

Abstract— In Operation Research, Branch and Bound is one

of the basic methods to solve Integer programming (IP)
problems. According to dividing property of branch and bound,
parallel algorithms for solving Integer Programming are
common.
In this paper, a new parallel branch and bound algorithm is
proposed for muli-computers. This algorithm instead using of
shared memory multi-processor environment, uses multi
computers and dynamic load balancing. As well as reduce
drastically the intercommunication between processes. This
algorithm is implemented for well known Capacitated Vehicle
Routing Problem (CVRP). In addition, our results are quite
good comparing to other algorithms.

Index Terms— CVRP, Integer Programming, Parallel
Branch and Bound

I. INTRODUCTION
 The linear-programming models all have been

continuous, in the sense that decision variables are allowed to
be fractional. Often this is a realistic assumption. At other
times, however, fractional solutions are not realistic, and we
must consider the Integer-programming (IP) model of some
optimization problems [1].
Integer-programming models arise in practically every area
of application of mathematical programming. Popular
NP-Hard problems like: Warehouse location problem, TSP,
Scheduling and Knapsack problem develop a preliminary
appreciation for the importance of IP models and have
showed how integer variables can be used to provide broad
modeling capabilities beyond those available in linear
programming.[3],[4]
Capacitated Vehicle Routing Problem (CVRP) is a famous
integer programming problem which has lots of application

Manuscript received November 4, 2007.
G.H. Dastghaibifard is assistant professor of Computer Science and

Engineering Department, Shiraz University, Shiraz, iran. (email:
dstghaib@shirazu.ac.ir)

Ebrahim Ansari Chelche is Msc Student of Computer Science and
Engineering Department, Shiraz University, Shiraz, iran. (email:
ansari@cse.shirazu.ac.ir)

S.M. Sheykhalishahi is Msc Student of Computer Science and
Engineering Department, Shiraz University, Shiraz, iran. (email:
alishahi@cse.shirazu.ac.ir)

Amir Bavandpouri Chelche is Msc Student of Computer Science and
Engineering Department, Shiraz University, Shiraz, iran. (email:
bavandpouri@cse.shirazu.ac.ir)

Elmira Ashoor Mahani is Msc Student of Computer Science and
Engineering Department, Shiraz University, Shiraz, iran. (email:
ashoor@cse.shirazu.ac.ir)

in [14] and our proposed algorithm is implemented for
CVRP.
There is no single technique to solving integer programs;
however the Simplex method is effective for solving linear
programs. Although a number of procedures have been
developed, but the performance of any particular technique
appears to be highly problem-dependent. Currently, the
algorithms use one of the following classical approaches:

1) Enumeration techniques, including the
branch-and-bound procedure.

2) Cutting-plane techniques
3) Group-theoretic techniques.

In addition, several composite procedures have been
proposed [4]. In this paper, the first classical approaches will
be considered in detail. Various sequential algorithms and
heuristics for solving integer programming problems with
branch and bound method can be found in [6]- [9].
Large and/or computationally expensive optimization
problems sometimes require parallel or high-performance
computing systems to achieve reasonable running times.
Even though many parallel algorithms [10]- [13] have been
developed for branch and bound problems, one of the big
issues in these algorithms is how to tackle huge amount of
communication between sub-problems. In most algorithms
for tackling this problem they have used parallel shared
memory computers. But these computers are not affordable
these days. To overcome this problem, in this paper we will
consider multi-computer environment instead of
shared-memory which are more affordable.
One of the main obstacles in using multi computers is how to
tackle the centralized communication used in parallel shared
memory computers. In order to tackle this problem we can
use a central process for performing the communication
among sub-problems, but this will reduce the efficiency
drastically in problems with high communication. In this
paper, a new method is proposed such that all sub-problems
communicate to each other in the way that there is no need to
have a central processor, so increase the efficiency. In
addition also to reduce the idle times of processors and keep
them as busy as possible, the following heuristic mechanism
is proposed. First of all sub problems are distributed between
different processes and each process works on problems in its
queue for a specific period of time. Then processes send best
value of solution and some extra information to other
processes. If a process becomes idle, an unsolved problem
from other processes will be assigned to it. These operations
will be continued till the queue of all processes become
empty.
In some phases of solving linear programming problems with

A Parallel Branch and Bound Algorithm for
Vehicle Routing Problem

G.H. Dastghaibifard, E. Ansari, S.M. Sheykhalishahi, A. Bavandpouri, E. Ashoor

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

branch and bound, sub-problems must being solved with
classical linear programming methods such as Dual Simplex
[1], [2]. For this purpose a program has been written to
performing dual simplex methods on linear programming
model.
In the remainder of the paper, we first describe branch and
bound algorithm, and then describe CVRP in detail. Section 4
describes proposed algorithm in detail. Experimental results
and analysis are given in section 5. Finally section concludes
the paper.

II. BRANCH AND BOUND
Branch and bound is a technique for solving optimization
problems that uses divide and conquer strategy to partition
the solution space into sub-problems and then solves each
sub-problem recursively.

Linear programming methods, such as simplex can be used
to solve every sub-problem. If any of variables is fractional,
we select one of fractional variables, and divide our B&B
tree, into two branches. For example if our fractional variable
A is 3.45, first branch is constraint is A ≤ 3 and second branch
is A ≥ 4. Then we put these branches into B&B list of
candidate sub-problems, and continue our algorithm.

In each step, one of the candidate sub-problems is selected,
removed from the list, and simplex method will be applied.
There are four possible cases.

1) Feasible solution better than the current best value, is
found: In this case the current best value will be replaced by
the new solution and continue.

2) We may also find that the sub-problem is infeasible so
prune it. Otherwise, we compare solution of it to the upper
bound yielded by the current best solution.

3) If it is greater than or equal to our current upper bound,
then we may again prune the sub-problem.

4) Finally if we cannot prune the sub-problem, we are
forced to branch and add children of this sub-problem to the
list of candidates.
This process will be continued until the list of sub problems
being empty. Finally the best answer we achieve so far is the
answer of problem.

III. CVRP
We consider the Vehicle Routing Problem (VRP), introduced
by Dantzig and Ramser [5], in which a quantity di of a single
commodity is to be delivered to each customer i אN = {1,..,
n} from a central depot {0} using k independent delivery
vehicles of identical capacity C. Delivery is to be
accomplished at minimum total cost, with Ci j ≥ 0 denoting
the transit cost from i to j, for 0 ≤ i , j ≤ n. The cost structure is
assumed symmetric, i.e.,

Cj i = Ci j and Ci i = 0.
A solution for this problem consists of a partition {R1, R2,

…, Rk} of N into k routes, each satisfying ∑ ݀אோ and a ,ܥ
corresponding permutation ߪ of each route specifying the
service ordering. This problem is naturally associated with
the complete undirected graph consisting of nodes ܰ ሼ0ሽ,
edges E, and edge-traversal costs Ci j, {i,j}א E. In this graph,
a solution is the union of k cycles whose only intersection is
depot node. Each cycle corresponds to the route serviced by
one of the k vehicles. By associating a binary variable with

each edge in the graph, we obtain the following integer
programming formulation:

 min ܿݔ
 א ா

 ݔ
 א ሼ,ሽאா

ൌ 2݇

(1)

 ݔ ൌ 2
 א ሼ,ሽאா

 ே (2)א

 ݔ
 א ሼ,ሽאா , א ௌ, ב ௌ

 2ܾሺݏሻ ௦ؿே, |ௌ|வଵ

(3)

0 ݔ 1 ,ாאୀሼ,ሽ ,ஷ

(4)

0 ݔ 2 ,ாאୀሼ,ሽ ,ஷ

(5)

ݔ ݏ݅ ݎ݁݃݁ݐ݊ܫ ாא

(6)

For ease of computation, we define:

 ܾሺݏሻ ൌ ቂ∑ ௗೕ

אௌ ቃ
, an obvious lower bound on the number of trucks needed to
service the customers in set S.

Constraint (1) ensures that there are exactly k vehicles,
while constraints (2) ensure that each customer is serviced by
exactly one vehicle, as well as ensuring that the solution is the
union of edge sets of routes.

Constraints (3) can be viewed as a generalization of the
sub-tour elimination constraints from the TSP and serve to
enforce the connectivity of the solution, as well as to ensure
that no route has total demand exceeding the capacity C.
It is clear from our description that the VRP is closely related
to two difficult combinatorial problems. By setting C = ∞, we
get an instance of the multiple traveling salesman problem
and by setting Ce = 0, we get a feasibility version of the bin
packing problem with a fixed number of bins.

IV. NEW ALGORITHM
In the first step, a new program has been written for solving
linear programming problems. This program uses Dual
Simplex method and its input is a simple form of a linear
programming problem including an n*m array for
constraints, goal function and constraints properties. In this
program some functions have been written for inserting a
new constraint to problem model and or assigning a fixed
value to one of variables. These functions perform their
computation and problem model changes in an efficient time.
The proposed program, have good performance and
reasonable speed in comparison with other linear
programming packages such as Lingo [17].

In next step, a sequential program has been proposed to
solve branch and bound problems. In this program we
exploited some heuristic methods to select best branch in
available branches such as Strongly Branch in [6] and some

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

of proposed methods in [7].
In linear programming branch and bound methods, one

problem is the large amount of data in each sub-problem. So
after adding a constraint or any other changes in
sub-problems, saving the whole new sub-problem needs high
memory space. As we know after several iterations the
memory will become full.

To conquer this problem, a data structure has been used for
saving only the changes not the whole changed
sub-problems. This data structure is a linked list that each
elements is an indicator to a new branch (constraint) for
branch and bound tree and has a pointer to its parent
(previous constraint).

In branch and bound process, in each fields of problem
queue, there is just a pointer to its last constraint. For solving
each sub-problem by using this pointer and tracking linked
list, all of sub-problem constraints being added to original
problem and new sub-problem being constructed.

When each process wants to send one sub-problem to
another process, first reconstructs the whole sub-problem
then sends it to corresponding process. Each process after
receiving a new sub-problem, assigns it as like as a new
original problem hereafter. And for building posterior
branches (sub-problems), uses this sub-problem as a
beginning problem (root of tree).

After solving constraints size problem, there is another
problem yet. If a central process manages all communication
between other processes, this process becomes a bottleneck
for our algorithm. To overcome this problem we use
Decentralized Load Balancing. For this purpose sending and
receiving sub-problems being performed by processes
personally. Although Master process just finding the idle
processes and demand sender processes by doing a heuristic
algorithm by considering the length of queues and the
number of idle processes to find the best senders and
receivers in each iteration. In addition, it sends label of sender
and receiver to corresponding processes. Main idea of
Assignment algorithm is sending sub-problems from high
length queue processes to idle processes. Now processes
doing communication instead of master process partnership.
This method helps us to reduce idle time of slave processes.
Ipso facto coordinator process named Assignment Process.

For synchronizing processes to do communication in same
time, time variable Tp has been defined. Namely each
processes doing its job for Tp and then sends best answer and
other information to assignment process.

Small Tp causes more sending and receiving between
processes than large Tp. And if Tp value was large processes
relationship and so parallelization would become low. As we
know, in initial iterations best-values being changed very
quickly. So in preliminary iterations we set Tp a low value,
and in posterior iterations increase value of it because in final
iterations best-values changing will be rare. In our
implementation and result testing, some strategies for Tp
assigning are performed. The results of this examination are
in the final part of this paper.

To decrease processes idle times when assignment process
is doing its duty, below time parameters has been defined:

Tw: time for assignment process calculation plus sending
and receiving time between assignment process and other
processes. Namely a process is idle when it can do its job.

Value of Tw gets updated at the end of per iteration for use in
the next iteration. This job is performed by using statistical
results from previous iterations. So in per iteration every
process after sending its information to assignment process,
do its job for Tw.

Tr: time required to receive a sub-problem by each empty
process from sender process. In a normal situation value of Tr
is equal to zero and when a process receives a sub-problem,
this time variable being valued by receiving time. Receiver
process consider this time to next calculation, namely minus
it from Tp.

For parallelization implementation the MPI [15] library
function has been used.

Part 4.1 and 4.2 are explanation of our branch and bound
algorithm, and in fig.1 (at the end of paper) there is flowchart
to algorithm illustration.

A. Assignment Process algorithm
A- Doing sequential branch and bound algorithm until

there is exactly (numproc-1) sub-problem in branch and
bound queue.

B- Build and sending sub-problems to other processes
C- Receiving best answer and queues information from

other processes by MPI_Gather
D- By considering received information from other

processes, building their array. If queues of all processes are
empty, insert Terminate_tag in arrays. Otherwise if required,
for each process, insert receiver(s) or sender processes label
in corresponding array. Finally insert the best value so far in
these arrays.

E- Sending built arrays to their process by MPI_Scatter.
T- If in Step D Terminate_tag had been sent to all

process, Terminate algorithm.

B. Other Processes Algorithm
B- Receive sub-problem from assignment process.
B-1- Doing algorithm for Tp - Tr. finally set Tr=0.
C- Send best-value and queue information to assignment

process. (MPI_Gatther)
C-1- Checking MYQueueLength (process queue length).
If (MYQueueLength==1)

• C-1-1- Doing job for Tw
• E- Receive best-value so far from

assignment process by MPI_Scatter.

If (MYQueueLength>1)

• C-1-2- Doing job for Tw. if in this step
MyQueueLength< numproc-2 process must
pauses. Because may need to send its
(numproc-2) sub-problem to other
processes (in a rare situation).

• E- Receive NumberofSend, receiver
processes labels and general best-value.

• F- If NumberofSend is greater than zero;
send NumberofSend sub-problem(s), to
receiver processes that have been
determined by assignment process.

• G- Advance forward start pointer of queue
NumberofSend room(s).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

If (MYQueueLength==0)
• E- Receive best-value so far and Sender

process label.
• E-1 Check Sender

o If receive Terminate_tag, Final.
o If Sender==0 means there is no

available sub-problem, so goto C.
o If Sender > 0

F- Receive a sub-problem from Sender and insert it in
queue.

F-1- By considering receiving time, set Tr.
H- Goto B-1
In per iteration the new value of Tw being calculated for

next iteration.

V. IMPLEMENTATION RESULT
Our algorithm has been coded in the C programming
language using the Microsoft Visual C++.NET 2005
compiler and for parallelization MPI library has been used.
The source code is available upon any request.

All experiments have been done on 11 Computer with 3.2
GHz Intel Pentium 4 processor and 512 MB of RAM running
Microsoft Windows XP Professional Edition SP2. We have
done our experiments on the so-called A, B, and P benchmark
CVRP instances, which are available in [16].

In all experiments, program has been executed for
maximum 30 minutes, and after finishing this time,
best-value so far assigned as our answer.

In table-1 results of running program on some famous
examples in both sequential and parallel case have been
showed. For performing these tests we assign 30 non-central
processes and set time variable Tp = 350ms. First row shows
the name of example. Second row shows sequential running
time for each example. By the way, Row 3 shows parallel
running time. Forth row indicates the number of branches
have been used for solving corresponding example. In 5th
row there are best-values for each example. Every time unit
in this table is second. As the previous discussion when a
time is equal 1800, means that the 30 minutes deadline for
execution has been finished. The results show the
performance of the proposed algorithm.

In final step of our examination there is a comparison for
value of Tp effects. For these purpose some example has been
evaluated by several value of Tp. In the first phase we set Tp
equal to small fixed value 100ms. In the next phase we set the
value of Tp to a fixed large value 1s. Furthermore in 3rd phase
we set Tp a changing value. Namely in primary iterations,
value of Tp is equal to 100ms and after each iterations the
value of Tp being decreased uniformly. The results of the
experiment have been illustrated in table.2. After doing this
triple examination, these conclusions have been achieved.

Whereas in primary iterations best-values change quickly,
so in these iterations a small value of Tp is a good choice.
Because a process with better best-value, can prunes its
branch and bound tree faster.

In the secondary steps (especially in big problems),
best-values changes becomes less than previous steps. So if
Tp has a small value, communication overhead will being
very large. Because just repeated best-values have been
exchanged between processes and have no profile for

parallelization.
In very big problems, assigning a large Tp is an optimized

choice, because in these problems solving the sub-problems
have much importance than sharing the best-values.

Table 1- A comparison between sequential and parallel
execution with 33 processes

Best-V
alue

Number
of

branches

Parallel
time Seq. time Example

name

945 10000 22 50 A-n37–k6

829 6000 10 20 A-n39–k5

1013 25000 30 100 A-n53-k7

1180 400000 1200 1800 A-n54-k7

1314 500000 1800 1800 B-n50-k8

1321 500000 1800 1800 B-n66-k9

375 65000 150 450 B-n67-k10

1226 450000 1800 1800 B-n78-k10

630 500000 1800 1800 P-n50-k8

569.5 35000 1052 1800 P-n55-k7

599.2 9000 18 50 P-n76-k4

3124 450000 1750 1800 P-n76-k5

691.2 11000 25 69 P-n101-k4

697 48000 1800 1800 P-n50-k10

Table 2- Effect of Tp values on execution time

Phase 3 Phase 2 Phase 1 Example name

21 24 22 A-n37–k6

11 12 11 A-n39–k5

30 31 35 A-n53-k7

1190 1220 1250 A-n54-k7

149 154 154 B-n67-k10

1800 1800 1800 B-n78-k10

1050 1080 1100 P-n55-k7

19 22 20 P-n76-k4

1740 1800 1800 P-n76-k5

25 28 27 P-n101-k4

1800 1800 1800 P-n50-k10

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

VI. CONCLUSION
In this paper a new parallel branch and bound algorithm has
been proposed. This algorithm instead of using
shared-memory uses a multi-computer environment. A

decentralized load balancing method has been used for this
algorithm. Also shows that by revising existed algorithms can
archive a good performance and lowers communication
between processes. This algorithm is implemented for
famous Capacitated Vehicle Routing Problem (CVRP). And
the experimental results show the efficiency of this
algorithm.

Fig 1- algorithm flowchart

A- Initializing
B- Sending sub-problems
C- Receiving best answer and queues information
D- Building processes communication information array
E- Sending arrays to their processes.
T- If all processes queue are empty, END

B- Receiving subproblems
B-1- Do for Tp-Tr
C- Sending best answer and queue properties

C1

C-1-1 Continue for Tw

E- Receiving best answer

C-1-2 Continue for Tw
E- Receive sent array
F- Sending problem
G- Increase pointer of queue

E- Receiving sender
number and best answer

E1

H- Goto B1

Goto C

END
F- Receiving subproblem

F-1- Updating Tr

B C E

MyQLength==1

MyQLength>1

MyQLength==0

Terminate_Tag

Sender==0

Sender>0

F

F

Slaves Processes Algorithm

Assignment Process Algorithm

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

ACKNOWLEDGMENT
The Authors thanks ITRC (Iranian Telecommunication

Research Center) for their financial support. And thanks Dr.
K. Ziarati for him guidance.

REFERENCES
[1] Hamdy A. Taha, "Operations Research: An Introduction", 6th Edition,

Prentice Hall, 2003.
[2] Frederick S. Hillier, and Gerald J. Lieberman, Introduction to

Operation Research, 7th Edition, McGraw-Hill, 2002.
[3] Mokhtar S. Bazaraa, J. John Jarvis, and Hanif D. Sherali, Linear

Programming and Network Flows, 2nd Edition, Wiley, 1990.
[4] Laurence A. Wolsey, and George L. Nemhauser, Integer and

Combinatorial Optimization, 1st Edition, Wiley-Interscience, 1999.
[5] G.B. Dantzig, and R.H. Ramser, The truck dispatching problem,

Management Science 6 (1959) 80.
[6] D. Applegate, R.E. Bixby, V. Chv´atal, and W. Cook, Finding cuts in

the TSP (A preliminary report), Tech. Rep. 95-05, DIMACS, Rutgers
University, New Brunswick, NJ 08903, 1995.

[7] R. Baldick, A Randomized Heuristic for Inequality-Constrained
Mixed-Integer Programming, Tech. rep., Department of Electrical and
Computer Engineering, Worcester Polytechnic Institute, 1992.

[8] E.M.L. Beale, Branch and Bound Methods for Mathematical
Programming System, Annals of Discrete Mathematics 5 (1979),
201–219.

[9] J.A. Tomlin, An Improved Branch and Bound Method for Integer
programming, Operations Research 19 (1971), 1070–1075.

[10] R. Bixby, W. Cook, A. Cox, and E.K. Lee, Parallel mixed Integer
Programming, Rice University Center for Research on Parallel
Computation Research Monograph CRPC-TR95554, 1995.

[11] R. Correa, and A. Ferreira, Parallel best-first branch and bound in
discrete optimization: a framework, Center for Discrete Mathematics
and Theoretical Computer Science Technical Report 95-03.

[12] A. Grama, and V. Kumar, Parallel search algorithms for discrete
optimization problems, ORSA Journal on Computing 7 (1995) 365.

[13] G. Mitra, I. Hai, and M.T. Hajian, A distributed processing algorithm
for solving integer programs using a cluster of workstations, Parallel
Computing 23 (1997) p-733.

[14] T.K. Ralphs, Parallel branch and cut for capacitated vehicle routing,
Department of Industrial and Systems Engineering, Lehigh University,
Bethlehem, PA 18015, USA, 2002.

[15] Mark Snir, Stive Otto, Steven Huss-Lederman, David Walker, and Jack
Dongarra, "MPI: The Complete Reference", The MIT Press, 1996.

[16] http://neo.lcc.uma.es/radi-aeb/WebVRP; (accessed 1st May 2006),
Examples and Benchmark for CVRP.

[17] LINGO Optimization Modeling Language, College of Engineering,
North Carolina State University, Raleigh, NC 27695.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

