f∗
i , g∗

j

]

is minimal over restricted paths. 2

Matrix Representation

In this section it is convenient to represent the locations on the

line L by {1, 2, ..., n} where n can be odd or even. A collection

of n motions to other locations can be represented by an n × n

matrix D where the jth column (dij) has dkj = 1 to represent

a motion from j to k and 0’s elsewhere. The transpose D> of

such a matrix also represents such a motion.

Proposition 7 If Q = (qi,j) is a matrix for which qi,j denotes

the probability that Player I is at i and Player II is at j then

DQE> = (ri,j) is a matrix in which ri,j is the probability that

Player I is at i and Player II is at j given that Player I performs

the motions represented by D and Player II performs the motions

represented by E>.

Proof. If DQ = (si,j) then for each i we have

si,j =
∑

h∈A

ph,j

where A is the set of all h that Player I moved to i from h. Thus

si,j represents the probability that Player I is at i and Player II

is at j after the move. A similar argument applies for DQE>.

2

In the situation we are studying moves are restricted to adjacent

locations so we shall take dkj to be 1 for k ∈ {j − 1, j, j + 1} and

0 elsewhere. We denote by ei the column matrix that has 1 in

the ith row and 0’s elsewhere. A path for Player I is represented

by a sequence of matrices Dt : t = 1, 2, ....

Proposition 8 For n = 2m, or n = 2m + 1 a sequence of

matrices (Dt) represents a restricted path for Player I if and

only if for each h = 1, 2, ..., m − 1 (1) the hth column of Dh is

eh+1, (2) the h + 1th column of Dh is eh+1 or eh+2, (3) the

n − hth column of Dh is en−(h+1), (4) the n− (h + 1)th column

of Dh is en−(h+1) or en−(h+2), and (5) For n even, the mth

and (m + 1)th columns of Dm are both em+1, and for n odd the

mth, (m + 1)th and (m + 2)th are all em+1.

Proof. Conditions (1) and (2) hold if and only if on the hth turn

Player I moves toward the center from location h. Conditions

(3) and (4) hold if and only if on the hth turn Player I moves

toward the center from location n − h. If these conditions are

satisfied by matrices Dt for t < h the probability that Player I

is outside of the interval {h, h + 1, ..., n − h} on turn h is zero.

That is the first and last h rows of the matrix

D1D2...DhP
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are zero. The last condition holds if and only if Player I moves

to m + 1 on move m. 2

For a matrix A = [ai,j ] we denote by ∆(A) the matrix D = [di,j ]

for which di,i = ai,i and di,j = 0 for i 6= j; we denote by Tr (A)

the sum
∑

i
ai,i.

Proposition 9 Suppose P = [pi,j ] is the matrix for which pi,j

is the probability that Player I begins at location i and Player

II begins at location j. Suppose the number of locations is ei-

ther n = 2m or n = 2m + 1 and Player I uses the restricted

paths {fi} described by the matrices {Dt : t = 1, ...,m} while

Player II uses the restricted paths {gj} described by the matrices
{

E>
t : t = 1, ...,m

}

. Let

P1 = D1 (P − ∆ (P ))E>
1

and for t = 2, ...,m let

Pt = Dt (Pt−1 − ∆(Pt−1))E>

1

Then the probability that Player I and II meet after turn t is

Tr (Pt).

Proof. Each element pi,j of P − ∆(P ) is the probability that

I is at i and II is at j and they did not meet at the start.

Thus the diagonal elements of P1 are the probabilities that I

and II meet immediately after the first move ( Proposition 7 ).

If Pt−1 = [si,j ] then si,j is the probability that after turn t − 1

I is at i and II is at j and they have not previously met. Thus

Tr (Pt−1) is the probability that they meet after turn t − 1,

Pt−1 − ∆ (Pt−1) is the matrix of probabilities that they have

not yet met and are at different locations after turn t − 1 and

Dt (Pt−1 − ∆(Pt−1)) E>
1 is the matrix of probabilities that they

are at their various locations after I and II make their moves.

2

If we write b0 = Tr (P ) and bt = Tr (Pt) then assuming

Player I uses the restricted paths {fi} described by the matrices

{Dt : t = 1, ...,m} while Player II uses the restricted paths {gj}

described by the matrices
{

E>
t : t = 1, ...,m

}

we have

E ({fi} , {gj}) =

m
∑

t=1

tbt

since the players will certainly meet at the end of turn m it

follows that
∑m

t=0
bt =

∑

i,j
pi,j = 1 so that

E ({fi} , {gj}) =

m−1
∑

t=1

tbt + m

(

1 −

m−1
∑

t=0

bt

)

= m (1 − b0) −

m−1
∑

t=1

(m − t) bt

The quantity m (1 − b0) is fixed so minimizing E ({fi} , {gj}) is

equivalent to maximizing

m−1
∑

t=1

(m − t) bt.

Solutions for Four and Five Loca-

tions

We have used the matrix method described in the previous sec-

tion to completely solve the rendezvous problem for a line of

four or five locations. To do this we have employed the sym-

bolic computational program MAXIMA, which is a decendent

of the Macsyma program maintained at the U. S. Department

of Energy, and now available without charge on the internet [5].

First observe that the solutions for the one, two or three point

line are obvious. In the case of one point the players meet at

time 0. For two points the players decide before on a point to

end at if they do not meet at time 0 and both go (or remain)

there. For three points both players go to the center if they do

not meet at time 0.

When there are four or five locations the players can meet after

no more than two moves using restricted strategies. The ter-

minal point in the four point case on the line [1, 2, 3, 4] being 2

or 3 (chosen beforehand by the players or their controller) and

the terminal point in the five point case on the line [1, 2, 3, 4, 5]

being 3. If the players have not met after the first move they

both move to the terminal point on the second.

Four Locations

When there are four locations each player has only two possible

tactics on the first move. They are described by the vectors

e2 = [0, 1, 0, 0] and e3 = [0, 0, 1, 0]

The strategy described by e2 in row i is to move to 2 from i and

the strategy described by e3 in row i is to move to 3 from i. The

first column must be e2 (if the strategy is restricted) and the

fourth column must be e3 while the two middle columns can be

either. Thus on the first move there are four strategy matrices

for each player resulting in a total of sixteen strategy pairs for

the two teams. In formula the sum that has to be maximized

is simply b1. We have calculated the quantities b1 for all sixteen

strategy pairs and have found that each pair can be optimal in

the appropriate situation.

Example 10 The pair of matrices

A =









0 0 0 0

1 0 1 0

0 1 0 1

0 0 0 0









, B =









0 1 0 0

0 1 0 0

0 1 0 0

0 0 1 0









describes the pair of strategies for which Player I moves to 2 if

it begins at 1, to 3 if it begins at 2, to 2 if it begins at 3 and to

3 if it begins at 4 while Player II moves to 2 if it begins at 1 to

remains at 2 if it begins at 2 moves to 2 if it begins at 3 and to

3 if it begins at 4. Since

A









0 p1,2 p1,3 p1,4

p2,1 0 p2,3 p2,4

p3,1 p3,2 0 p3,4

p4,1 p4,2 p4,3 0









B
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has trace equal to

b1 = p3,2 + p3,1 + p1,3 + p1,2 + p2,4

it follows that if the players use this strategy the expected time

will be

b1 + 2

(

1 − b1 −

4
∑

j=1

pj,j

)

.

Since no other strategy results in all of these terms in b1 it fol-

lows that if p3,2 = p3,1 = p1,3 = p1,2 = p2,4 = 1
5 then the expected

time will be 1 and this strategy and no other will be optimal.

The results of the calculations are displayed in the following

table. The first four columns are interpreted as follows: first

column - Player I strategy at location 2, 0 means stay, 1 means

move to 3; second column - Player I strategy at location 3, 0

means stay, -1 means move to location 2; third column - Player

II strategy at location 2 , 0 means stay, 1 means move to 3;

fourth column - Player II strategy at location 3, 0 means stay,

-1 means move to 2. Since we are dealing with restricted paths

if a player is at an endpoint it will move to the adjacent point.

The last column denotes quantity b1. If each of the quantities

appearing in the last column are equal and have sum 1 then

no strategy will do as well as that described in the previous

row. For example if p4,3 = p4,2 = p3,4 = p3,2 = p2,1 = 1
5

then

no strategy will do as well as that depicted in row 2: Player I

remains in place at location 2 or 3 while player moves to 3 if at

location 2 and remains in place if at location 3.

0 0 0 0 p4,3 + p3,4 + p2,1 + p1,2

0 0 1 0 p4,3 + p4,2 + p3,4 + p3,2 + p2,1

0 0 0 −1 p3,4 + p2,3 + p2,1 + p1,3 + p1,2

0 0 1 −1 p4,2 + p3,4 + p3,2 + p2,3 + p2,1 + p1,3

1 0 0 0 p4,3 + p3,4 + p2,4 + p2,3 + p1,2

1 0 1 0 p4,3 + p4,2 + p3,4 + p3,2 + p2,4 + p2,3

1 0 0 −1 p3,4 + p2,4 + p1,3 + p1,2

1 0 1 −1 p4,2 + p3,4 + p3,2 + p2,4 + p1,3

0 −1 0 0 p4,3 + p3,2 + p3,1 + p2,1 + p1,2

0 −1 1 0 p4,3 + p4,2 + p3,1 + p2,1

0 −1 0 −1 p3,2 + p3,1 + p2,3 + p2,1 + p1,3 + p1,2

0 −1 1 −1 p4,2 + p3,1 + p2,3 + p2,1 + p1,3

1 −1 0 0 p4,3 + p3,2 + p3,1 + p2,4 + p2,3 + p1,2

1 −1 1 0 p4,3 + p4,2 + p3,1 + p2,4 + p2,3

1 −1 0 −1 p3,2 + p3,1 + p2,4 + p1,3 + p1,2

1 −1 1 −1 p4,2 + p3,1 + p2,4 + p1,3

Five Locations

When there are five locations, there are 12 matrices describing

restricted strategies resulting in 144 strategy pairs. The fol-

lowing matrix describes these strategies. The first column is a

number used to name the strategy. The action of the strategy

at location 2,3,4 are given in the columns marked 2,3,4 respec-

tively. For example, Strategy 6 is that of staying in place at

location 2 moving to 4 from location 3 and staying in place at

location 4.

2 3 4

1 0 −1 −1

2 0 −1 0

3 0 0 −1

4 0 0 0

5 0 1 −1

6 0 1 0

7 1 −1 −1

8 1 −1 0

9 1 0 −1

10 1 0 0

11 1 1 −1

12 1 1 0

Of the 144 possible values of bi 97 result in values that are dom-

inated by other values so there are 47 non dominated strategy

pairs. We have listed below the 47 non dominated strategy pairs

using the designations described in the matrix. The first number

is the strategy used by I, the second by II and the third column

is the resulting value of b1.

1 8 p5,4 + p4,2 + p3,1 + p2,3 + p2,1 + p1,3

1 10 p5,4 + p4,3 + p4,2 + p3,1 + p2,1

1 12 p5,4 + p5,3 + p4,2 + p3,1 + p2,1

2 2 p5,4 + p4,5 + p3,2 + p3,1 + p2,3 + p2,1 + p1,3 + p1,2

2 6 p5,4 + p5,3 + p4,5 + p4,3 + p3,2 + p3,1 + p2,1 + p1,2

3 7 p4,2 + p3,4 + p3,2 + p2,3 + p2,1 + p1,3

3 8 p5,4 + p4,2 + p3,2 + p2,3 + p2,1 + p1,3

3 9 p4,3 + p4,2 + p3,4 + p3,2 + p2,1

3 10 p5,4 + p4,3 + p4,2 + p3,2 + p2,1

3 11 p5,3 + p4,2 + p3,4 + p3,2 + p2,1

3 12 p5,4 + p5,3 + p4,2 + p3,2 + p2,1

4 7 p4,5 + p3,4 + p3,2 + p2,3 + p2,1 + p1,3

4 11 p5,3 + p4,5 + p4,3 + p3,4 + p3,2 + p2,1

5 8 p5,4 + p4,2 + p3,5 + p3,4 + p2,3 + p2,1 + p1,3

5 10 p5,4 + p4,3 + p4,2 + p3,5 + p3,4 + p2,1

5 12 p5,4 + p5,3 + p4,2 + p3,5 + p3,4 + p2,1

6 2 p5,4 + p4,5 + p3,5 + p3,4 + p2,3 + p2,1 + p1,3 + p1,2

6 6 p5,4 + p5,3 + p4,5 + p4,3 + p3,5 + p3,4 + p2,1 + p1,2

7 3 p4,3 + p3,2 + p3,1 + p2,4 + p2,3 + p1,2

7 4 p5,4 + p4,3 + p3,2 + p3,1 + p2,3 + p1,2

7 7 p4,2 + p3,1 + p2,4 + p1,3

7 9 p4,3 + p4,2 + p3,1 + p2,4 + p2,3
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7 10 p5,4 + p4,3 + p4,2 + p3,1 + p2,3

7 11 p5,3 + p4,2 + p3,1 + p2,4

8 1 p4,5 + p3,2 + p3,1 + p2,4 + p1,3 + p1,2

8 3 p4,5 + p3,2 + p3,1 + p2,4 + p2,3 + p1,2

8 5 p5,3 + p4,5 + p4,3 + p3,2 + p3,1 + p2,4 + p1,2

9 3 p4,3 + p3,4 + p2,4 + p2,3 + p1,2

9 7 p4,2 + p3,4 + p3,2 + p2,4 + p1,3

9 9 p4,3 + p4,2 + p3,4 + p3,2 + p2,4 + p2,3

9 10 p5,4 + p4,3 + p4,2 + p3,2 + p2,3

9 11 p5,3 + p4,2 + p3,4 + p3,2 + p2,4

10 1 p4,5 + p3,4 + p2,4 + p1,3 + p1,2

10 3 p4,5 + p3,4 + p2,4 + p2,3 + p1,2

10 5 p5,3 + p4,5 + p4,3 + p3,4 + p2,4 + p1,2

10 7 p4,5 + p3,4 + p3,2 + p2,4 + p1,3

10 9 p4,5 + p3,4 + p3,2 + p2,4 + p2,3

10 11 p5,3 + p4,5 + p4,3 + p3,4 + p3,2 + p2,4

11 3 p4,3 + p3,5 + p2,4 + p2,3 + p1,2

11 4 p5,4 + p4,3 + p3,5 + p3,4 + p2,3 + p1,2

11 7 p4,2 + p3,5 + p2,4 + p1,3

11 9 p4,3 + p4,2 + p3,5 + p2,4 + p2,3

11 10 p5,4 + p4,3 + p4,2 + p3,5 + p3,4 + p2,3

11 11 p5,3 + p4,2 + p3,5 + p2,4

12 1 p4,5 + p3,5 + p2,4 + p1,3 + p1,2

12 3 p4,5 + p3,5 + p2,4 + p2,3 + p1,2

12 5 p5,3 + p4,5 + p4,3 + p3,5 + p2,4 + p1,2

Example 11 The most obvious situation occurs when both

players begin at a location with equal and independent proba-

bilities so that for each i, j, pi,j = 1
25 . Any strategy in which

there is a maximal number of terms in the third column will

then be optimal. These are (2, 2) , (2, 6) , (6, 2) , (6, 6), having 8

terms. Each of these strategies will give an expected time of
8
25

+ 2
(

1 − 8
25

− 5
25

)

= 32
25

. A similar situation is when both

players are placed with equal probability at pairs of different lo-

cations. The same strategy pairs are optimal and the expected

time is then 8
20

+ 2
(

1− 8
20

)

= 8
5
.
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