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Abstract—In this research, focusing on nonlinear
integer programming problems, we propose an ap-
proximate solution method based on particle swarm
optimization proposed by Kennedy et al. To be more
specific, we develop a new particle swarm optimiza-
tion method which is applicable to discrete optimiza-
tion problems by incoporating a new method for gen-
erating initial search points, the rounding of values
obtained by the move scheme and the revision of
move methods. Furthermore, we show the efficiency
of the proposed particle swarm optimization method
by comparing it with an existing method through the
application of them into the numerical examples.
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1 Introduction

In general, actual various decision making situations
are formulated as large scale mathematical programming
problems with many decision variables and constraints.

If a value of the decision variables is integer, the problem
is called an integer programming problem. For integer
programming problems, we can have optimal solution by
application of the dynamic programming fundamentally.
However, since optimization problems become larger and
more complicated, a high speed and accurate optimiza-
tion method is expected. In particular, for nonlinear in-
teger programming problems, there are not the general
strict method or approximation method, such as branch
and bound method for linear programming problems. In
such a case, a solution method depended on property in
problems is proposed. In recent years, a particle swarm
optimization (PSO) method was proposed by Kennedy et
al. [1] and has attracted considerable attention as one of
promising optimization methods with higher speed and
higher accuracy than those of existing solution methods.
And we showed the efficiency of improved PSO method
than genetic algorithm for nonlinear programming prob-
lems [3].

However there are almost no application of the PSO
method for integer programming problem.
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In this research, we focus on nonlinear integer program-
ming problems and consider an application of the PSO
method.

2 Nonlinear integer programming prob-
lems

In this research, we consider general nonlinear integer
programming problem with constraints as follows:

minimize f(x)
subject to gi(x) ≤ 0, i = 1, 2, . . . , m

lj ≤ xj ≤ uj , j = 1, 2, . . . , n
x = (x1, x2, . . . , xn)T ∈ Zn





(1)

where f(·), gi(·) are convex or nonconvex real-valued
functions, lj and uj are the lower bound and the upper
bound of each decision variable xj .

3 Particle swarm optimization

Particle swarm optimization [1] method is based on the
social behavior that a population of individuals adapts to
its environment by returning to promising regions that
were previously discovered [2]. This adaptation to the
environment is a stochastic process that depends on both
the memory of each individual, called particle, and the
knowledge gained by the population, called swarm.

In the numerical implementation of this simplified social
model, each particle has three attributes: the position
vector in the search space, the current direction vector,
the best position in its track and the best position of the
swarm. The process can be outlined as follows and shown
in Fig. 1.
Step 1: Generate the initial swarm involving N particles
at random.
Step 2: Calculate the new direction vector for each par-
ticle based on its attributes.
Step 3: Calculate the new search position of each parti-
cle from the current search positon and its new direction
vector.
Step 4: If the termination condition is satisfied, stop.
Otherwise, go to Step 2.
To be more specific, the new direction vector of the i-

th particle at time t, vt+1
i , is calculated by the following
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Figure 1: The basic algorithm of PSO.

scheme introduced by Shi and Eberhart [4].
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In (2), Rt
1 and Rt

2 are random numbers between 0 and 1,
pt

i is the best position of the i-th particle in its track at
time t and pt

g is the best position of the swarm at time
t. There are three parameters such as the inertia of the
particle ωt, and two parameters c1, c2.

Then, the new position of the i-th particle at time t, xt+1
i ,

is calculated from (3).

xt+1
i := xt

i + vt+1
i (3)

where xt
i is the current position of the i-th particle at

time t. After the i-th particle calculates the next search
direction vector vt+1

i by (2) in consideration of the cur-
rent search direction vector vt

i, the direction vector going
from the current search position xt

i to the best search po-
sition in its track pt

i and the direction vector going from
the current search position xt

i to the best search position
of the swarm pt

g, it moves from the current position xt
i

to the next search position xt+1
i calculated by (3). In

general, the parameter ωt is set to large values in the
early stage for global search, while it is set to small val-
ues in the late stage for local search. For example, it is
determined as:

ωt := ω0 − t · (ω0 − ωTmax)
0.75 · Tmax

(4)

where t is the current time, Tmax is the maximal value of
time, ω0 is the initial value of ωt and ωTmax is the final
value of ωt.

The search procedure of PSO is shown in Fig. 2. If the
next search position of the i-th particle at time t, xt+1

i , is
better than the best search position in its track at time
t, pt

i, i.e., f(xt+1
i ) ≤ f(pt

i), the best search position in
its track is updated as pt+1

i := xt+1
i . Otherwise, it is

updated as pt+1
i := pt

i. Similarly, if pt+1
i is better than

the best position of the swarm, pt
g, i.e., f(pt+1

i ) ≤ f(pt
g),

then the best search position of the swarm is updated as
pt+1

g := pt+1
i . Otherwise, it is updated as pt+1

g := pt
g.
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Figure 2: Movement of an individual.

In the original PSO method, however, there are draw-
backs that it is not directly applicable to constrained
problems and its liable to stopping around local solutions.

To deal with these drawbacks of the original PSO meth-
ods, we incorporated the bisection method and a homo-
morphous mapping to carry out the search considering
constraints. In addition, we incorporated the multiple
stretching technique and modified move schemes of par-
ticles to restraining the stopping around local solutions
[3].

4 Improvement of the PSO method for
nonlinear integer programming prob-
lems

In this research, to apply the PSO method to nonlin-
ear integer programming problems, we devise generating
initial search points, rounding of values obtained by the
move scheme and the revision of move methods.

4.1 Generating initial search points

In the original PSO method, we generate real value at
random in the search space. Since the problem focusing
in this research is for decision variables to be an integer
value, we modify to generate integer random value in the
search space.

4.2 Rounding of values obtained by the
move scheme

In general, since the value obtained by the move scheme of
the PSO method is noninteger value, we cannot apply the
PSO method to nonlinear integer programming problems.
Thus, we revise decision variables to apply to nonlinear
integer programming problems by the rounding of values
obatained by the move scheme.
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Table 1: Results of application of the PSO method (10
times)

best −196.656
average −189.033
worst −162.004

time (sec) 6.504

4.3 Revision of move methods

Table 1 shows the result of the application in an nonlinear
integer programming problem has 30 decision variables.
The optimal solution of this problem is (7, 7, . . . , 7)T and
the optimal value is −196.656. From Table 1, on effi-
ciency of evaluating a solution, the precision of solutions
is shown since an optimal value is obtained as the best
value. On the other hand, we cannot regard the PSO
method adequately on accuracy of solutions. Thus, we
analyzed the search process of the PSO method in de-
tail, we could find out that a part of the swarm did not
move on the search process. This is attributed to all ele-
ments becoming 0 when we revise search direction vector
element into an integer value. Therefore we revise move
methods to make certain that all particle move when all
elements of the search direction vector vt+1

i . To be con-
crete, we revise vt+1

i into 1 or −1 depending on the plus
and minus on the element that the absolute value is max-
imum in the element of vt+1

i before revising an integer
value. We show the result of the application of the re-
vised PSO (rPSONLIP) method to the same problem in
Table 2.

Table 2: Results of application of the rPSONLIP method
(10 times)

best −196.656
average −196.220
worst −192.937

time (sec) 6.394

From Table 2, introducing the revision of move methods,
the improvement of the PSO method is shown on accu-
racy.

4.4 The procedure of revised PSO for non-
linear integer programming problems

The procedure of the revised PSO proposed in this paper
summarized as follows and is shown in Fig. 3.
Step 1: Find an integer feasible solution by PSO in con-
sideration of the degree of violation of constraints, and
use it as the basepoint of the homomorphous mapping,
r. Let t := 0 and go to Step 2.

Step 2: Generate feasible initial integer search positions
based on the homomorphous mapping. To be more spe-
cific, map N points generated randomly in the n dimen-
sional hypercube [−1, 1]n to the feasible region X using
the homomorphous mapping, and let these points in X
be initial search positions x0

i , i = 1, . . . , N . In addition,
let the initial search position of each particle, x0

i , be the
initial best position of the particle in its track, p0

i , and let
the best position among x0

i , i = 1, . . . , N be the initial
best position of the swarm, p0

g. Go to Step 3.
Step 3: Calculate the value of ωt by eq.(4). For each
particle, using the information of pt

i and pt
g, determine

the direction vector vt+1
i to the next search position xt+1

i

by the modified move schemes explained in section 4.2.
Next, move it to the next search position by eq.(3) and
go to Step 4.
Step 4: If the particle does not move since the current
search position and the next search position are the same
either, revise vt+1

i to 1 or −1 depending on the plus and
minus on the element that the absolute value is maximum
in the element of vt+1

i before revising an integer value.
Go to Step 5.
Step 5: Check if the current search position of each pat-
icle in the subswarm with repair based on the bisection
method, xt+1

i , is feasible. If not, repair it to be feasible
using the bisection method, and go to Step 6.
Step 6: Determine whether the multiple stretching tech-
nique is applied or not. If it is applied, go to Step 7.
Otherwise, go to Step 8.
Step 7: Apply the multiple stretching technique, i.e.,
each particle is evaluated by the value of S(·) for xt+1

i ,
i = 1, . . . , N .
Step 8: Evaluate each particle by the value of f(·) (ob-
jective function) for xt+1

i , i = 1, . . . , N . Go to Step 9.
Step 9: If the evaluation function value S(xt+1

i ) or
f(xt+1

i ) is better than the evaluation function value for
the best search position of the particle in its track, pt

i, up-
date the best search position of the particle in its track
as pt+1

i := xt+1
i . If not, let pt+1

i := pt
i and go to Step

10.
Step 10: If the minimum of S(xt+1

i ), i = 1, . . . , N or the
minimum of f(xt+1

i ), i = 1, . . . , N is better than the eval-
uation function value for the current best search position
of the swarm, pt

g, update the best search position of the
swarm as pt+1

g := xt+1
imin

. Otherwise, let pt+1
g := pt+1

g and
go to Step 11.
Step 11: If the condition of the secession is satisfied, ap-
ply the secession to every particle according to a given
probability, and go to Step 12.
Step 12: Finish if t = Tmax (the maximal value of time).
Otherwise, let t := t + 1 and return to Step 3.

5 Numerical example

In order to show the efficiency of the propsed PSO (rP-
SONLIP), we apply the original rPSO [3] and the pro-
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Figure 3: The algorithm of the proposed PSO method.

posed PSO (rPSONLIP) to nonlinear integer program-
ming problems. The results obtained by these two meth-
ods are shown in table 3. In these experiments, we set the
swarm size N = 70, the maximal search generation num-
ber Tmax = 5000, the inertia weight initial value ω0 = 1.2,
the inertia weight last one ωTmax = 0.1, weight parame-
ters c1 = c2 = 2，Rt

1, R
t
2 are uniform random number in

the interval [0, 1].

Table 3: Results for a problem with n = 40 and m = 22

method rPSONLIP rPSO [3]
best −4360.209 −4340.597

average −3892.419 −3787.965
worst −3363.007 −3084.424

time (sec) 21.148 19.749

From Table 3, in the application of rPSONLIP, we can
get better solutions in the sense of best, average, worst
and the difference between best and worst than those
obtained by rPSO [3]. Therefore, it is indicated that
the proposed PSO (rPSONLIP) is superior to rPSO for
nonlinear integer programming problems.

6 Conclusions

In this research, focusing on a particle swarm optimiza-
tion (PSO) method, we considered its application to con-
strained nonlinear integer programming problems. In or-
der to deal with an integer value, we incorporated a new
method for generating initial search points, the rounding
of values obtained by the move scheme and the revision of
move methods. And we showed the efficiency of the pro-
posed particle swarm optimization method by comparing
it with an existing method through the application of
them into the numerical examples.
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