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Abstract—In this study, we reformulated the prob-
lem of wafer probe operation in semiconductor man-
ufacturing to consider a probe machine (PM) which
has a discrete shift distribution with a nondecreasing
failure rate. To maintain the imperfect PM during
the probing of a lot of wafers, a minimal repair pol-
icy is introduced with type II inspection error. This
paper aims to find an optimal probing lot size that
minimizes the expected average processing time per
wafer. The adequacy of using a geometric shift distri-
bution is examined when the actual shift distribution
has an increasing failure rate.
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1. Introduction

When on-line process control is impossible, Porteus [3]
studied the optimal production lot size when the im-
perfect process has a geometric shift distribution. Dja-
maludin et al. [1] extended Porteus’s [3] model to con-
sider the situation where outputs are sold under a free
warranty repair policy. Later, the work of Djamaludin et
al. [1] was further studied by Wang and Sheu [4] under
the assumption that the process has a discrete general
shift distribution.

Unlike the works described above, where the on-line con-
trol is assumed to be infeasible, Lee [2] studied a particu-
lar wafer probe problem where the detection and correc-
tion of the out of control problems for the probe machine
(PM) are feasible during the probing of a batch of wafers.
The PM is assumed to have a geometric shift distribution.
Once the PM shifts into an out-of control state, wafers
would be misprobed. However, the misprobed wafers can
be reworked by cleaning the ink and reprobing. Obvi-
ously, the number of misprobed wafers will be affected
by the lot size. As a result, it is important to determine
the optimal probing lot size that minimizes the expected
average processing time per wafer. An upper bound and
two heuristic solutions for the optimal probing lot size
are provided by Lee [2].

This study is attempts to extend Lee’s [2] wafer probe
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problem by further considering the following two features
in the developed wafer probe model: (i) It is assumed
that the PM possesses a discrete Weibull shift distribu-
tion with nondecreasing failure rate. (ii) Minimal repair
is used to maintain the PM during probing wafers in a
lot.

The rest of this paper is organized as follows. In Section
2, the mathematical model is established. Properties for
the optimal probing lot size are explored. In Section 3,
numerical examples are used to investigate the adequacy
of using the geometric distribution when the PM has an
increasing failure rate. Finally, concluding remarks are
made.

2. Mathematical model

Consider a lot of size Q to be probed, 1 ≤ Q ≤ Q̄, where
Q̄ is the load for the maximum lot size. Before prob-
ing a batch of wafers, a setup time Kb is required for
related software installation and inking machine calibra-
tion etc., which is independent of Q. The PM is in an
in-control state every time after it is setup. Wafers are
probed sequentially and the time to probe each wafer is
μb. Denote pj > 0 as the probability that the PM shifts
into an out-of-control state while probing the jth wafer
since the last setup given that the PM is in an in-control
state immediately before probing the jth wafer. Further-

more, we denote P̄j =
∞∑

i=j+1

pi as the reliability of a PM

while probing the jth wafer. In addition, according to the
real operation situation where only a few wafers would be
misprobed in a lot of wafers, it is reasonable to assume
that P̄j is large, for j ≤ Q̄. Hence, it is reasonable to as-
sume that the probability would be small for a wafer in a
lot to be misprobed repeatedly. Therefore, it is assumed
that there are no misprobed wafers or corrections for the
PM while probing the reprobed lots.

Once the PM is out of control, wafers will be mis-
probed until the problems are detected and corrected.
Let 0 ≤ α < 1 be the probability that the out of control
problems of the PM are detected given that the PM is
in an out-of-control state. Once an out-of-control state
is detected, the PM is corrected as an in-control state by
minimal repair before probing the next wafer. The ex-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008



pected number of corrections for the PM after Q wafers
are probed is denoted as C(Q), which excludes the possi-
ble correction immediately after probing the Qth wafer.
Hence, the expected total time required for corrections
for probing a lot of Q wafers is given by μcC(Q), where
μc is the expected time for correcting the out of control
problems each time.

After a lot of Q wafers are finished probing, the whole
lot of wafers will move into the final inspection station
to identify the misprobed wafers. The expected number
of the misprobed wafers is denoted as R(Q). Reworking
the misprobed wafers is feasible by cleaning the ink on
the misprobed wafers, followed by reprobing. As a result,
the expected total processing time for the reprobed lot is
given by Kr(1 − P̄Q) + μrR(Q), where Kr is the setup
time to prepare for probing a reprobed lot and μr is the
time required to reprobe a wafer.

Based on the above description, the expected average pro-
cessing time of a lot with Q wafers is given by

A(Q) =
1
Q

{
Kb + Kr

(
1− P̄Q

)

+ μbQ + μrR (Q) + μcC (Q)
}

, (1)

where R(Q) and C(Q) can be easily obtained as follows:

R(Q) = Q − P̄1 − α

Q∑
n=2

P̄n/P̄n−1

− (1− α)
Q∑

n=2

P̄n{
n−2∑
i=1

[α(1− α)n−i−2/P̄i]

+ (1− α)n−2}, Q ≥ 1,

C(Q) = (Q − 1)α

− α

Q∑
n=2

P̄n−1{
n−2∑
i=1

[α(1− α)n−i−2/P̄i]

+ (1− α)n−2} Q ≥ 1.

Our objective here is to find an optimal probing lot size
Q∗ that minimizes A(Q) given in Eq.(1).

The necessary condition for a local minimum solution
to A(Q) is to satisfy A (Q) < A (Q − 1) and A (Q) ≤
A (Q + 1), which are equivalent to

G (Q − 1) < Kb and G (Q) ≥ Kb,

where

G (Q) =

⎧⎪⎪⎨
⎪⎪⎩

Kr

(
P̄Q + QpQ+1 − 1

)
+μr {Q [R(Q + 1)− R(Q)]− R (Q)}
+μc {Q [α (1− P (Q + 1))]− C (Q)} , Q ≥ 1,

0, Q = 0,

where P (Q) = P̄Q−1

{
Q−2∑
i=1

[
α (1− α)Q−i−2

/
P̄i

]
+ (1− α)Q−2

}
,

Q ≥ 2 and P (1) = 1.

For Q ≤ Q̄, we have

G (Q + 1)− G (Q)

= (Q + 1)
{

Kr (pQ+2 − pQ+1)

+μr [P (Q + 2)− P (Q + 3)] + μcα [P (Q + 1)− P (Q + 2)]
}

.

From the last equation, a sufficient condition for G(Q) is
increasing in Q ≤ Q̄ which is given by

μrP (Q + 1) + αμcP (Q)− KrpQ (2)

is decreasing in Q ≤ Q̄.

3. Numerical examples

In this section, six different types of wafer products, des-
ignated A to F as shown in Table 1 as described in Lee
[2], are used to evaluate the effects of minimal repair for
the imperfect PM on both the optimal probing lot size
(Q∗) and its corresponding expected average processing
time (A(Q∗)). The reliability of the PM that the first
j wafers are probed in an in-control state is given by
P̄j = (1 − p)j

δ

, where p is dependent on different types
of wafer products produced (e.g., p=0.8 for product B),
and δ is increased from 1 to 1.9 to evaluate the change
of Q∗ and A(Q∗). The %Penalty = 100%[A(Q∗(δ =
1))−A(Q∗(δ > 1))]/A(Q∗(δ > 1)) is used to evaluate the
adequacy of the assumption that the PM follows a geo-
metric shift distribution when the actual shift distribu-
tion is a discrete Weibull with an increasing failure rate.
For the same product, we observe that Lee’s [2] optimal
lot size (processing time) often overestimates (underes-
timates) the real optimum. The geometric solution may
not be a good approximative solution when a PM actually
has a Weibull shift distribution with increasing failure
rate, especially when δ is large. For example, we observe
that product E has %Penalty=145.02% at δ = 1.7.

4. Concluding remarks

In this paper, a lot-size model has been developed for
the wafer probe operation in the manufacturing of semi-
conductors, where the PM is assumed to have a discrete
shift distribution with non-decreasing failure rate. Also,
a minimal repair policy is introduced to maintain the im-
perfect PM; however, a type II inspection error exists for
this model. A condition is explored for the uniqueness of
the optimal probing lot size. The adequacy of using the
geometric distribution when the actual shift distribution
is discrete Weibull with an increasing failure rate is also
examined. The geometric solution may not be a good ap-
proximative solution when the PM has worse reliability.
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